

CFR 47 FCC PART 22 H CFR 47 FCC PART 24 E

TEST REPORT

For

LTE Smart Phone

MODEL NUMBER: S5506L, GoMo N11, N11

REPORT NUMBER: 4791394016-1-RF-5

ISSUE DATE: September 6, 2024

FCC ID: 2BLEFS5506L

Prepared for

Maverick Mobile LLC 8101 Ridgepoint Drive, Ste 107, Irving TX USA

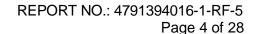
Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	September 06, 2024	Initial Issue	\


Note:

- 1. This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- 2. The measurement result for the sample received is <Pass> according to < CFR 47 FCC PART 22 H >< CFR 47 FCC PART 24 E> > < when <Simple Acceptance> decision rule is applied.

TABLE OF CONTENTS

ATTI	ESTATION OF TEST RESULTS	4
TES	Γ METHODOLOGY	5
FAC	ILITIES AND ACCREDITATION	5
CAL	IBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	MEASUREMENT UNCERTAINTY	6
EQU	IPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	TEST CHANNEL CONFIGURATION	7
5.3.	MAXIMUM AVERAGE OUTPUT POWER	8
5. <i>4</i> .	WORST-CASE CONFIGURATION AND MODE	9
5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.6.	DESCRIPTION OF TEST SETUP	11
MEA	SURING INSTRUMENT AND SOFTWARE USED	12
ANT	ENNA TERMINAL TEST RESULTS	13
	EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER	13
		_
_		
RΔD	IATED SPURIOUS EMISSIONS	23
	FAC CAL 4.1. 4.2. EQU 5.1. 5.5. 5.6. MEA ANT 7.1.1 7.1.2 7.2. 7.3. 7.4. 7.5. 7.6.	4.1. MEASURING INSTRUMENT CALIBRATION

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Maverick Mobile LLC

Address: 8101 Ridgepoint Drive, Ste 107, Irving TX USA

Manufacturer Information

Company Name: Maverick Mobile LLC

Address: 8101 Ridgepoint Drive, Ste 107, Irving TX USA

EUT Information

EUT Name: LTE Smart Phone

Model: S5506L

Series Model: GoMo N11, N11

Model Difference: Referred to section 5.1

Brand: GoMo

Sample Received Date: July 4, 2024
Sample Status: Normal
Sample ID: 7398632

Date of Tested: July 19, 2024 to August 13, 2024

APPLICABLE STANDARDS				
STANDARD	TEST RESULTS			
CFR 47 FCC PART 22 H	PASS			
CFR 47 FCC PART 24 E	PASS			

Р	rena	ared	l Rv	,-

James Qin Project Engineer Checked By:

Kebo Zhang

Senior Project Engineer

kelo. zhang

Approved By:

Stephen Guo

Operations Manager

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.26-2015, 971168 D01 Power Meas License Digital Systems v03r01, 971168 D02 Misc Rev Approv License Devices v02r01, 412172 D01 v01r01 Determining ERP and EIRP, CFR 47 FCC Part 2, Part 22 H, Part 24 E.

3. FACILITIES AND ACCREDITATION

·
A2LA (Certificate No.: 4102.01)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been assessed and proved to be in compliance with A2LA.
FCC (FCC Designation No.: CN1187)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Has been recognized to perform compliance testing on equipment subject
to the Commission's Delcaration of Conformity (DoC) and Certification
rules
ISED (Company No.: 21320)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been registered and fully described in a report filed with ISED.
The Company Number is 21320 and the test lab Conformity Assessment
Body Identifier (CABID) is CN0046.
VCCI (Registration No.: G-20192, C-20153, T-20155 and R-20202)
UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
has been assessed and proved to be in compliance with VCCI, the
Membership No. is 3793.
Facility Name:
Chamber D, the VCCI registration No. is G-20192 and R-20202.
Shielding Room B, the VCCI registration No. is C-20153 and T-20155.

