TEST REPORT

FCC ID:	2AGEB-TCT						
Test Report No:	TCT240607E028						
Date of issue:	Jun. 18, 2024						
Testing laboratory :	SHENZHEN TONGCE TESTING LAB						
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China						
Applicant's name:	Shenzhen ZKC Software Technology Co., Ltd						
Address:	1st Floor, No. 1 Block, Zhongkenuo Industry Park, Beiqi Road, Xixiang Town, Bao'an District, Shenzhen, China						
Manufacturer's name :	Shenzhen ZKC Software Technology Co., Ltd						
Address:	1st Floor, No. 1 Block, Zhongkenuo Industry Park, Beiqi Road, Xixiang Town, Bao'an District, Shenzhen, China						
Standard(s):	FCC CFR Title 47 Part 15 Subpart C						
Product Name::	TPMS Configuration Tool						
Trade Mark:	N/A						
Model/Type reference :	тст						
Rating(s):	Rechargeable Li-ion Battery DC 3.6V						
Date of receipt of test item	Jun. 07, 2024						
Date (s) of performance of test:	Jun. 07, 2024 ~ Jun. 18, 2024						
Tested by (+signature) :	Ronaldo LUO						
Check by (+signature) :	Beryl ZHAO						
Approved by (+signature):	Tomsin						
Conoral disalaimary							

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. G	eneral Pro	duct Info	rmation					3
1.	1. EUT descr	ription						3
1.2	2. Model(s) li	ist						3
2. Te	est Result	Summary	y					4
3. G	eneral Info	rmation.						5
	1. Test envir							
3.2	2. Descriptio	n of Supp	ort Units.					5
4. Fa	acilities and	d Accred	litations					6
	1. Facilities.							
4.2	2. Location .		<u></u>		<u></u>		<u> </u>	6
4.:	3. Measurem	ent Uncer	tainty					6
5. Te	est Results	and Mea	asureme	nt Data .				7
5.	1. Antenna re	equiremer	nt	\sim		\sim		7
5.2	2. Conducted	d Emissio	n					8
5.3	3. Radiated S	Spurious E	Emission I	Measurem	nent			12
App	endix B: Pl	notograp	hs of Te	st Setup				
Арр	endix C: Pl	notograp	hs of EL	Л				

1. General Product Information

1.1.EUT description

Product Name:	TPMS Configuration Tool		
Model/Type reference:	тст		
Sample Number:	TCT240607E007-0101		
Operation Frequency:	125kHz		
Modulation Technology:	FSK		
Antenna Type:	Internal Antenna	(\mathcal{C})	$\langle \mathcal{C} \rangle$
Rating(s):	Rechargeable Li-ion Battery DC	3.6V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2.Model(s) list

None.

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Spurious Emission	§15.209(a)(f)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission	Radiated Emission				
Temperature:	22.8 °C	24.8 °C				
Humidity:	49 % RH	51 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Mode:						

En avia a a via a una a al a c	Keep the EUT in continuous transmitting.
Engineering mode.	Keep the EUT in continuous transmitting
Engineering mode:	

The sample was placed 0.8m for the measurement below above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3	/	SAMSUNG

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended
 - use.

Facilities and Accreditations 4.

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	🕑 🛨 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

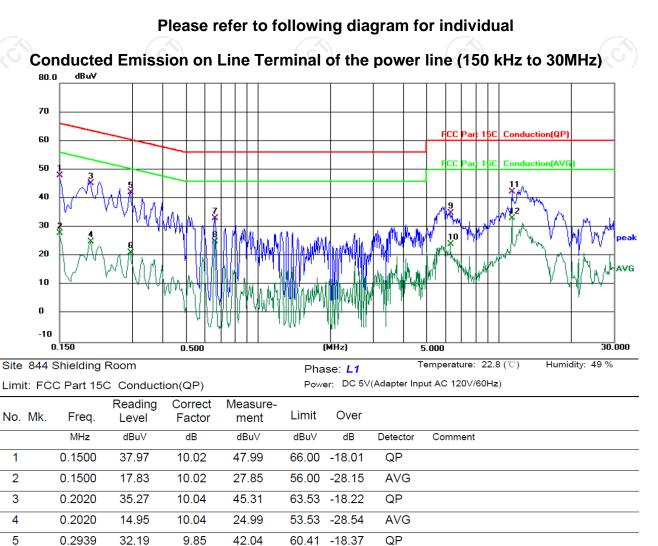
se of a ing to the n antenna	na other that		ection 1	art15 C S	FCC Pa		dard requi	Stand
se of a ing to the n antenna		at no ontonno						
ectrical	ue coupling t a broken ar	the device. uses a unique unit so that a d antenna jac	d with t a that u gn the u	all be use in antenr may des	le party sh enna or of a inufacturer	diator shal responsib ached ante tor, the ma by the use	hed by the anently atta ional radiat e replaced actor is prol	An int furnis perma intenti can be conne
							Antenna:	
Antenna								
(3	Ś						S)

