

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address: 1200 E. 151st Street

Olathe, Kansas, 66062, USA

Product: AA4724

Test Report No: R20240506-00-E2 Rev: B

Approved by:

Fox Lane,

EMC Test Engineer

DATE: April 25, 2025

Total Pages: 46

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Prepared for: Garmin International, Inc.

REVISION PAGE

Rev. No.	Date	Description	
0	26 November 2024	Issued by FLane	
0	20 November 2024	Prepared by Flane, ESchmidt	
А	21 April 2025	Added FVIN – FL	
В	25 April 2025	Corrected Plot labeling	
В	25 April 2025	Updated equipment list – FL	

Page 2 of 46

Report Number:

R20240506-00-E2

Rev

В

Prepared for:

Garmin International, Inc.

CONTENTS

Rev	ision Pa	ige	2
1.0	Sur	nmary of test results	4
2.0	EU [.]	T Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	
3.0		poratory and General Test Description	
	3.1	Laboratory description	
	3.2	Test personnel	
	3.3	Test equipment	
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	sults	
	4.1	Output Power	11
	4.2	Bandwidth	12
	4.3	Duty Cycle	13
	4.4	Radiated emissions	14
	4.5	Conducted Spurious Emissions	19
	4.6	Band edges	23
	4.7	Power Spectral Density	24
	4.8	Conducted AC Mains Emissions	25
Арр	endix A:	Sample Calculation	28
App	endix E	3 – Measurement Uncertainty	29
App	endix (C – Graphs and Tables	30
REF	ORT E	ND	46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section(s):

- (1) US Code of Federal Regulations, Title 47, Part 15
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-247, Issue 3

APPLIED STANDARDS AND REGULATIONS							
Standard Section	Test Type	Result					
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass					
FCC Part 15.247(b)(3) RSS-247 Issue 3 Section 5.4(d)	Peak output power	Pass					
FCC Part 15.247(a)(2) RSS-247 Issue 3 Section 5.2 (a)	Bandwidth	Pass					
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass					
FCC Part 15.209 (restricted bands), 15.247 (unrestricted) RSS-247 Issue 3 Section 5.5, RSS-Gen Issue 5, Section 8.9	Transmitter Radiated Emissions	Pass					
FCC Part 15.247(e) RSS-247 Issue 3 Section 5.2 (b)	Power Spectral Density	Pass					
FCC Part 15.209, 15.247(d) RSS-247 Issue 3 Section 5.5	Band Edge Measurement	Pass					
FCC Part 15.207 RSS-Gen Issue 5, Section 8.8	Conducted Emissions	Pass					

Lincoln, NE 68521 Page 4 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

2.0 **EUT DESCRIPTION**

2.1 **EQUIPMENT UNDER TEST**

Summary and Operating Condition:

EUT	AA4724
FCC ID	IPH-A4724
IC ID	1792A-A4724
FVIN	13.17
EUT Received	30 August 2024
EUT Tested	2 September 2024- 18 November 2024
Serial No. 3482655171 (Radiated Measurements) 3482795511 (Conducted Measurements)	
Operating Band	2400 – 2483.5 MHz
Device Type □ GMSK □ GFSK □ BT BR ☒ BT EDR 2MB ☒ BT EDR 3MB □ 802.11x	
Power Supply / Voltage	Internal Battery / 5VDC Charger: Garmin (Phi Hong) Model: PSAI05R-050Q GPN: 362-00072-00 (Representative Power Supply)

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 **DESCRIPTION OF TEST MODES**

The operating range of the EUT is dependent on the device type found in section 2.1:

2EDR/3EDR Transmissions:

Channel	Frequency
Low	2402 MHz
Mid	2440 MHz
High	2480 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequencies and designations.

2.3 **DESCRIPTION OF SUPPORT UNITS**

None

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 5 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)

4740 Discovery Drive

Lincoln, NE 68521

A2LA Certificate Number: 1953.01
FCC Accredited Test Site Designation No: US1060
Industry Canada Test Site Registration No: 4294A
NCC CAB Identification No: US0177

Environmental conditions varied slightly throughout the tests:

Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Fox Lane	Test Engineer	Testing and Report
ı	FOX Lane	rest Engineer	resuring and Report
2	Blake Winter	Test Engineer	Testing
4	Ethan Schmidt	Test Engineer	Testing and Report

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 6 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

3.3 TEST EQUIPMENT

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2024	July 18, 2026
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2024	July 18, 2026
Keysight EXA Signal Analyzer	N9010A	MY56070862	July 18, 2023	July 17, 2025
SunAR RF Motion	JB1	A082918-1	July 17, 2024	July 17, 2025
EMCO Horn Antenna	3117	29616	June 12, 2024	June 12, 2025
EMCO Horn Antenna	3116	2576	July 31, 2023	July 30, 2025
Com-Power LISN, Single Phase	LI-220C	20070017	July 17, 2023	July 17, 2025
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber-VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cables (3m Ant. to Control room Bulkhead)	MFR-57500	1E3874	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