Note 1: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

Note 2: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3: For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
D # 4 15 1 1	5.78 dB (1 GHz-18 GHz)		
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23dB (18 GHz-26 GHz)		
(moradea i anadimental Emission) (1 3112 to 10 3112)	5.64 dB (26 GHz-40 GHz)		
Bandwidth	1.1 %		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the			

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name: LTE Smart Phone	
Model:	S5506L
Series Model:	GoMo N11, N11
Model Difference:	GoMo N11, N11 have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with S5506L. The difference lies only the model number. all these changes do not degrade the unwanted emissions of the certified product.

5.2. TEST CHANNEL CONFIGURATION

Band	Mode	Low	Middle	High
GSM850	GRPS	128	190	251
GSIVIOSU	GRES	824.2 MHz	836.6 MHz	848.8 MHz
CCM4000	GRPS	512	661	810
GSM1900	GRPS	1850.2 MHz	1880.0 MHz	1909.8 MHz

5.3. MAXIMUM AVERAGE OUTPUT POWER

GSM 850						
Part 22H						
ERP Limit(W)	7					
Antenna Gain (dBi)	-3.14					
Mode		Frequency Range (MHz)	Conducted Average power (dBm)	ERP (W)	99% OBW (MHz)	Emission Designator
GSM		824.2 ~ 848.8	31.99	0.468	0.247	243KGXW
GRPS(GMSK)		824.2 ~ 848.8	31.98	0.467	0.247	243KGXW

GSM 1900						
Part 24						
EIRP Limit(W)	2.0					
Antenna Gain (dBi)	-2.16					
Mode		Frequency Range (MHz)	Conducted Average power (dBm)	EIRP (W)	99% OBW (MHz)	Emission Designator
GSM		1850.2 ~ 1909.8	25.10	0.197	0.242	245KGXW
GRPS(GMSK)		1850.2 ~ 1909.8	25.15	0.199	0.245	245KGXW

5.4. WORST-CASE CONFIGURATION AND MODE

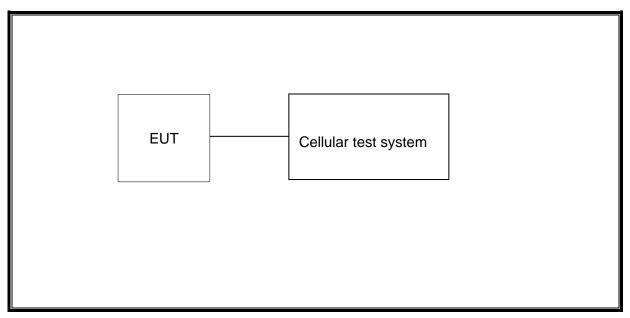
The radiated spurious emissions measurements were carried out in semi-anechoic chamber with 3-meter test range, and EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that X orientation was the worst-case orientation.

Radiated spurious emissions were investigated below 30 MHz, 30 MHz - 1 GHz and above 1 GHz. There were no emissions found on below 1GHz and above 18 GHz, the emissions between 1 GHz – 18 GHz were tested at the low, mid, high channel and the worst configuration.

For GSM850/1900, GPRS worst results are shown in test report.

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Band	Antenna Type	MAX Antenna Gain (dBi)
Main	GSM850	LOOP	-3.14
Main	GSM1900	LOOP	-2.16


Band	Transmit and Receive Mode	Description
GSM850 ⊠1TX, 2RX		Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna
GSM1900	⊠1TX, 2RX	Main antenna can be used as transmitting/receiving antenna, DIV antenna can be used as receiving antenna

Note: The value of the antenna gain was declared by customer.