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	15.207	No.					
Test Method:	ANSI C63.10: 2013							
Frequency Range:	150 kHz to 30 MHz							
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50					
	Referenc	e Plane						
Test Setup:	40cm E.U.T AC power B0cm LISN Filter AC power Filter AC power EMI Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m							
	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N	Receiver						
Test Mode:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N	Receiver						
Test Mode: Test Procedure:	E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	Receiver g Mode cted to an adapte ation network 50uH coupling im nt. ces are also conne SN that provides with 50ohm terr diagram of the line are checked nce. In order to fi e positions of equ s must be change	(L.I.S.N.). This pedance for the ected to the main s a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all of ged according to					

5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)								
	Equipment	Manufacturer	Model	Serial Number	Calibration Due			
	EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024			
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
	Line-5	тст	CE-05	/	Jul. 03, 2024			
	EMI Test Software	Shurple Technology	EZ-EMC	1	1			

Page 9 of 24

5.2.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Note:	
note.	

6

7

8

9

10

11

12

0.2939

0.6620

0.6620

6.2859

6.2859

11.3219

11.3219

11.40

23.95

15.87

24.32

13.57

31.76

22.52

9.85

9.20

9.20

10.48

10.48

10.64

10.64

21.25

33.15

25.07

34.80

24.05

42.40

33.16

No	te:		
	Freq. = Emission frequency in MHz		
	Reading level ($dB\mu V$) = Receiver reading		
	Corr. Factor (dB) = LISN factor + Cable loss		
	Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)		
	Limit (dB μ V) = Limit stated in standard		
	Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)		
	Q.P. =Quasi-Peak		
	AVG =average		
	* is meaning the worst frequency has been tested in the frequency range	e 150 kHz to 30MHz	
		ŀ	Page 10 of 24

50.41 -29.16

56.00 -22.85

46.00 -20.93

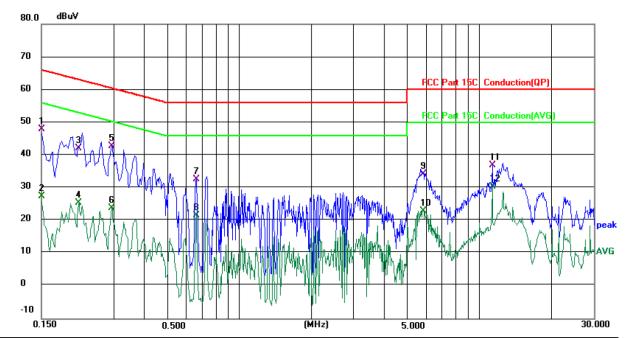
60.00 -25.20

50.00 -25.95

60.00 -17.60

50.00 -16.84

AVG


QP

AVG

QP

AVG QP

AVG

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

 Site 844 Shielding Room
 Phase: N
 Temperature: 22.8 (°C)
 Humidity: 49 %

 Limit: ECC Part 15C Conduction(QP)
 Power: DC 5V(Adapter Input AC 120V/60Hz)
 Humidity: 49 %

Limit:	FCC Part 15	C Conduct	tion(QP)		Pow	er: DC 5	√(Adapter In	put AC 120V/60Hz)
No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	37.91	10.00	47.91	66.00	-18.09	QP	
2	0.1500	17.38	10.00	27.38	56.00	-28.62	AVG	
3	0.2139	32.35	9.82	42.17	63.05	-20.88	QP	
4	0.2139	15.56	9.82	25.38	53.05	-27.67	AVG	
5 *	0.2938	32.90	9.83	42.73	60.42	-17.69	QP	
6	0.2938	13.98	9.83	23.81	50.42	-26.61	AVG	
7	0.6620	23.43	9.17	32.60	56.00	-23.40	QP	
8	0.6620	12.53	9.17	21.70	46.00	-24.30	AVG	
9	5.8658	23.86	10.39	34.25	60.00	-25.75	QP	
10	5.8658	12.58	10.39	22.97	50.00	-27.03	AVG	
11	11.3218	26.28	10.62	36.90	60.00	-23.10	QP	
12	11.3218	19.77	10.62	30.39	50.00	-19.61	AVG	