^{*}Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 7 of 46

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted ⊠

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

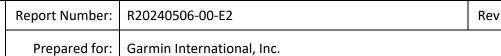


Figure 1 - Bandwidth Measurements Test Setup

Radiated ⊠

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

В

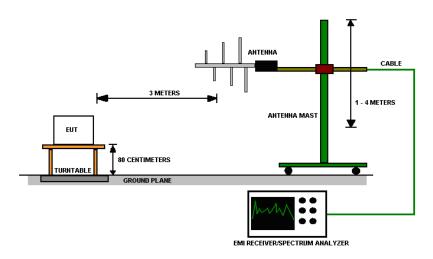


Figure 2 - Radiated Emissions Test Setup

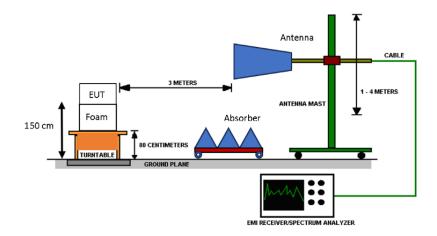


Figure 3 - Radiated Emissions Test Setup, >1GHz

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 9 of 46

Prepared for: Garmin International, Inc.

4.0 RESULTS

	DTS Radio Measurements							
CHANNEL	Mode	Occupied BW (kHz)	6 dB BW (kHz)	PSD (dBm)	PEAK OUTPUT POWER (dBm)	PEAK OUTPUT POWER (mW)	RESULT	
Low	2EDR	1307.00	1090.00	-9.692	7.961	6.253	PASS	
Mid	2EDR	1323.40	1084.00	-9.626	7.973	6.270	PASS	
High	2EDR	1298.60	1087.00	-8.67	8.877	7.721	PASS	
Low	3EDR	1003.00	1085.00	-8.962	8.497	7.075	PASS	
Mid	3EDR	974.80	1032.00	-9.257	8.037	6.364	PASS	
High	3EDR	996.20	1093.00	-8.56	8.861	7.693	PASS	

Occupied Bandwidth = N/A; 6dB Bandwidth Limit = N/A Peak Output Power Limit = 30dBm; PSD Limit = 8dBm

Unrestricted Band-Edge

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	Result
Low	2EDR	2400.00	66.74	110.85	44.11	20.00	PASS
Low	3EDR	2400.00	74.04	110.98	36.94	20.00	PASS
High	2EDR	2483.50	58.97	111.76	52.79	20.00	PASS
High	3EDR	2483.50	57.52	111.71	54.19	20.00	PASS

Peak Restricted Band-Edge

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result	
Low	2EDR	2390.00	54.21	Peak	73.98	19.77	PASS	
Low	3EDR	2390.00	54.21	Peak	73.98	19.77	PASS	
High	2EDR	2483.50	64.44	Peak	73.98	9.54	PASS	
High	3EDR	2483.50	64.70	Peak	73.98	9.28	PASS	

*Limit shown is the peak limit taken from FCC Part 15.209

Average Restricted Band-Edge

CHANNEL	Mode	Band edge /Measurement Frequency (MHz)	Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result
Low	2EDR	2390.00	42.52	Average	53.98	11.46	PASS
Low	3EDR	2390.00	42.55	Average	53.98	11.43	PASS
High	2EDR	2483.50	47.63	Average	53.98	6.35	PASS
High	3EDR	2483.50	47.52	Average	53.98	6.46	PASS

*Limit shown is the average limit taken from FCC Part 15.209

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 10 of 46

Prepared for: Garmin International, Inc.

4.1 OUTPUT POWER

Test Method:

All measurements were performed using section 11.9.1.1 from ANSI C63.10.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 11 of 46

Report Number:	R20240506-00-E2	Rev	В
Prenared for:	Garmin International Inc		

4.2 BANDWIDTH

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational/documentation purposes only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

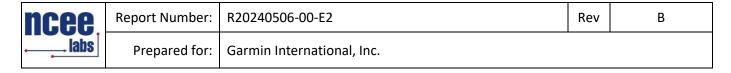
No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.


Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 12 of 46

4.3 DUTY CYCLE

Modulations in this report have a duty cycle of >98%. No DCCF used.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

 Report Number:
 R20240506-00-E2
 Rev
 B

Prepared for: | Garmin International, Inc.

4.4 RADIATED EMISSIONS

Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (µV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.
- 4. The EUT was tested for spurious emissions while running off of battery power and external USB power. The worse-case emissions were produced while running off of USB power, so results from this mode are presented.

Page 14 of 46

Report Number: R20240506-00-E2 Rev B

Prepared for: Garmin International, Inc.

Test procedures:

- a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.
- d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.
- e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

Test setup:

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.
- 2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.

Prepared for: Garmin International, Inc.