5.6. DESCRIPTION OF TEST SETUP

Conducted

Radiated

6. MEASURING INSTRUMENT AND SOFTWARE USED

o. IVI	b. MEASURING INSTRUMENT AND SOFTWARE USED										
	Antenna Terminal Test										
Instrument											
Used	Equipment	Manufacturer	Model No. Serial No.		Last C	Cal.	Next	Cal.			
V	Spectrum Analyzer	R&S	FS	SV40	S42	2060	0001	Oct.12,	2023	Oct.11	, 2024
\checkmark	Wideband Radio Communication Tester	R&S	CM	W500	1	5552	23	Oct.12,	2023	Oct.11	, 2024
	Software										
Used	Descrip	tion	Mai	nufactu	irer		1	Name		Vers	sion
V	Tonsend Cellular	Test System	Т	onsend	t	JS ²		RF Auto ystem	Test	3.1.	46
		i	Radia	ated Te	est						
			Inst	rument	t						
Used	Equipment	Manufacturer	Mod	lel No.	Se	rial I	No.	Last C	Cal.	Next	Cal.
V	MXE EMI Receiver	KESIGHT	N9	N9038A MY56400036		0036	Oct.12,	2023	Oct.11	, 2024	
V	Hybrid Log Periodic Antenna	TDK	HLP- 3003C		1	3096	60	Jun. 28,	2024	Jun. 202	,
V	Preamplifier	HP	84	47D	294	4A09	9099	Oct.12,	2023	Oct.11	, 2024
V	EMI Measurement Receiver	R&S	ES	SR26	1	0137	77	Oct.12,	2023	Oct.11	, 2024
V	Horn Antenna	TDK	HRN	I-0118	1	3093	39	April 29,	2022	April 202	
V	Horn Antenna	Schwarzbeck	BBH	A9170		856		Feb 28,	2022	Feb 28	, 2025
V	Preamplifier	TDK		\-02- 118	(RS-3 0006	7	Oct.12,	2023	Oct.11	, 2024
V	Preamplifier	TDK	PA	-02-2		RS-3 0000		Oct.12,	2023	Oct.11	, 2024
\checkmark	Loop antenna	Schwarzbeck	15	19B	(0000	8	Dec.14,	2021	Dec.13	, 2024
	High Pass Filter	Wi	WHKX10- 2700- 3000- 18000- 40SS		23			Oct.12,	2023	Oct.11	, 2024
			So	ftware							
Used	Desci	ription		Manuf	facturer Name		Vers	sion			
V	Test Software for Radiated disturbance			Fa	arad EZ-EMC			Ver. U	L-3A1		

7. ANTENNA TERMINAL TEST RESULTS

7.1. EFFECTIVE (ISOTROPIC) RADIATED POWER OF TRANSMITTER

RULE PART(S)

FCC: §2.1046, §22.913, §24.232

LIMITS

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

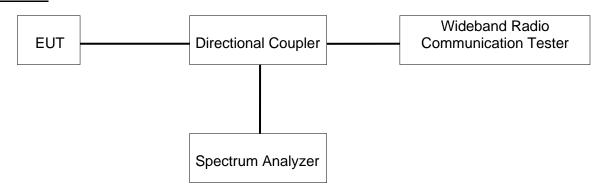
TEST PROCEDURE

Refer to ANSI C63.26:2015 and KDB 971168 D01 Section 5.6 ERP/ EIRP = PMeas + GT - LC

where:

ERP or EIRP = effective or equivalent isotropically radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;


GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB

The transmitter has a maximum radiated ERP / EIRP output powers as follows:

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

7.1.1. GSM850

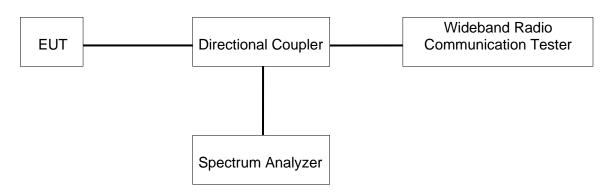
GSM850		Channel No.	Channel No.	Channel No.	Tune-	5	Channel	Channel	Channel
		128	190	251	up	Divisio n Factor	128	190	251
		Fre. (MHz)	Fre. (MHz)	Fre. (MHz)	Limit (dBm		Fre. (MHz)	Fre. (MHz)	Fre. (MHz)
		824.2	836.6	848.8	,		824.2	836.6	848.8
	CS	31.95	31.99	31.96	32.0	\	\	\	\
	1 TimeSlot	31.92	31.98	31.97	32.0	-9.03	22.89	22.95	22.94
GPR	2 TimeSlots	31.22	31.29	31.29	31.5	-6.02	25.20	25.27	25.27
S	3 TimeSlots	29.44	29.57	29.58	30.0	-4.26	25.18	25.31	25.32
	4 TimeSlots	28.09	28.22	28.23	28.5	-3.01	25.08	25.21	25.22

