

VERIFICATION TEST REPORT

FCC Part 22, 24, 27 IC RSS 130, 132, 133, 139

Report No.: LYFT15-U13 Rev A (LTE)

Company: Lyft, Inc.

Model: BIT041N

VERIFICATION TEST REPORT

Company: Lyft, Inc.

Model: BIT041N

Standard(s): FCC Part 22, 24, 27 & ISED RSS 130, 132, 133, 139

Test Report Serial No.: LYFT15-U13 Draft

This report supersedes: NONE

Applicant: Lyft, Inc 185 Berry St #5000 San Francisco, California 94107 USA

Issue Date: 15th August 2022

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	
5.4. External A.C/D.C. Power Adaptor	
5.5. Antenna Details	
5.6. Cabling and I/O Ports	
5.7. Test Configurations	
5.8. Equipment Modifications	14
5.9. Deviations from the Test Standard	14
6. TEST EQUIPMENT CONFIGURATION(S)	
6.1. Conducted RF	
6.2. Radiated Emissions - 3m Chamber	
7. MEASUREMENT AND PRESENTATION OF TEST DATA	
8. TEST SUMMARY	
9. TEST RESULTS	
9.1. Radiated Output Power	
Band 2: Effective Radiated Power	
Band 4: Effective Radiated Power	
Band 12: Effective Radiated Power	
9.2. Radiated Transmitter Emissions	
Band 2: Radiated Transmitter Emissions	
Band 4: Radiated Transmitter Emissions	-
Band 12: Radiated Transmitter Emissions	40

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2017. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; http://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS Pleasanton, CA

for technical competence in the field of

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of January 2022.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2023

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

1.2. RECOGNITION

MiCOM Labs, Inc is widely recognized for its wireless testing and certification capabilities. In addition to being recognized for Testing and Certification under Phase 2 Mutual Recognition Agreements (MRA) with Canada, Europe, United Kingdom and Japan, our international recognition includes Conformity Assessment Body (CAB) designation status under agreements with Asia Pacific (APEC) MRA Phase 1 countries giving acceptance of MiCOM Labs test reports. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	MRA Phase	Identification No.	
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Test Firm Designation#: US1084	
Canada	Industry Canada (ISED)	FCB	APEC MRA 2	US0159 ISED#: 4143A	
Japan	MIC (Ministry of Internal Affairs and Communication) Japan Approvals Institute for Telecommunication Equipment (JATE)	CAB	Japan MRA 2	RCB 210	
	VCCI			A-0012	
Europe	European Commission	NB	EU MRA 2	NB 2280	
United Kingdom	ingdom Department for Business, Energy & Industrial Strategy (BEIS)		UK MRA 2	AB 2280	
Mexico	Instituto Federal de Telecomunicaciones (IFT)	CAB	Mexico MRA 1	US0159	
Australia	Australian Communications and Media Authority (ACMA)				
Hong Kong	Office of the Telecommunication Authority (OFTA)				
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	US0159	
Singapore	Infocomm Development Authority (IDA)				
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)				
Vietnam	Ministry of Communication (MIC)				

TCB – Telecommunications Certification Bodies (TCB)

FCB – Foreign Certification Body

CAB – Conformity Assessment Body

NB – Notified Body

AB – Approved Body

MRA – Mutual Recognition Agreement

MRA Phase I - recognition for product testing

MRA Phase II – recognition for both product testing and certification

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of January 2022

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.02 Valid to November 30, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation.

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 UK – Approved Body (AB), AB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	11 th August 2022	Draft verification report for client review.				
Rev A	15 th August 2022	Initial Release				

In the above table the latest report revision will replace all earlier versions.

 Title:
 Lyft, Inc. BIT041N

 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A

3. TEST RESULT CERTIFICATE

Manufacturer: Lyft, Inc 185 Berry St #5000 San Francisco California 94107 USA

Model: BIT041N

Equipment Type: E-Bike Location and Communication Module

S/N's: 65-000029-A

Test Date(s): 10th August 2022

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC Part 22, 24, 27 & ISED RSS 130, 132, 133, 139 199

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

TEST RESULTS

EQUIPMENT COMPLIES

 Title:
 Lyft, Inc. BIT041N

 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
	A2LA	October 2019	R105 - Requirement's When Making Reference to A2LA Accreditation Status
11	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
ш	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
IV	KDB 412172 D01	August 7, 2015	EIRP and ERP are similarly defined as the product of the power supplied to the antenna and the antenna gain. The primary difference is that for ERP the antenna gain is expressed relative to an ideal half-wave dipole antenna, whereas with EIRP the antenna gain is expressed relative to an ideal (theoretical) isotropic antenna. EIRP and ERP can be expressed mathematically as described in the following sections.1
V	RSS-130 Issue 2	February 2019	RSS-130 Equipment Operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz
VI	RSS-132 Issue 3	January 2013	RSS-132 Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz
VII	RSS-133 Issue 6, Amendment 1	January 2018	RSS-133 2GHz Personal Communications Services. This Radio Standards Specification (RSS) sets out the requirements for certification of transmitters and receivers used in radio communications systems to provide Personal Communications Services (PCS) in the bands 1850-1915 MHz and 1930-1995 MHz.
VIII	RSS-139 Issue 3	July 2015	RSS-139 Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz
іх	FCC Part 22H	April 8, 2021	Subpart H – Cellular Radio Telephone Service: The rules in this subpart govern the licensing and operation of cellular radiotelephone systems. (a) Block A: 824-835 MHz and 845-846.5 MHz (b) Block B: 835-845 MHz and 846.5-849 MHz
x	FCC Part 24E	April 8, 2021	Subpart E—Broadband PCS; (c) This subpart sets out the regulations licensing and operations of personal communications services authorized in the 1850-1910 and 1930- 1990 MHz bands.
XI	FCC Part 27C, H	April 8, 2021	Miscellaneous Wireless Communications Services This part for the provision of wireless communications services in the following bands. (2) 746-758 MHz, 775-788 MHz, and 805-806 MHz. (3) 698-746 MHz, 1710-1755 MHz