Test results:

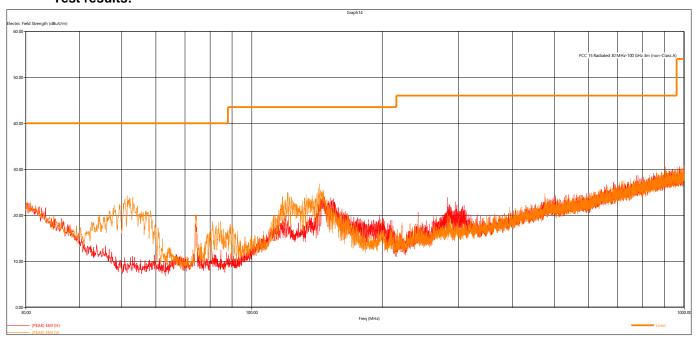


Figure 4 - Radiated Emissions Plot, Receive

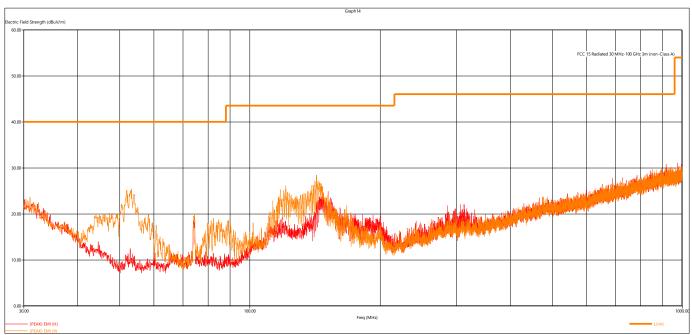


Figure 5 - Radiated Emissions Plot, 2EDR

Page 16 of 46

Report Number: R20240506-00-E2 Rev B

Prepared for: Garmin International, Inc.

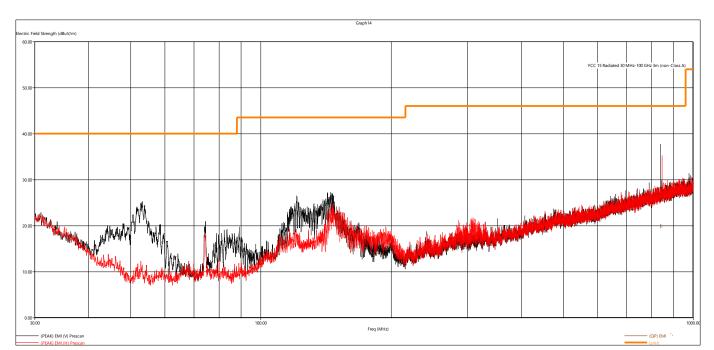


Figure 6 - Radiated Emissions Plot, 3EDR

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

Quasi-Peak Measurements, 30MHz – 1GHz								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation
MHz	dBμV/m	dBµV/m	dB	cm.	deg.			
839.474400	19.86	46.02	26.16	181.25	126.75	V	Low	3EDR

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other measurements up to 25GHz were investigated and found to be at least 10dB below the applicable limit line

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 18 of 46

Report Number: R20240506-00-E2 Rev B

Prepared for: Garmin International, Inc.

4.5 CONDUCTED SPURIOUS EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 30dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Note that the limit shown on the plots does not apply. It is a line for reference.

Page 19 of 46

Prepared for: | Garmin International, Inc.

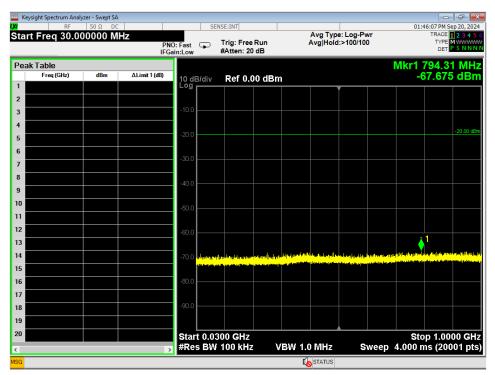


Figure 7 - Conducted Emissions Plot, 2EDR, 30MHz - 1GHz, Mid

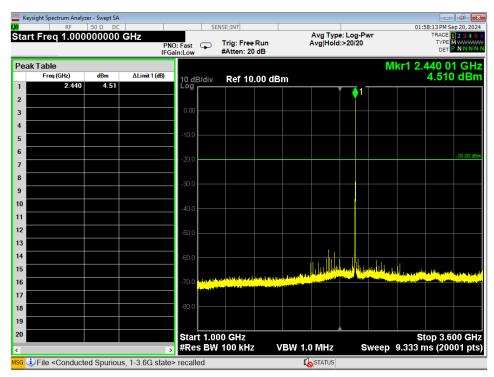


Figure 8 - Conducted Emissions Plot, 2EDR, 1GHz - 3.6GHz, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 20 of 46

Prepared for: | Garmin International, Inc.

Figure 9 - Conducted Emissions Plot, 2EDR, 3.6GHz - 25GHz, Mid

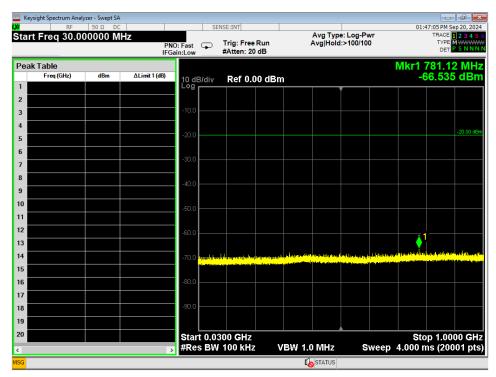


Figure 10 - Conducted Emissions Plot, 3EDR, 30MHz - 1GHz, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 21 of 46

Prepared for: | Garmin International, Inc.