Note:

TCT 通测检测 TESTING CENTRE TECHNOLOGY

> Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

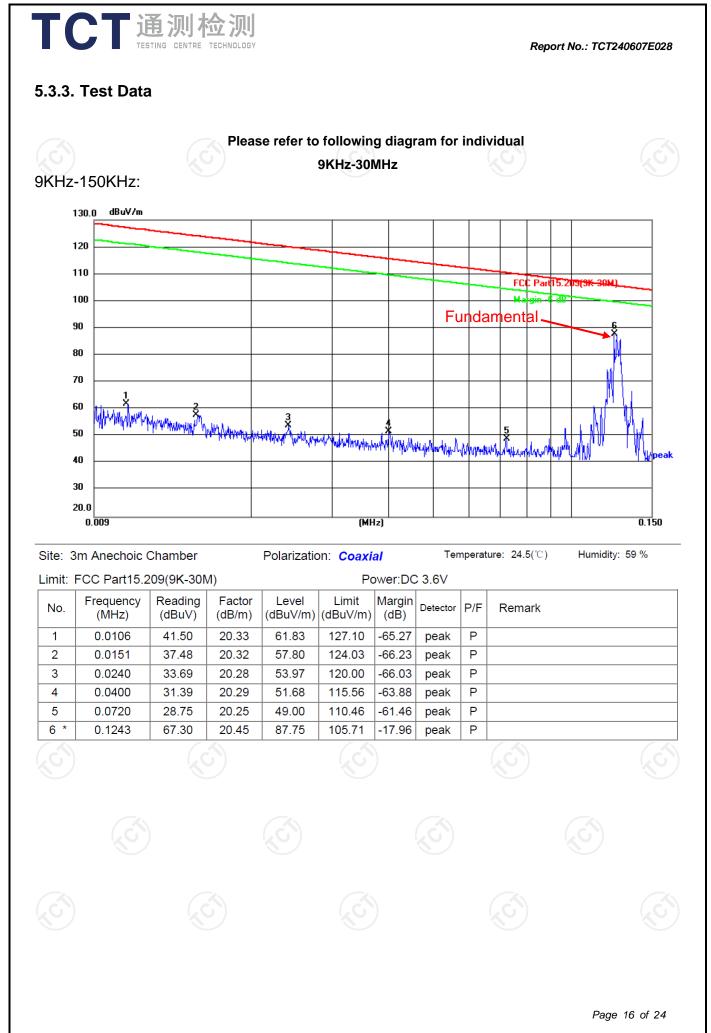
* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Radiated Spurious Emission Measurement

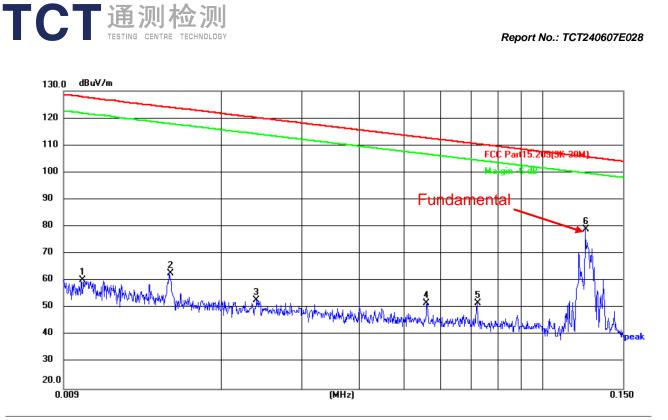
5.3.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

	C	X			(
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10	0: 2013							
Frequency Range:	9 kHz to 25 GHz								
Measurement Distance:	3 m		9		N				
Antenna Polarization:	Horizontal & Vertical								
Operation mode:	Refer to item 3.1								
	Frequency 9kHz- 150kHz	Detector Quasi-peak	RBW 200Hz	VBW 1kHz	Remark Quasi-peak Value				
Receiver Setup:	150kHz- 30MHz	Quasi-peak Quasi-peak		30kHz	Quasi-peak Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
	Frequer	ncy	Field Stre (microvolts		Measurement Distance (meters)				
	0.009-0.4	490	2400/F(I	KHz)	300				
	0.490-1.3		24000/F((KHz)	30				
	1.705-3	/	30		30				
	30-88		100		3				
Limit:	88-210		<u> </u>		3				
Linnt.	216-96 Above 9		200 500	3					
			d Strength ovolts/meter) 500 5000	Distand (meter 3 3					
Test setup:	For radiated	Turn table		Pre -A	Computer				
					Page 12 of 2				