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

 Title:
 Lyft, Inc. BIT041N

 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

	Description
Purpose:	Test of the Lyft, Inc. BIT041N to requirements of FCC Part 22,
	24E, 27C & ISED RSS-130, 132, 133, 199
Applicant:	
	185 Berry St #5000
Monufacturari	San Francisco, California 94107, USA
	Same as Applicant
Laboratory performing the tests:	MiCOM Labs, Inc. 575 Boulder Court
	Pleasanton California 94566, USA
Test report reference number:	
Date EUT received:	
	FCC Part 22, 24E, 27C & ISED RSS-130, 132, 133, 199
Dates of test (from - to):	
No of Units Tested:	1
Type Of Equipment:	E-Bike Location and Control Unit
Model(s):	
Equipment Secondary Function(s):	
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	E-Bike Location and Control Unit
	Mobile installation
Construction/Location for Use:	
Declared Frequency Range(s):	
Type of Modulation:	QPSK, 64QAM, 256QAM
Declared Nominal Output Power (dBm):	23
Transmit/Receive Operation:	Transceiver
Rated Input Voltage and Current:	50.4VDC / 1A Battery
Operating Temperature Range:	
Equipment Dimensions:	
	360 grams
Hardware Rev:	
Software Rev:	16b00bc1d102c

5.2. Scope Of Test Program

Lyft, Inc. BIT041N

The scope of the test program was a verification test of the Lyft, Inc. BIT041N configurations with the precertified LTE Module in the specified frequency bands for compliance against the following IMT Cellular Network specifications:

FCC Part 22 Subpart H – Cellular Radio Telephone Service

The rules in this subpart govern the licensing and operation of cellular radiotelephone systems.

- (a) Block A: 824-835 MHz and 845-846.5 MHz
- (b) Block B: 835-845 MHz and 846.5-849 MHz

FCC Part 24 Subpart E – Broadband PCS

This subpart sets out the regulations governing the licensing and operations of personal communications services authorized in the 1850-1910 and 1930-1990 MHz bands.

FCC Part 27 - Miscellaneous Wireless Communications Services

This part states the conditions under which spectrum is made available and licensed for the provision of wireless communications services in the following bands... 746-758 MHz, 775-788 MHz, and 805-806 MHz, 698-746 MHz. 1710 - 1755 MHz

Industry Canada RSS-130 Issue 2

This Radio Standards Specification (RSS) sets out the requirements for equipment operating in the Frequency Bands 617-652 MHz, 663-698 MHz, 698-756 MHz and 777-787 MHz bands.

Industry Canada RSS-132 Issue 3

RSS-132 Cellular Telephone Systems Operating in the Bands 824-849 MHz and 869-894 MHz

Industry Canada RSS-133 Issue 6

RSS-133 2 GHz Personal Communications Services sets out the requirements for certification of transmitters and receivers used in radio communications systems to provide Personal Communications Services (PCS) in the bands 1850-1915 MHz and 1930-1995 MHz.

Industry Canada RSS-139 Issue 3

RSS-139 Advanced Wireless Services (AWS) Equipment Operating in the Bands 1710-1780 MHz and 2110-2180 MHz

Note: The EUT is a pre-certified module incorporated in a host with antennas. This report is a verification report of the pre-certified module in the host. For full testing of the module tested by; TA Technology (Shanghai) Co., LTD. refer to Test Reports numbers:

R1805A0226-R1V3 EC21-A FCC Part 22 Dated June 12, 2018 R1805A0226-R2V3 EC21-A FCC Part 24 Dated June 12, 2018 R1805A0226-R3V2 EC21-A FCC Part 27 Dated June 12, 2018

R1805A0226-R4V2 EC21-A IC RSS-132 Dated June 11, 2018 R1805A0226-R5V2 EC21-A IC RSS-133 Dated June 11, 2018 R1805A0226-R6V2 EC21-A IC RSS-130 RSS-139 Dated June 11, 2018

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Mfr.	Model No.	Serial No.
EUT E-Bike Location and Communication Module		Lyft Inc	BIT04IN	65-0000029-A

5.4. External A.C/D.C. Power Adaptor

The BIT040B is powered via 48V Battery, no external ac/dc adaptor is used.

5.5. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
				-1.50				690
				0.34				820
				1.68				960
				2.46				1710
integral	Quectel	YC0002AA	Chip	2.94	-	360		1990
				2.32				2170
				2.98				2300
				2.51				2580
				2.56				2680
	BF Gain - Beamforming Gain							
Dir BW - D	irectional Beam	Width						
X-Pol - Cro	oss Polarization							

5.6. Cabling and I/O Ports

Port Type	Max Cable Length	Conn Type	Environment
Discrete I/O	<3m	Higo L810 CG	End-User
Analog	<3m	Higo L309 CM	End-User
Analog	<3m	Higo L609 CM	End-User
CAN+DC IN	<3m	Higo L409 CG	End-User
Power + Digital I/O	<3m	Higo L509 CM	End-User

5.7. Test Configurations

Test configurations are as noted in the test results.

LTE Band No.	Bandwidth (MHz)	Channels No.'s	Frequencies (MHz)
2	1.4	18607, 18900, 19193	1850.7, 1880.0, 1909.3
4	1.4	19957, 20175, 20393	1710.7, 1732.0, 1754.3
12	1.4	23017, 23095, 23173	699.7, 707.5, 715.3