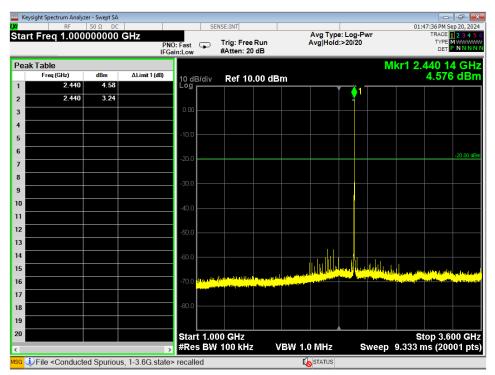


Figure 11 - Conducted Emissions Plot, 3EDR, 1GHz - 3.6GHz, Mid

Figure 12 - Conducted Emissions Plot, 3EDR, 3.6GHz - 25GHz, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 22 of 46

Report Number: R20240506-00-E2 Rev B

Prepared for: Garmin International, Inc.

. repared for a committee matients.

4.6 BAND EDGES

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209.
- 4. Tabulated data is listed in section 4.0.

Page 23 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

4.7 POWER SPECTRAL DENSITY

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

Lincoln, NE 68521 Page 24 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

4.8 CONDUCTED AC MAINS EMISSIONS

Test Method:

ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

FREQUENCY OF EMISSION	CONDUCTED LIMIT		
(MHz)	(dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Test Procedures:

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test Results:

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 25 of 46

Prepared for: | Garmin International, Inc.

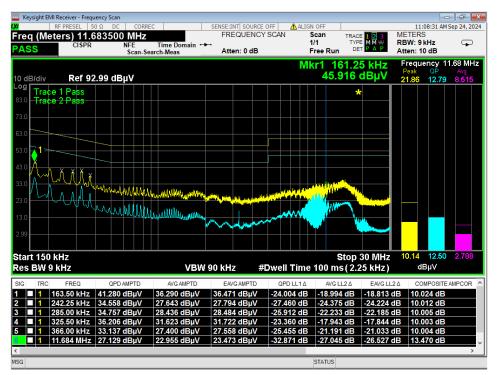


Figure 13 - Conducted Emissions Plot, Line, TX

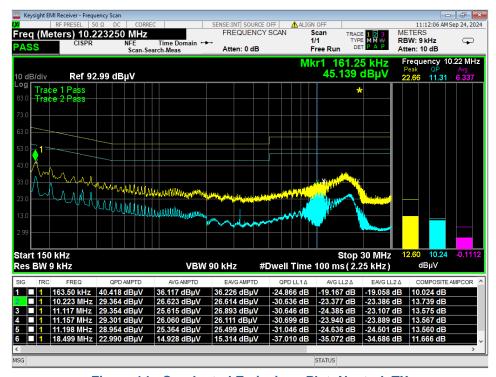


Figure 14 - Conducted Emissions Plot, Neutral, TX

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 26 of 46

Prepared for: | Garmin International, Inc.



Figure 15 - Conducted Emissions Plot, Line, IDLE

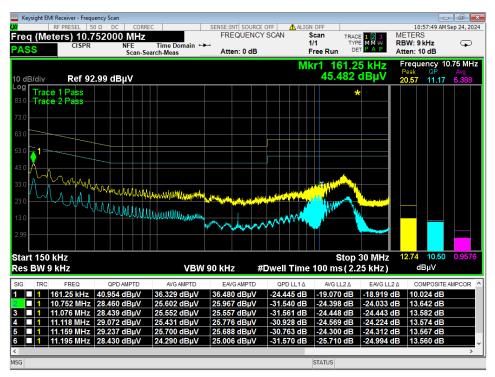


Figure 16 - Conducted Emissions Plot, Neutral, IDLE

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 27 of 46

Prepared for:

Garmin International, Inc.

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

RA = Receiver Amplitude

AF = Antenna Factor

CF = Cable Attenuation Factor

AG = Amplifier Gain

AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added.

The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB_µV/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB_μV/m value can be mathematically converted to its corresponding level in μV/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

AV is calculated by taking the 20*log(Ton/100) where Ton is the maximum transmission time in any 100ms window.

EIRP Calculations

In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)] 2 / 30

Power (watts) = $10^{Power} (dBm)/101/1000$

Voltage ($dB\mu V$) = Power (dBm) + 107 (for 50 Ω measurement systems)

Field Strength $(V/m) = 10^{field Strength} (dB\mu V/m) / 20] / 10^6$

Gain = 1 (numeric gain for isotropic radiator)

Conversion from 3m field strength to EIRP (d=3):

 $EIRP = [FS(V/m) \times d^2]/30 = FS[0.3]$ for d = 3

 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$

10log(10^9) is the conversion from micro to milli

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive

Lincoln, NE 68521 Page 28 of 46

Report Number:	R20240506-00-E2	Rev	В
Prepared for:	Garmin International, Inc.		