7.1.2. GSM1900

GSM1900		Channel No.	Channel No.	Channel No.	Tune -up Divisio		Channel No.	Channel No.	Channel No.
		512	661	810	Limit	n	512	661	810
		Fre. (MHz)	Fre. (MHz)	Fre. (MHz)	(dBm	Factor	Fre. (MHz)	Fre. (MHz)	Fre. (MHz)
		1850.2	1880	1909.8)		1850.2	1880	1909.8
	CS	25.09	24.75	25.10	25.5	\	\	\	\
	1 TimeSlot	25.12	24.78	25.15	25.5	-9.03	16.09	15.75	16.12
GPR	2 TimeSlots	24.94	24.61	24.95	25.0	-6.02	18.92	18.59	18.93
S	3 TimeSlots	24.69	24.35	24.70	25.0	-4.26	20.43	20.09	20.44
	4 TimeSlots	23.75	23.59	23.58	24.0	-3.01	20.74	20.58	20.57

7.2. PEAK TO AVERAGE RADIO

LIMITS


In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR was measured on the Spectrum Analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

Middle was used to measure as the worst case. The results from all CCDF plots are passed with 13dB peak-to-average power ratio criteria.

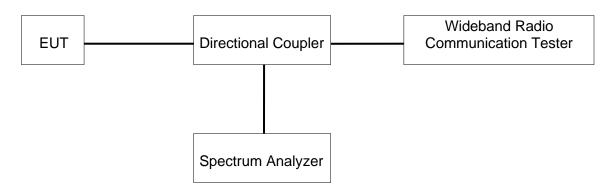
Please refer to Appendix-GSM-850&1900.

7.3. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049.

LIMITS


For reporting purposes only.

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.

(Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01)

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

There is no limit required and power is the same for low, middle and high channel, therefore, only middle channel was tested.

Please refer to Appendix-GSM-850&1900.

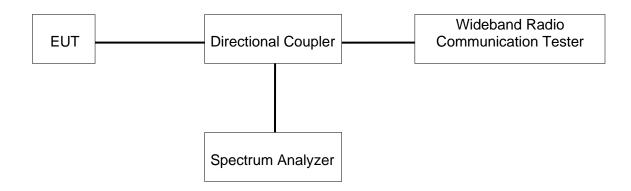
7.4. BAND EDGE EMISSIONS

RULE PART(S)

FCC §2.1051, §22.917, §24.238

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.


TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01 The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

- a) Set the RBW = 1 ~ 1.5 % of OBW (Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

Please refer to Appendix-GSM-850&1900.

7.5. SPURIOUS EMISSION AT ANTENNA TERMINAL

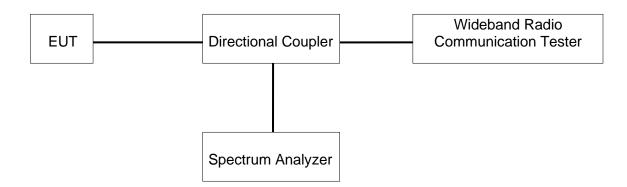
RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238

LIMITS

FCC: §22.901, §22.917, §24.238

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.


TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

- a) Set the RBW = 100 kHz for emission below 1GHz and 1MHz for emissions above 1GHz (Tests were performed 1 MHz [Worst case], to sweep 1 time for all frequency range)
- b) Set VBW \geq 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = auto couple;
- e) Detector = rms;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = trace average for continuous emissions, max hold for pulse emissions;

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

Please refer to Appendix-GSM-850&1900.