5.8. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

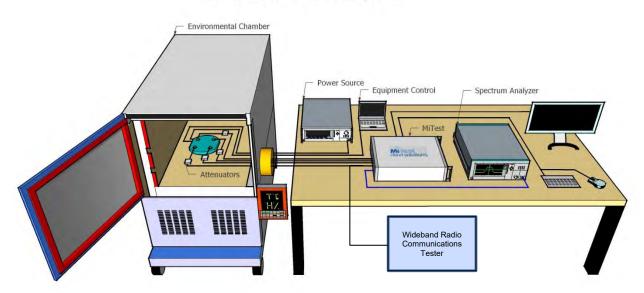
1. NONE

5.9. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

 Title:
 Lyft, Inc. BIT041N


 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A

6. TEST EQUIPMENT CONFIGURATION(S)

6.1. Conducted RF

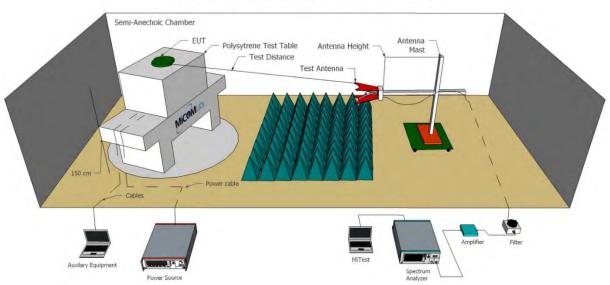
MiTest Automated Test System

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

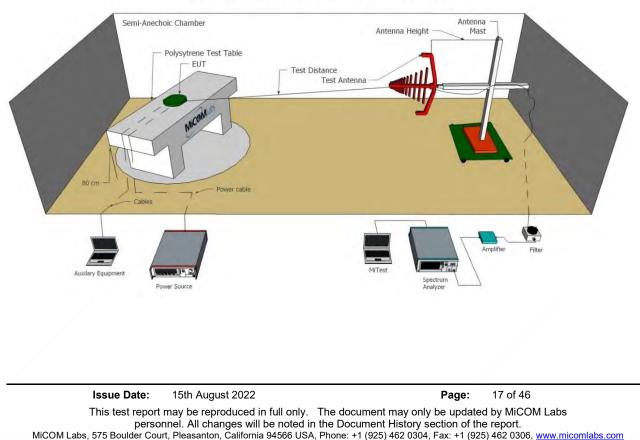
 Title:
 Lyft, Inc. BIT041N

 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A


Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
#3 SA	MiTest Box to SA	Fairview Microwave	SCA1814-0101- 72	#3 SA	7 Oct 2022
#3P1	EUT to MiTest box port	Fairview Microwave	SCA1814-0101- 72	#3P1	7 Oct 2022
#3P2	EUT to MiTest box port 2	Fairview Microwave	SCA1814-0101- 72	#3P2	7 Oct 2022
#3P3	EUT to MiTest box port 3	Fairview Microwave	SCA1814-0101- 72	#3P3	7 Oct 2022
#3P4	EUT to MiTest box port	Fairview Microwave	SCA1812-0101- 72	#3P4	7 Oct 2022
249	Thermocouple; Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2022
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2022
398	MiTest RF Conducted Test Software	MiCOM	MiTest ATS	Version 4.2.3.0	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
441	USB Wideband Power Sensor	Boonton	55006	9179	20 Sep 2022
442	USB Wideband Power Sensor	Boonton	55006	9181	19 Oct 2022
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
461	Spectrum Analyzer	Agilent	E4440A	MY46185537	27 Sep 2023
493	USB Wideband Power Sensor	Boonton	55006	9634	8 Oct 2022
494	USB Wideband Power Sensor	Boonton	55006	9726	19 Oct 2022
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2023
512	MiTest Cloud Solutions RF Test Box	MiCOM	2nd Gen with DFS	512	29 Jun 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	20 Feb 2023

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A


6.2. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above and below 1GHz.

Radiated Emissions Above 1GHz Test Setup

Radiated Emissions Below 1GHz Test Setup

Test Equipment Utilized

A full system calibration was performed on the test station and any resulting system losses (or gains) were considered in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	8 Oct 2022
298	3M Radiated Emissions Chamber Maintenance Check	MiCOM	3M Chamber	298	24 Sep 2022
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	6 Oct 2022
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	6 Oct 2022
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	6 Oct 2022
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2022
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	29 Sep 2023
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	6 Oct 2022
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	29 Sep 2022
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	27 Oct 2022
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Sep 2023
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	2 Nov 2022
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	27 Oct 2022
463	Schwarzbeck cable from	Schwarzbeck	AK 9513	463	27 Oct 2022

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

	Amplifier to Bulkhead.				
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	27 Oct 2022
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	6 Oct 2022
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	6 Oct 2022
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2023
554	Precision SMA Cable	Fairview Microwave	SCE18060101- 400CM	554	6 Oct 2022
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2023
CC05	Confidence Check	MiCOM	CC05	None	27 Feb 2023

 Title:
 Lyft, Inc. BIT041N

 To:
 FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199

 Serial #:
 LYFT15-U13 Rev A

7. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

8. TEST SUMMARY

Test Header	Result	Data Link
Transmitter Test Parameters		
EIRP Emissions	Complies	View Data
Transmitter Spurious Emissions	Complies	View Data

Note: The EUT is a pre-certified module incorporated in a host with antennas. This report is a verification report of the pre-certified module in the host. For full testing of the module tested by; TA Technology (Shanghai) Co., LTD. refer to Test Reports numbers:

R1805A0226-R1V3 EC21-A FCC Part 22 Dated June 12, 2018 R1805A0226-R2V3 EC21-A FCC Part 24 Dated June 12, 2018 R1805A0226-R3V2 EC21-A FCC Part 27 Dated June 12, 2018

R1805A0226-R4V2 EC21-A IC RSS-132 Dated June 11, 2018 R1805A0226-R5V2 EC21-A IC RSS-133 Dated June 11, 2018 R1805A0226-R6V2 EC21-A IC RSS-130 RSS-139 Dated June 11, 2018

9. TEST RESULTS

9.1. Radiated Output Power

Radiated Test Conditions for Output Power								
Standard:	FCC Part 22, 24E, 27C, H IC RSS-130, 132, 133, 139	Ambient Temp. (°C):	24.0 - 27.5					
Test Heading:	EIRP	Rel. Humidity (%):	32 - 45					
Standard Section(s):	FCC 22, FCC 24E: 24.232 (d) FCC 27C: 27.50 (b), (d) RSS-130: 4.6, RSS-132:5.4, RSS-133: 6.4, RSS-139: 6.5	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							

Test Procedure for Output Power

With reference to the test configuration identified in Section 6.1 Radiated Test Setup the EUT was set to transmit on the appropriate centre frequency of the selected frequency band and bandwidth. Output Power was measured on each of the active chain(s) (antenna outputs) using a power sensor connected to each antenna terminal.

Testing was performed under ambient conditions.

Limits Output Power - Band 2:

FCC 24E: §24.232

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

RSS-133: 6.4 Transmitter Output Power and Equivalent Isotropically Radiated Power: The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510.