APPENDIX B - MEASUREMENT UNCERTAINTY

NCEE Labs does not add uncertainty levels to measurement levels

Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz – 1GHz	±4.31
Radiated Emissions, 3m	1GHz – 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03

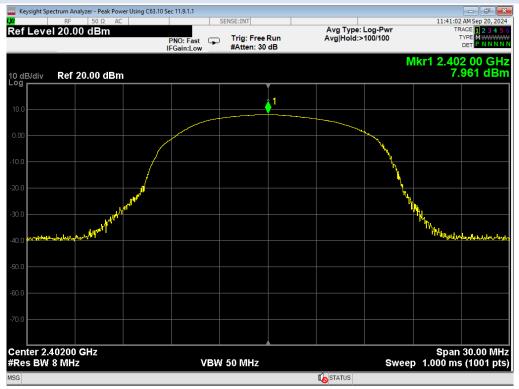
Expanded uncertainty values are calculated to a confidence level of 95%.

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

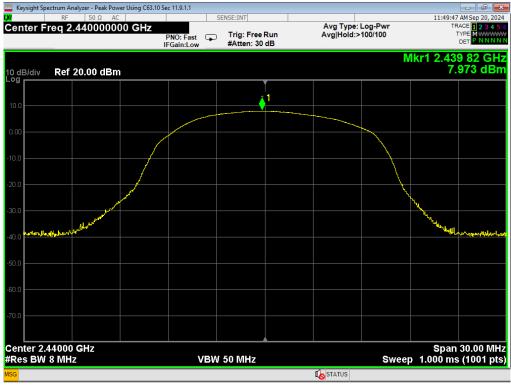
Page 29 of 46

Report Number:

R20240506-00-E2


Rev

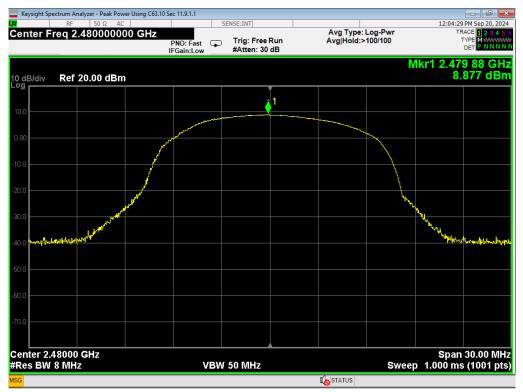
В


Prepared for:

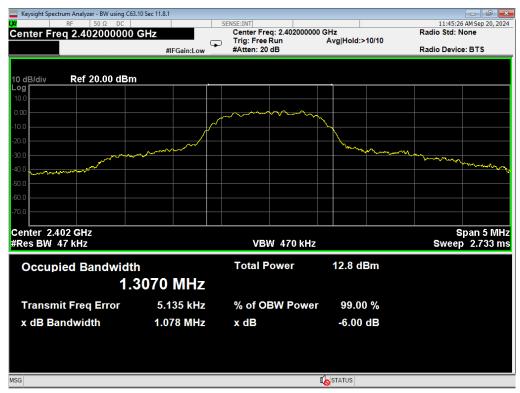
Garmin International, Inc.

APPENDIX C - GRAPHS AND TABLES

01, Peak Power, 2EDR, Low

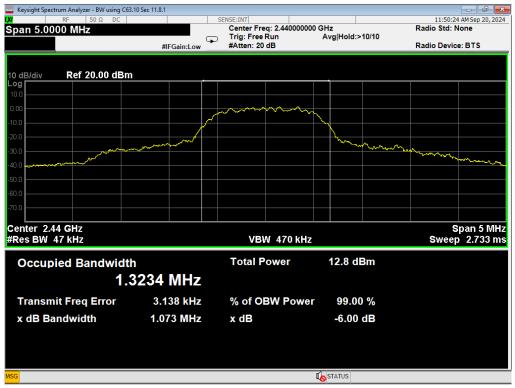

02, Peak Power, 2EDR, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

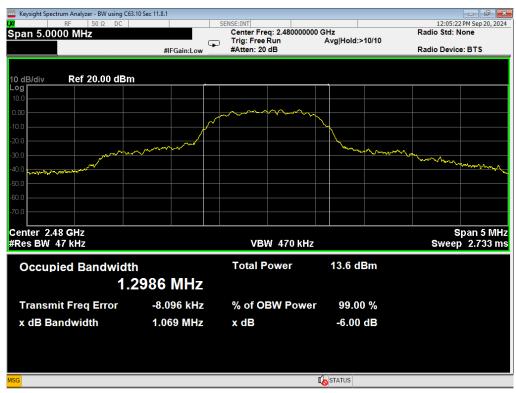

Page 30 of 46

Prepared for: | Garmin International, Inc.

03, Peak Power, 2EDR, High


04, Occupied Bandwidth, 2EDR, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 31 of 46

Prepared for: | Garmin International, Inc.