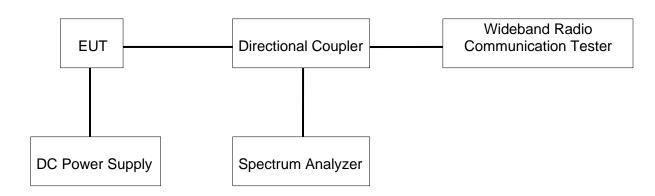
7.6. FREQUENCY STABILITY

Rule Part:

FCC: §2.1055, §22.355, §24.235

LIMITS

§22.355 - The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm for mobile stations.


§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

TEST PROCEDURE

Refer to KDB 971168 D01 Power Meas License Digital Systems v03r01.

toler to TEB of 1 fee Bot 1 ewel Mede Electrico Bigital Cyclemic Veele 1:						
	Normal Test Conditions	Extreme Test Conditions				
Relative Humidity	45 % - 75 %	/				
Atmospheric Pressure	100 kPa ~102 kPa	/				
T	T _N (Normal Temperature):	T _L (Low Temperature): -30 °C				
Temperature	24.5 °C	T _H (High Temperature): 50 °C				
Supply Voltage	V _N (Normal Voltage): DC 3.8 V	V _L (Low Voltage): DC 3.2 V				
	VN (Normal Voltage). DC 3.6 V	V _H (High Voltage): DC 4.4 V				

TEST SETUP

TEST ENVIRONMENT

Temperature	23.9°C	Relative Humidity	63.1%
Atmosphere Pressure	101kPa	Test Voltage	/

Test Result

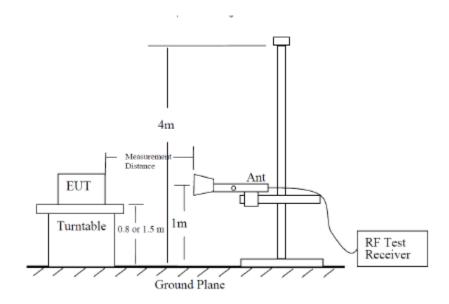
The peak frequency error is recorded (worst-case).

Please refer to Appendix-GSM-850&1900.

8. RADIATED SPURIOUS EMISSIONS

LIMIT

FCC: §24.238(a) (GSM1900)


The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

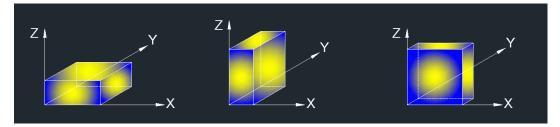
FCC: §22.917(a) (GSM850)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 10g (P) dB.

TEST PROCEDURE

Following the test configuration shown below, radiated emissions measured directly from the EUT and convert the measured field strength or received power to ERP or EIRP, as required, for comparison to the applicable limits. As stated in section 5.5.1 of ANSI C63.26-2015. The field strength measurement method by using a test site validated to the requirement of ANSI C63.4 is an alternative method to the substitution measurement.

Radiated Power Measurement Calculation According to ANSI C63.26-2015


- a) E $(dB\mu V/m)$ = Measured amplitude level $(dB\mu V)$ + Cable Loss (dB)+ Antenna Factor (dB/m).
- b) \dot{E} (dB μ V/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m).
- c) E (dB μ V/m) = EIRP (dBm) -- 20l0g(D) + 104.8, where D is the measurement distance (in the far field region) in m.
- d) EIRP (dBm) = E (dB μ V/m) + 20l0g(D) 104.8, where D is the measurement distance (in the far field region) in m.

So, from d)

The measuring distance is at 3m, then 20*Log(3) = 9.5424

Then, EIRP (dBm) = E (dB μ V/m) + 9.5424 - 104.8 = E (dB μ V/m) - 95.2576

X axis, Y axis, Z axis:

Note: The EUT was investigated in three orthogonal orientations X/Y/Z on main to determine the worst-case orientation. X orientation is finally determined the worst.