Limits Output Power - Band 4,12,13:

FCC 27.50

(b) (10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

(d)(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

RSS-130: 4.6 Transmitter Output Power and Effective Radiated Power: For base and fixed equipment other than fixed subscriber equipment, refer to SRSP-518 for the e.i.r.p. limits.

RSS-139: 6.6 Transmitter Output Power and Effective Radiated Power: The equivalent isotropically radiated power (e.i.r.p.) for mobile and portable transmitters shall not exceed one watt.

Limits Output Power - Band 5:

FCC 22.913: (5): The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

RSS-132: 5.4: Transmitter Output Power and Effective Radiated Power:

The transmitter output power shall be measured in terms of average power. The equivalent isotropically radiated power (e.i.r.p.) for mobile equipment shall not exceed 11.5 watts. Refer to SRSP-503 for base station e.i.r.p. limits.

Band 2: Effective Radiated Power

	Equipment Configuration for Average Output Power								
Variant:	Band 2	Duty Cycle (%):	99.0						
Data Rate:	Full RB	Antenna Gain (dBi):	2.94						
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable						
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	EIRP	Margin		
Frequency		Por	t(s)		EIRP	Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB		
1850.7	21.31				24.25	33.00	-8.75	Max	
1880.0	21.29				24.23	33.00	-8.77	Max	
1909.3	21.32				24.26	33.00	-8.74	Max	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

Band 4: Effective Radiated Power

Equipment Configuration for Average Output Power								
Variant:	99.0							
Data Rate:	Full RB	Antenna Gain (dBi):	2.46					
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable					
TPC:	Not Applicable	Tested By:	SB					
Engineering Test Notes:								

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	EIRP	Margin		
Frequency		Por	t(s)		EIRP	Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB	g	
1710.7	21.28				23.74	30.00	-6.26	Max	
1732.0	21.29				23.75	30.00	-6.25	Max	
1754.3	21.22		-		23.68	30.00	-6.32	Max	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

Band 12: Effective Radiated Power

Equipment Configuration for Average Output Power

Variant:	Band 12	Duty Cycle (%):	99.0
Data Rate:	Full RB	Antenna Gain (dBi):	-1.5
Modulation:	QPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	N	leasured Outp	ut Power (dBn	n)	Calculated Total Power	ERP	Margin		
Frequency		Por	t(s)		ERP	Limit	Margin	EUT Power Setting	
MHz	а	b	С	d	dBm	dBm	dB	g	
699.7	22.20				18.56	34.77	-16.21	Max	
707.5	22.31				18.67	34.77	-16.10	Max	
715.3	22.17				18.53	34.77	-16.24	Max	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

9.2. Radiated Transmitter Emissions

Radiated Test Conditions for Transmitter Spurious Emissions								
Standard:	FCC Part 22, 24E, 27C, IC RSS-130, 132, 133, 139	FCC Part 22, 24E, 27C, IC RSS-130, 132, 133, 139 Ambient Temp. (°C):						
Test Heading:	Out of Band Emissions	Rel. Humidity (%):	32 - 45					
Standard Section(s):	FCC 22:917(a), FCC 24E: 238(a) FCC 27C, H: 27.53 (c), (g) RSS-130: 4.7.1 RSS-132:5.5, RSS-133: 6.5, RSS-139: 6.5	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							

Test Procedure for Out of Band Emissions

With reference to the test configuration identified in Section 6.1 Radiated Test Setup the EUT was set to transmit on the appropriate center frequency of the selected frequency band and bandwidth. Out of Band emissions was tested under QPSK.

Testing was performed under ambient conditions.

Limits Out of Band Emissions

Band 2:

FCC 24E: §24.238 Emission limitations for Broadband PCS equipment.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

RSS-133: 6.5 (i) In the 1.0 MHz bands immediately outside and adjacent to the equipment's operating frequency block, the emission power per any 1% of the emission bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts). 2 GHz Personal Communications Services RSS-133 4

(ii) After the first 1.0 MHz, the emission power in any 1 MHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p(watts). If the measurement is performed using 1% of the emission bandwidth, power integration over 1.0 MHz is required.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

Band 4, 12,13:

FCC 27C: §27.53 Emission limits for Miscellaneous Wireless Communications Services.

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Title: Lyft, Inc. BIT041N To: FCC Part 22, 24, 27 & IC RSS 130, 132, 133, 199 Serial #: LYFT15-U13 Rev A

(h) AWS emission limits—(1) General protection levels. Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 \log_{10} (P) dB.

RSS-130: 4.7.1 The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

RSS-139: 6.6 Transmitter Unwanted Emissions

(i) In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block,2 which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

(ii) After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log10 p (watts) dB.

Band 5:

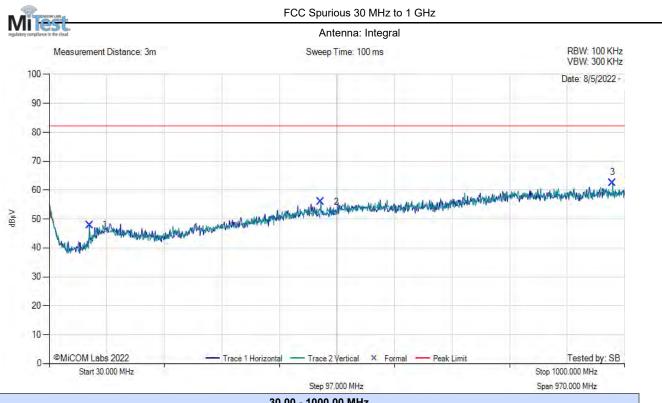
FCC 22H: 917(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

RSS-132: 5.5 Transmitter Unwanted Emissions

Mobile and base station equipment shall comply with the limits in (i) and (ii) below.

(i) In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

(ii) After the first 1.0 MHz immediately outside and adjacent to each of the sub-bands, the power of emissions in any 100 kHz bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts). If the measurement is performed using 1% of the occupied bandwidth, power integration over 100 kHz is required.