05, Occupied Bandwidth, 2EDR, Mid

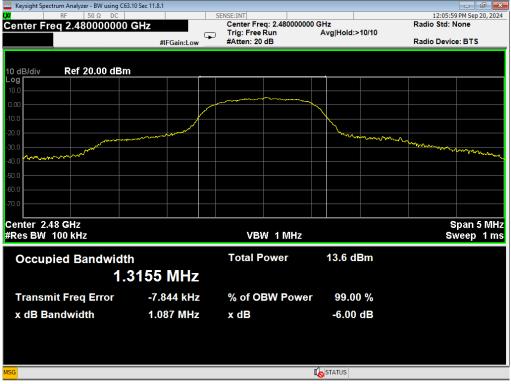
06, Occupied Bandwidth, 2EDR, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

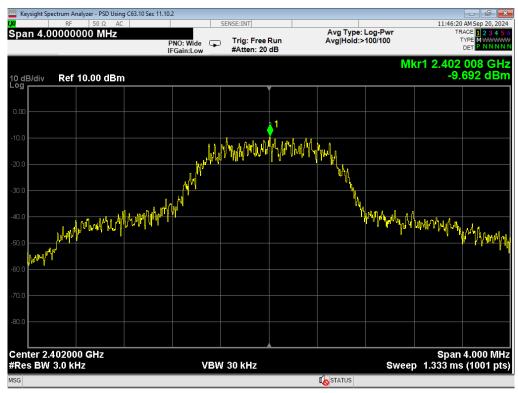
Page 32 of 46

Prepared for: | Garmin International, Inc.

07, 6dB Bandwidth, 2EDR, Low

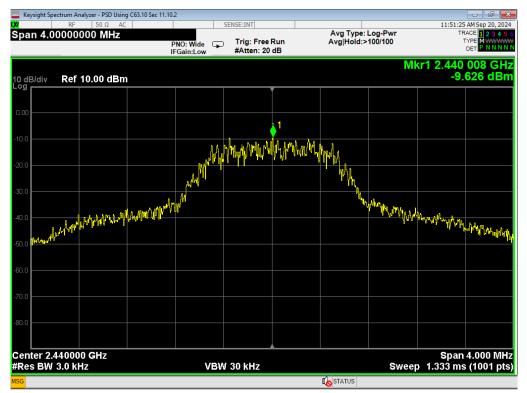

08, 6dB Bandwidth, 2EDR, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

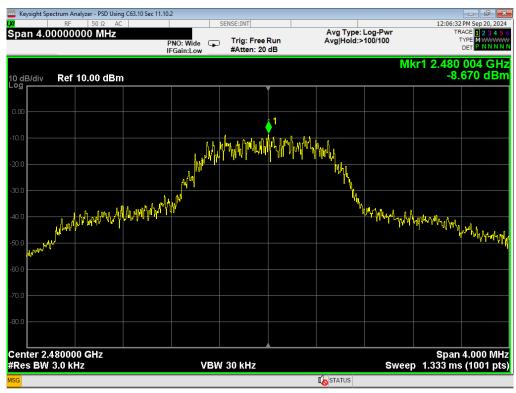

Page 33 of 46

Prepared for: | Garmin International, Inc.

09, 6dB Bandwidth, 2EDR, High

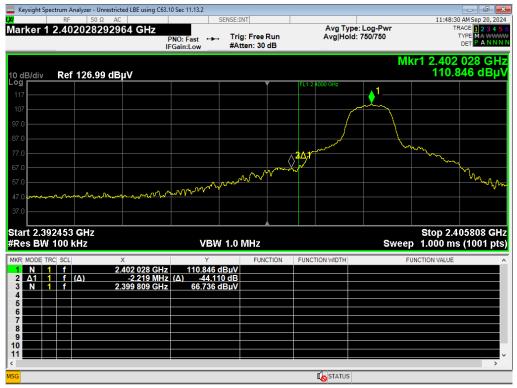

10, PSD, 2EDR, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

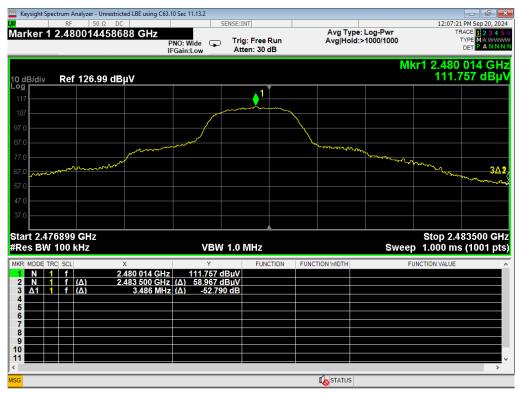

Page 34 of 46

Prepared for: | Garmin International, Inc.

11, PSD, 2EDR, Mid

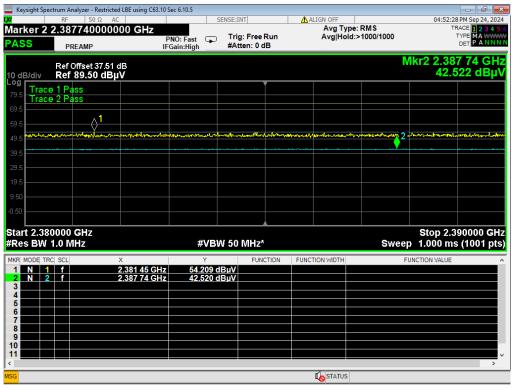

12, PSD, 2EDR, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

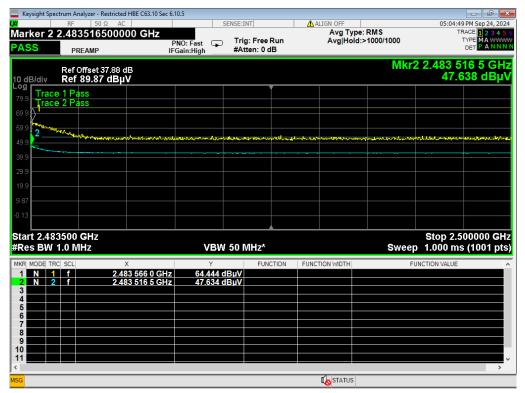

Page 35 of 46

Prepared for: | Garmin International, Inc.