TEST ENVIRONMENT

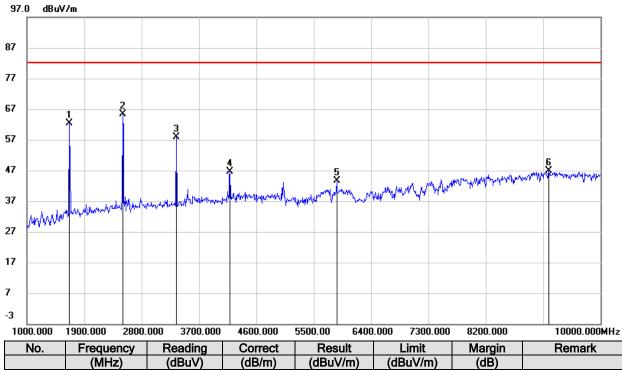
Temperature	24.0°C	Relative Humidity	62.5%
Atmosphere Pressure	101kPa	Test Voltage	DC 3.8 V

Test Result

GSM 850

GPRS-Low Channel-Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1648.000	72.53	-11.09	61.44	82.25	-20.81	peak
2	2467.000	70.78	-8.06	62.72	82.25	-19.53	peak
3	3295.000	56.41	-5.59	50.82	82.25	-31.43	peak
4	4123.000	44.54	-2.62	41.92	82.25	-40.33	peak
5	7354.000	36.96	6.97	43.93	82.25	-38.32	peak
6	8992.000	36.86	10.38	47.24	82.25	-35.01	peak


GPRS-Low Channel-Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1648.000	59.12	-10.76	48.36	82.25	-33.89	peak
2	2467.000	59.93	-7.25	52.68	82.25	-29.57	peak
3	3295.000	56.55	-4.46	52.09	82.25	-30.16	peak
4	4996.000	44.63	1.82	46.45	82.25	-35.80	peak
5	7318.000	37.30	7.38	44.68	82.25	-37.57	peak
6	8965.000	37.51	10.47	47.98	82.25	-34.27	peak

GPRS- Mid Channel- Horizontal

1666.000

73.41

62.41

82.25

-19.84

peak

-11.00

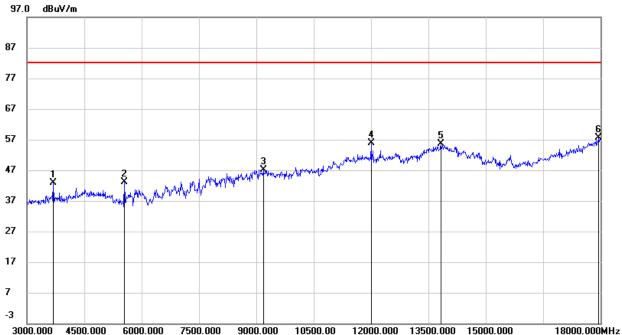
2	2503.000	73.48	-8.07	65.41	82.25	-16.84	peak
3	3340.000	63.42	-5.55	57.87	82.25	-24.38	peak
4	4186.000	48.95	-2.21	46.74	82.25	-35.51	peak
5	5860.000	41.53	2.22	43.75	82.25	-38.50	peak
6	9190.000	37.17	9.63	46.80	82.25	-35.45	peak

GPRS- Mid Channel- Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1666.000	62.94	-10.64	52.30	82.25	-29.95	peak
2	2503.000	67.68	-7.27	60.41	82.25	-21.84	peak
3	3340.000	62.76	-4.46	58.30	82.25	-23.95	peak
4	4186.000	56.12	-1.19	54.93	82.25	-27.32	peak
5	4996.000	45.97	1.82	47.79	82.25	-34.46	peak
6	8731.000	39.35	8.64	47.99	82.25	-34.26	peak