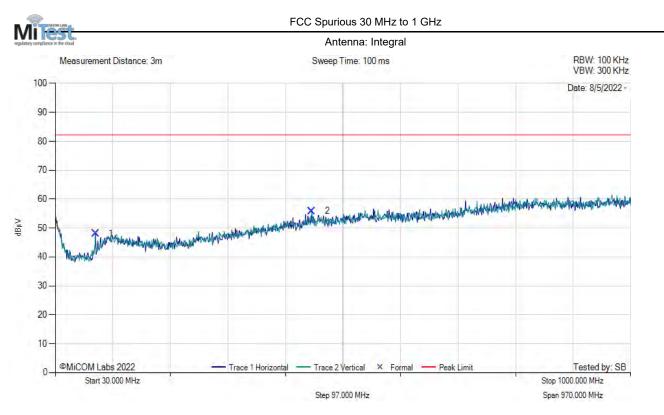

Band 2: Radiated Transmitter Emissions

FCC 27.53 h: *AWS emission limits*—(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.. ~ -13 dBm or 82.23 dBuV/m

Equipment Configuration for FCC SPURIOUS 30 MHz - 1 GHz

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1850.70	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

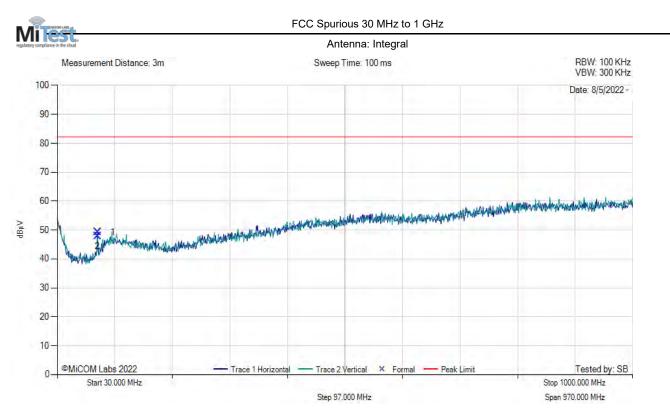
Test Measurement Results


	30.00 - 1000.00 MHz											
Nun	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	97.90	28.05	4.08	15.78	47.91	MaxP	Vertical	151	299	82.2	-34.3	Pass
2	487.84	27.00	5.64	23.32	55.97	MaxP	Vertical	151	179	82.2	-26.3	Pass
3	979.63	27.16	7.21	28.16	62.53	MaxP	Vertical	151	179	82.2	-19.7	Pass
Test	Notes: Max Pov	ver Full F	R									

Fest Notes: Max Power, Full RB

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1880.00	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results


	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	97.90	28.25	4.08	15.78	48.11	MaxP	Horizontal	151	118	82.2	-34.1	Pass
2	462.62	27.56	5.56	22.76	55.89	MaxP	Vertical	151	0	82.2	-26.3	Pass

Test Notes: Max Power, Full RB

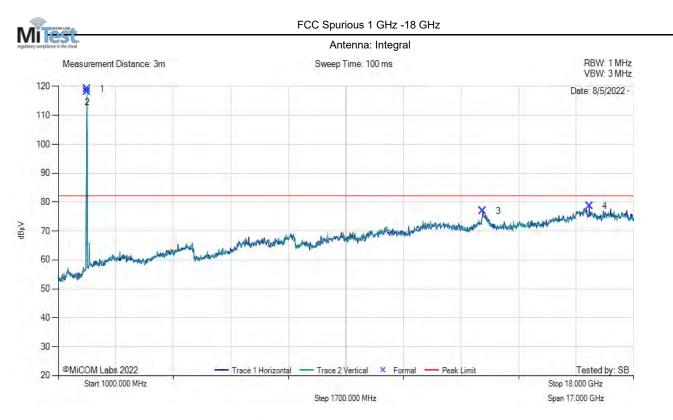
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1909.30	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	97.90	29.40	4.08	15.78	49.27	MaxP	Horizontal	151	208	82.2	-33.0	Pass
2	97.90	28.04	4.08	15.78	47.90	MaxP	Vertical	151	239	82.2	-34.3	Pass

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 30 of 46


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

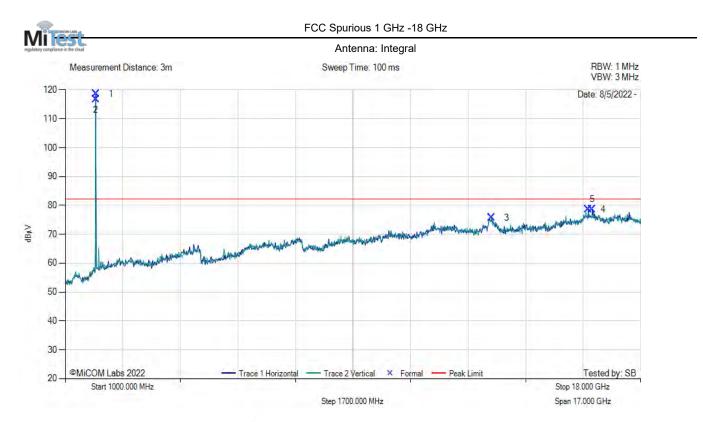
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1909.30	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1850.00		/		119.04	Fundamental	Vertical					Pass	
2	1850.00		4		118.09	Fundamental	Horizontal		1		1	Pass	
3	13546.00	32.65	5.47	38.79	76.91	MaxP	Horizontal	151	148	82.2	-5.3	Pass	
4	16691.00	31.35	6.22	41.11	78.68	MaxP	Horizontal	151	298	82.2	-3.6	Pass	

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 31 of 46


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

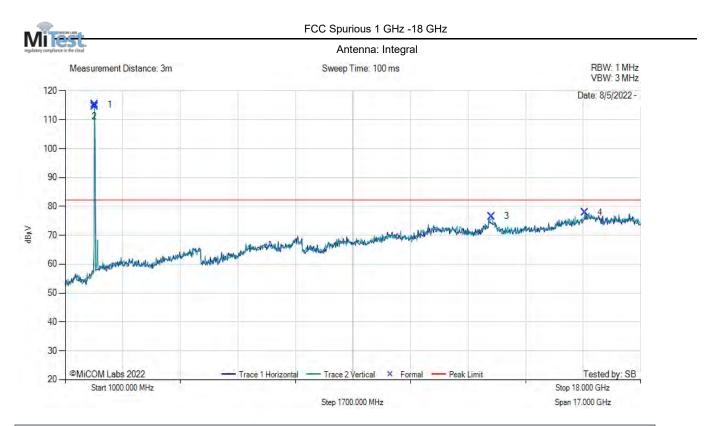
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1880.00	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