13, LBE Unrestricted, 2EDR

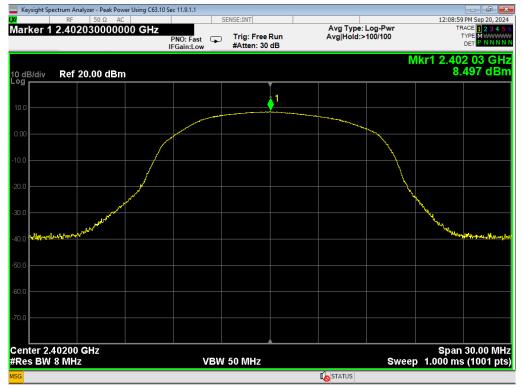

14, HBE Unrestricted, 2EDR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

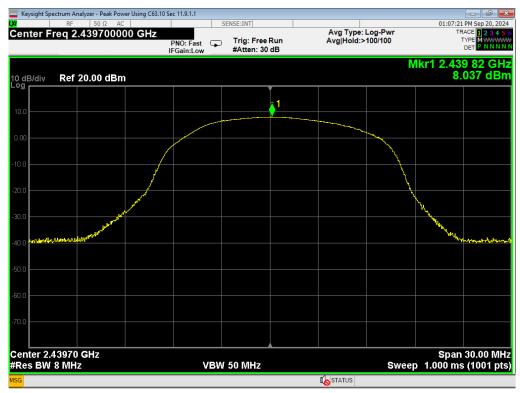

Page 36 of 46

Prepared for: | Garmin International, Inc.

15, LBE Restricted, 2EDR

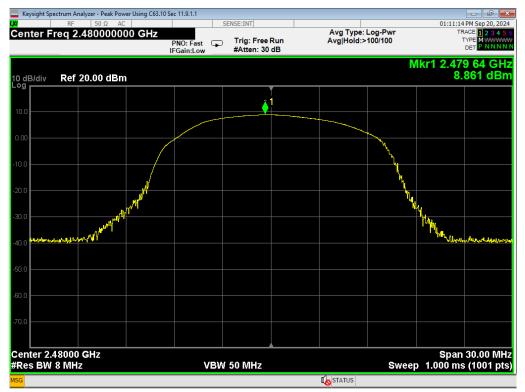

16, HBE Restricted, 2EDR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 37 of 46

Prepared for: | Garmin International, Inc.

17, Peak Power, 3EDR, Low

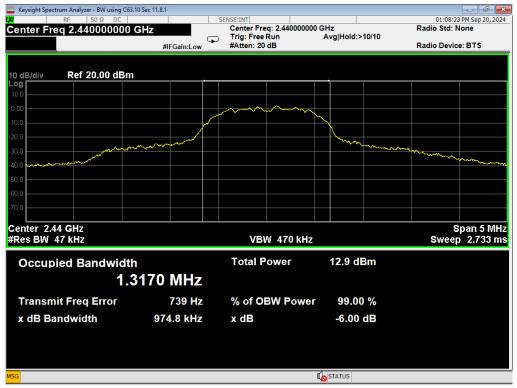

18, Peak Power, 3EDR, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 38 of 46

Prepared for: | Garmin International, Inc.

19, Peak Power, 3EDR, High


20, Occupied Bandwidth, 3EDR, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 39 of 46

Prepared for: | Garmin International, Inc.

21, Occupied Bandwidth, 3EDR, Mid

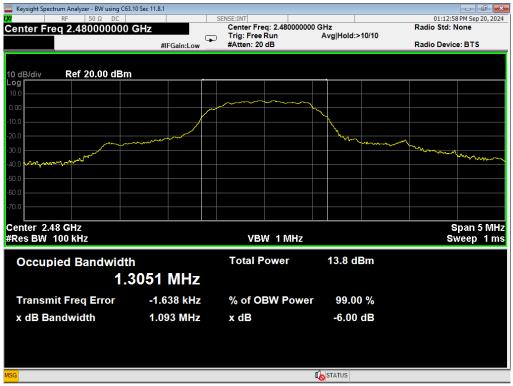

22, Occupied Bandwidth, 3EDR, High

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

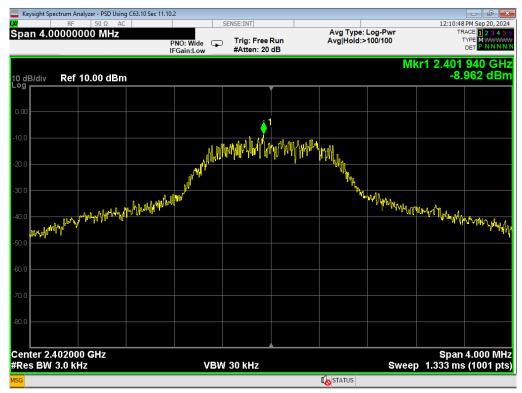
Page 40 of 46

Prepared for: | Garmin International, Inc.