GPRS- High Channel- Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1693.000	75.06	-10.88	64.18	82.25	-18.07	peak
2	2548.000	72.66	-8.08	64.58	82.25	-17.67	peak
3	3394.000	62.35	-5.52	56.83	82.25	-25.42	peak
4	4240.000	45.83	-2.04	43.79	82.25	-38.46	peak
5	6787.000	38.58	4.61	43.19	82.25	-39.06	peak
6	8983.000	36.87	10.27	47.14	82.25	-35.11	peak


GPRS- High Channel- Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1693.000	62.35	-10.47	51.88	82.25	-30.37	peak
2	2548.000	67.71	-7.23	60.48	82.25	-21.77	peak
3	3394.000	62.38	-4.45	57.93	82.25	-24.32	peak
4	4240.000	52.31	-1.04	51.27	82.25	-30.98	peak
5	4996.000	43.74	1.82	45.56	82.25	-36.69	peak
6	8749.000	38.80	8.62	47.42	82.25	-34.83	peak

GSM 1900

GPRS- Low Channel- Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3690.000	45.80	-3.04	42.76	82.25	-39.49	peak
2	5550.000	40.71	2.41	43.12	82.25	-39.13	peak
3	9180.000	36.94	10.23	47.17	82.25	-35.08	peak
4	12000.000	37.94	17.90	55.84	82.25	-26.41	peak
5	13830.000	33.09	22.49	55.58	82.25	-26.67	peak
6	17955.000	29.43	28.09	57.52	82.25	-24.73	peak

GPRS-Low Channel-Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4995.000	44.33	2.23	46.56	82.25	-35.69	peak
2	5550.000	45.61	3.59	49.20	82.25	-33.05	peak
3	9255.000	37.67	10.43	48.10	82.25	-34.15	peak
4	12000.000	36.43	16.80	53.23	82.25	-29.02	peak
5	13470.000	34.32	19.65	53.97	82.25	-28.28	peak
6	17985.000	29.51	26.11	55.62	82.25	-26.63	peak

GPRS- Mid Channel- Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	3615.000	42.83	-3.17	39.66	82.25	-42.59	peak
2	5640.000	38.59	2.58	41.17	82.25	-41.08	peak
3	8940.000	36.31	10.45	46.76	82.25	-35.49	peak
4	12000.000	35.21	17.90	53.11	82.25	-29.14	peak
5	14235.000	33.83	21.90	55.73	82.25	-26.52	peak
6	17940.000	28.84	28.01	56.85	82.25	-25.40	peak

GPRS- Mid Channel- Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	

1	4995.000	44.32	2.23	46.55	82.25	-35.70	peak
2	5640.000	42.73	3.73	46.46	82.25	-35.79	peak
3	8940.000	36.89	10.87	47.76	82.25	-34.49	peak
4	12000.000	35.93	16.80	52.73	82.25	-29.52	peak
5	13530.000	34.65	19.70	54.35	82.25	-27.90	peak
6	17685.000	30.28	25.20	55.48	82.25	-26.77	peak

GPRS- High Channel- Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5040.000	40.55	1.13	41.68	82.25	-40.57	peak
2	7635.000	41.05	7.14	48.19	82.25	-34.06	peak
3	10035.000	35.66	12.55	48.21	82.25	-34.04	peak
4	12000.000	39.00	17.90	56.90	82.25	-25.35	peak
5	13920.000	32.59	22.58	55.17	82.25	-27.08	peak
6	17985.000	28.71	28.25	56.96	82.25	-25.29	peak

GPRS- High Channel- Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	4995.000	43.87	2.23	46.10	82.25	-36.15	peak
2	5730.000	41.11	3.51	44.62	82.25	-37.63	peak
3	7635.000	45.74	7.64	53.38	82.25	-28.87	peak
4	12000.000	36.38	16.80	53.18	82.25	-29.07	peak
5	13950.000	33.08	21.00	54.08	82.25	-28.17	peak
6	17985.000	29.43	26.11	55.54	82.25	-26.71	peak

END OF REPORT