					1000	.00 - 18000.00 N	/IHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1901.00	-			118.62	MaxP	Horizontal					Pass
2	1901.00				116.66	MaxP	Vertical					Pass
3	13597.00	31.92	5.14	38.68	75.74	MaxP	Vertical	151	270	82.2	-6.5	Pass
4	16453.00	/			78.60	Noise Floor						Pass
5	16572.00	31.30	6.15	41.15	78.60	MaxP	Horizontal	151	269	82.2	-3.6	Pass

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 32 of 46


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.94	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1850.70	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

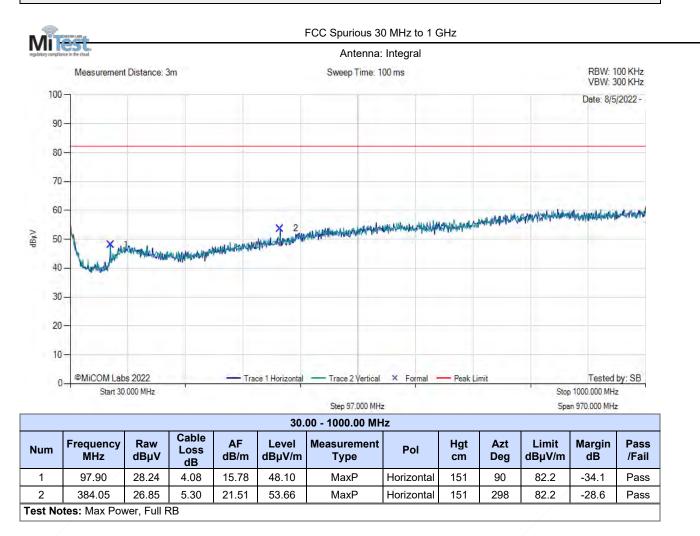
	1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	1907.00	-		-	115.29	MaxP	Horizontal					Pass	
2	1907.00	-			114.71	MaxP	Vertical					Pass	
3	13597.00	32.74	5.14	38.68	76.56	MaxP	Vertical	151	209	82.2	-5.7	Pass	
4	16351.00	30.62	6.21	41.11	77.94	MaxP	Vertical	151	29	82.2	-4.3	Pass	
	/	/											

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 33 of 46

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

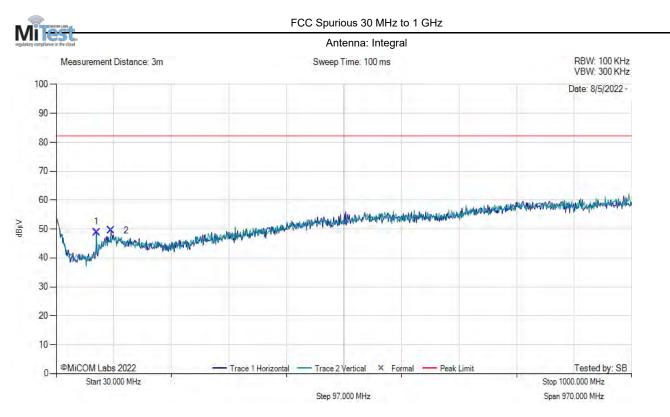
 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com


Band 4: Radiated Transmitter Emissions

FCC 27.53 h: *AWS emission limits*—(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.. ~ -13 dBm or 82.23 dBuV/m

Equipment Configuration for FCC SPURIOUS 30 MHz - 1 GHz

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1710.7	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB


Test Measurement Results

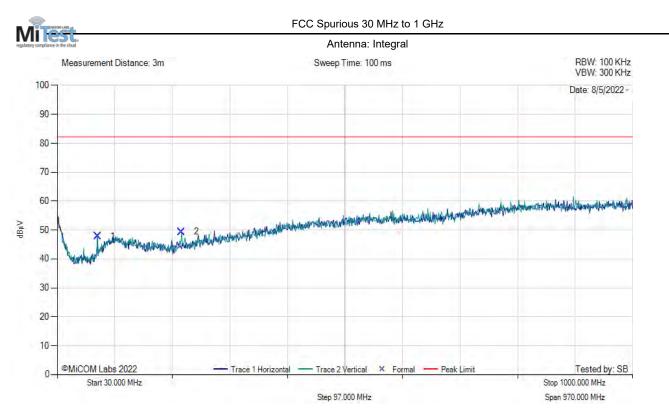
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1732.0	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
1	97.90	29.02	4.08	15.78	48.88	MaxP	Horizontal	151	90	82.2	-33.3	Pass	
2	122.15	25.30	4.20	19.96	49.46	MaxP	Horizontal	151	120	82.2	-32.8	Pass	

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 35 of 46

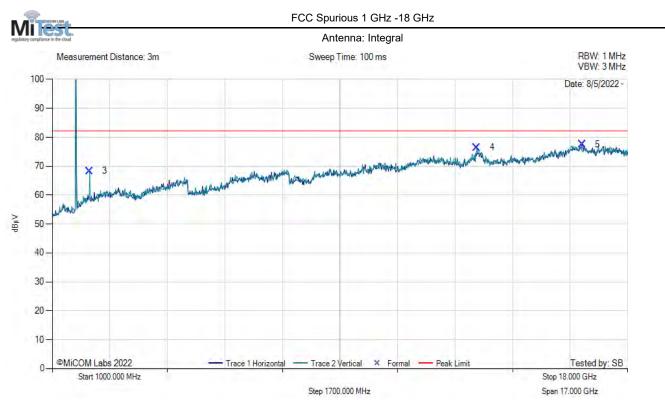

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1754.3	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