23, 6dB Bandwidth, 3EDR, Low

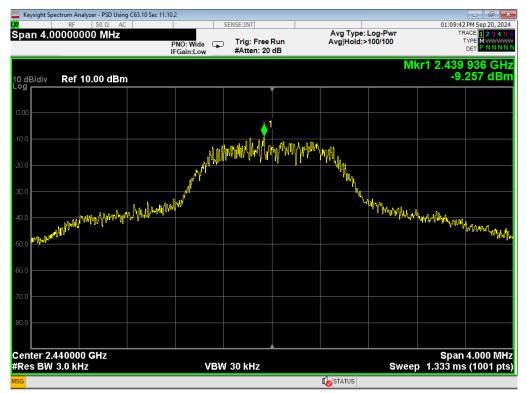

24, 6dB Bandwidth, 3EDR, Mid

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

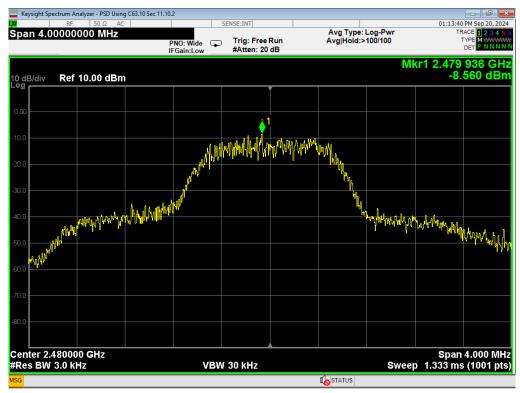

Page 41 of 46

Prepared for: | Garmin International, Inc.

25, 6dB Bandwidth, 3EDR, High

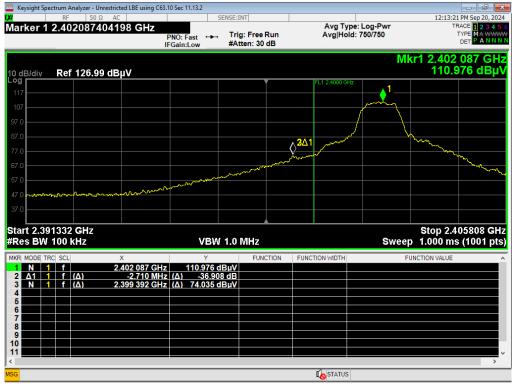

26, PSD, 3EDR, Low

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

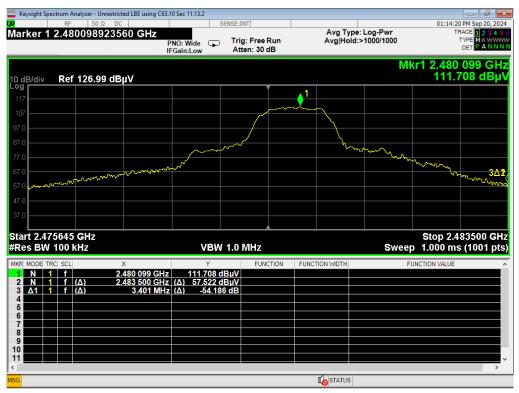

Page 42 of 46

Prepared for: | Garmin International, Inc.

27, PSD, 3EDR, Mid


28, PSD, 3EDR, High

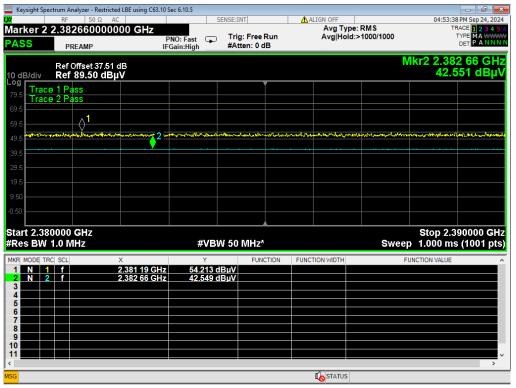
The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521


Page 43 of 46

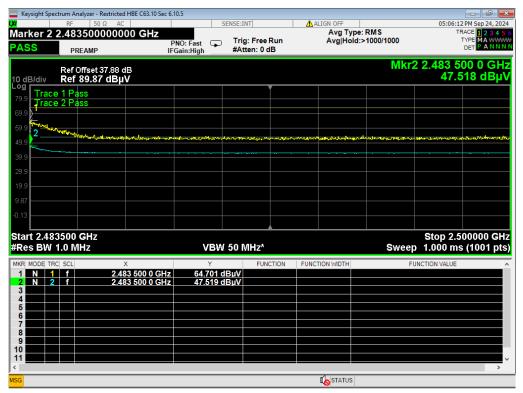
Prepared for: | Garmin International, Inc.

29, LBE Unrestricted, 3EDR

30, HBE Unrestricted, 3EDR

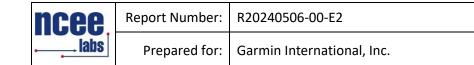

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 44 of 46



 Report Number:
 R20240506-00-E2
 Rev
 B

Prepared for: | Garmin International, Inc.


31, LBE Restricted, 3EDR

32, HBE Restricted, 3EDR

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 45 of 46

REPORT END

Rev

В

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 46 of 46