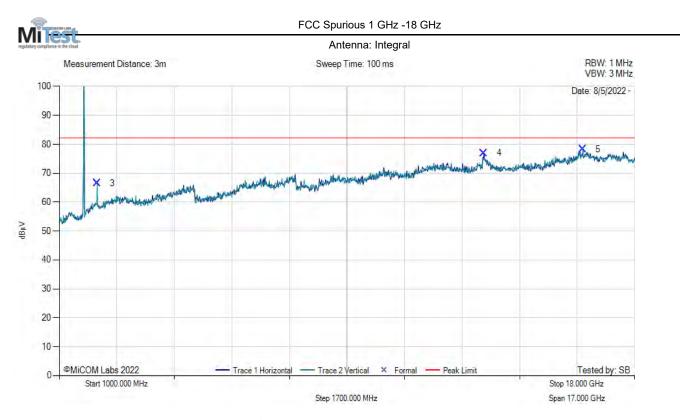
	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	97.90	28.03	4.08	15.78	47.89	MaxP	Horizontal	151	90	82.2	-34.3	Pass
2	239.52	27.38	4.76	17.26	49.39	MaxP	Vertical	151	272	82.2	-32.8	Pass


Test Notes: Max Power, Full RB

Issue Date: 15th August 2022 Page: 36 of 46 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1710.7	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

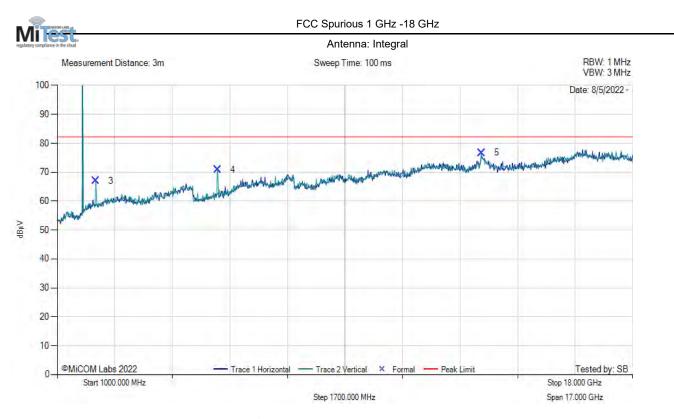

					1000	.00 - 18000.00 N	1Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1697.00		/		119.02	Fundamental	Horizontal					Pass
2	1697.00		4		114.52	Fundamental	Vertical					Pass
3	2105.00	34.61	1.85	31.89	68.35	MaxP	Vertical	151	179	82.2	-13.9	Pass
4	13546.00	32.16	5.47	38.79	76.42	MaxP	Vertical	151	0	82.2	-5.8	Pass
5	16657.00	30.34	6.12	41.13	77.60	MaxP	Horizontal	151	58	82.2	-4.6	Pass

Test Notes: Max Power, Full RB

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1732.00	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

					1000	.00 - 18000.00 N	1Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1731.00		/		119.17	Fundamental	Horizontal		-		-	Pass
2	1731.00				115.54	Fundamental	Vertical		-		1	Pass
3	2122.00	32.93	1.85	31.74	66.52	MaxP	Vertical	151	239	82.2	-15.7	Pass
4	13546.00	32.64	5.47	38.79	76.90	MaxP	Horizontal	151	268	82.2	-5.3	Pass
5	16470.00	30.69	6.35	41.19	78.23	MaxP	Vertical	151	89	82.2	-4.0	Pass


Test Notes: Max Power, Full RB

20 of 46

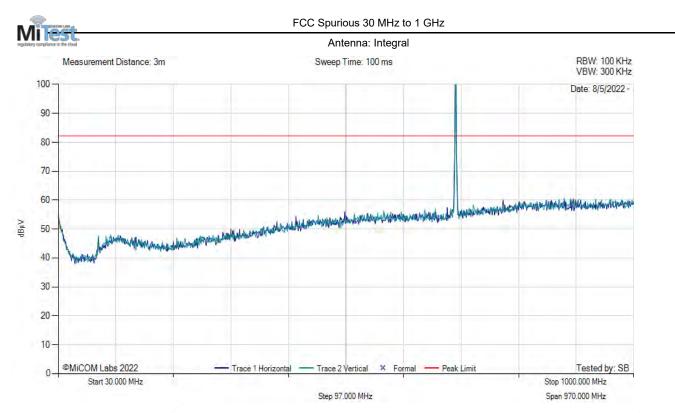
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	2.46	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	1754.30	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

					1000	.00 - 18000.00 N	/Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1748.00	-	/		119.04	Fundamental	Vertical		-			Pass
2	1748.00	-		-	118.72	Fundamental	Horizontal		-			Pass
3	2139.00	33.50	1.89	31.59	66.98	MaxP	Vertical	151	210	82.2	-15.3	Pass
4	5743.00	33.28	3.17	34.36	70.81	MaxP	Vertical	151	210	82.2	-11.4	Pass
5	13529.00	32.60	5.28	38.82	76.70	MaxP	Vertical	151	152	82.2	-5.5	Pass

Test Notes: Max Power, Full RB

Band 12: Radiated Transmitter Emissions


FCC 27.53g: Emission limits for Miscellaneous Wireless equipment.

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. ~ -13 dBm or 82.23 dBuV/m

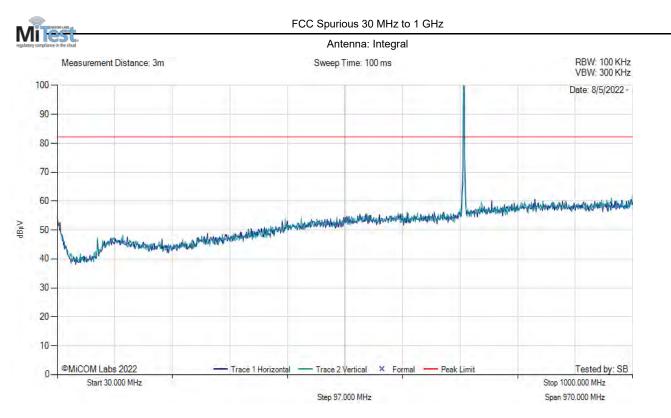
Equipment Configuration for FCC SPURIOUS 30 MHz - 1 GHz

-			
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	699.7	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	699.30				109.62	Fundamental	Vertical					Pass
2	700.27				114.18	Fundamental	Horizontal			/		Pass
Test No	Fest Notes: Max Power, Full RB											

 Issue Date:
 15th August 2022
 Page:
 40 of 46

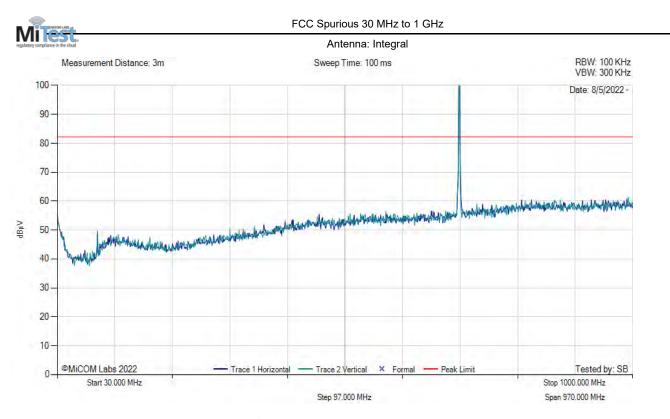

 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	707.5	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	715.79		/		114.24	Fundamental	Horizontal					Pass
2	715.79				107.31	Fundamental	Vertical					Pass

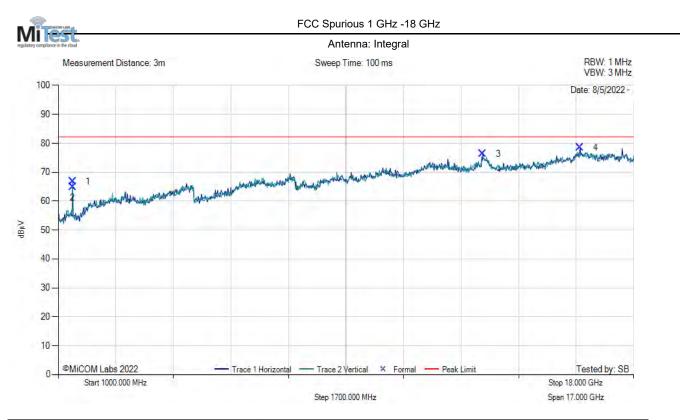

Test Notes: Max Power, Full RB

Issue Date: 15th August 2022 Page: 41 of 46 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	715.3	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	30.00 - 1000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	708.03		/		113.85	Fundamental	Horizontal				-	Pass
2	708.03				108.08	Fundamental	Vertical					Pass


Test Notes: Max Power, Full RB

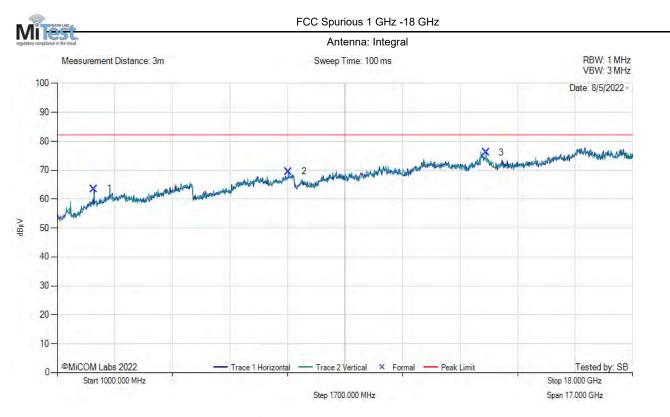
Issue Date: 15th August 2022 Page: 42 of 46 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	699.7	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1425.00	36.38	1.52	28.86	66.76	MaxP	Vertical	151	328	82.2	-15.5	Pass
2	1425.00	34.46	1.52	28.86	64.84	MaxP	Horizontal	151	330	82.2	-17.4	Pass
3	13546.00	32.11	5.47	38.79	76.37	MaxP	Horizontal	151	180	82.2	-5.9	Pass
4	16419.00	31.53	5.90	41.12	78.55	MaxP	Horizontal	151	208	82.2	-3.7	Pass

Test Notes: Max Power, Full RB


Issue Date: 15th August 2022 43 of 46 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Page:

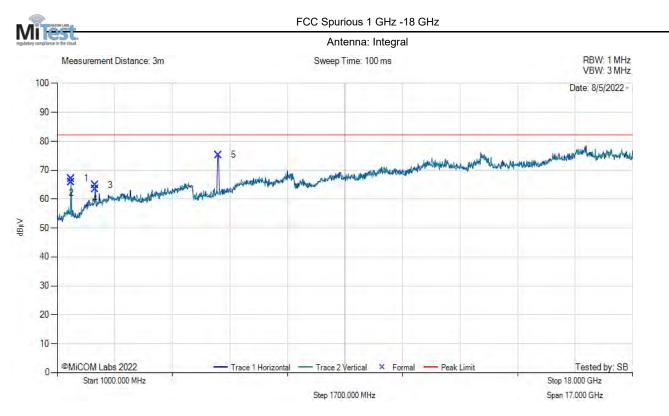
Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	707.5	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	2088.00	29.79	1.84	31.90	63.54	MaxP	Horizontal	151	330	82.2	-18.7	Pass
2	7834.00	29.74	3.81	36.00	69.55	MaxP	Vertical	151	89	82.2	-12.7	Pass
3	13665.00	32.11	5.29	38.65	76.05	MaxP	Vertical	151	89	82.2	-6.2	Pass

Test Notes: Max Power, Full RB

 Issue Date:
 15th August 2022
 Page:
 44 of 46


 This test report may be reproduced in full only.
 The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

 MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Antenna:	Integral	Variant:	LTE
Antenna Gain (dBi):	-1.5	Modulation:	QPSK
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	715.3	Data Rate:	Full RB
Power Setting:	Max	Tested By:	SB

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1408.00	36.66	1.52	28.97	67.15	MaxP	Horizontal	151	298	82.2	-15.1	Pass
2	1408.00	35.30	1.52	28.97	65.79	MaxP	Vertical	151	294	82.2	-16.4	Pass
3	2122.00	-31.23	1.85	31.74	64.82	MaxP	Vertical	151	335	82.2	-17.4	Pass
4	2122.00	29.94	1.85	31.74	63.53	MaxP	Horizontal	151	330	82.2	-18.7	Pass
5	5760.00	37.70	3.18	34.40	75.28	MaxP	Horizontal	151	270	82.2	-6.9	Pass

Test Notes: Max Power, Full RB

Issue Date: 15th August 2022 Page: 45 of 46 This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report. MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com