Report No.: TCT240607E028 Antenna Tower Search Antenna EUT 4m RF Test Receiver Turn 1m 0.8m Table Ground Plane 1. For the radiated emission test below 1GHz: The EUT was placed on a turntable with 0.8 meter above ground. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high PASS filter are used for the test in order to get better signal level. For the radiated emission test above 1GHz: Place the measurement antenna on a turntable with 1.5 meter above ground, which is away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for **Test Procedure:** maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings:

ace = n duty ; ere T which s	VBW ≥RB = peak; Tra 0 Hz, when VBW ≥ $1/T$ ercent whe ation over v nitting at its	red; f < 1 GHz; or function t: VBW = 1 8 percent. s than 98 p ission dura nd is transr	wide enoug eing measu 20 kHz for uto; Detecto easuremen less than 9 cycle is less num transm tter is on ar ower contro	emission b Set RBW= Sweep = a nax hold; average m cycle is no vhen duty s the minin he transm	(2) \$ (2) \$ For For t t		
ć		s	.1 for detail			node: results:	
	C		(C)			Contraction of the second seco	

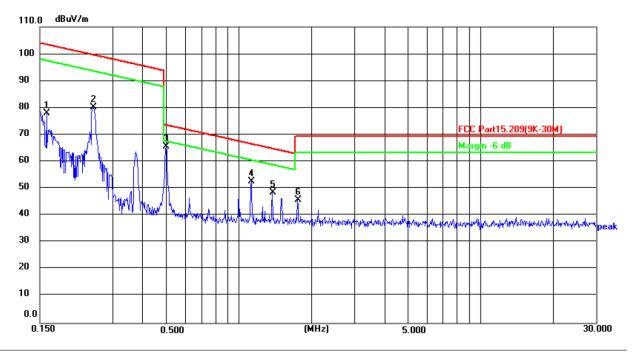

5.3.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated En	nission Test Site	e (966)			
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024		
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025		
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025		
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025		
Antenna Mast	Keleto	RE-AM	1			
Coaxial cable	SKET	RC-18G-N-M	/	Jan. 31, 2025		
Coaxial cable	SKET	RC_40G-K-M	KG	Jan. 31, 2025		
EMI Test Software	Shurple Technology	EZ-EMC	1			

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

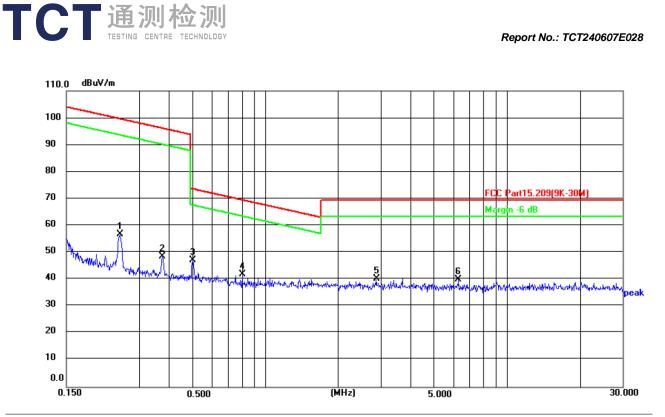
Site: 3m Anechoic Chamber Polarization: Coplanar Temperature: 24.5(°C) Humidity: 59 %


Limit: FCC Part15.209(9K-30M)

Power:DC 3.6V

_										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	0.0100	39.87	20.33	60.20	127.60	-67.40	peak	Р	
	2	0.0152	42.32	20.32	62.64	123.97	-61.33	peak	Ρ	
	3	0.0238	32.68	20.28	52.96	120.07	-67.11	peak	Ρ	
	4	0.0560	31.39	20.30	51.69	112.64	-60.95	peak	Ρ	
	5	0.0720	31.46	20.25	51.71	110.46	-58.75	peak	Ρ	
	6 *	0.1243	58.61	20.45	79.06	105.71	-26.65	peak	Р	

150KHz-30MHz:


Site: 3m Anechoic ChamberPolarization: CoaxialTemperature: 24.5(°C)Humidity: 59 %

Limit: FCC Part15.209(9K-30M)

Power:DC 3.6V

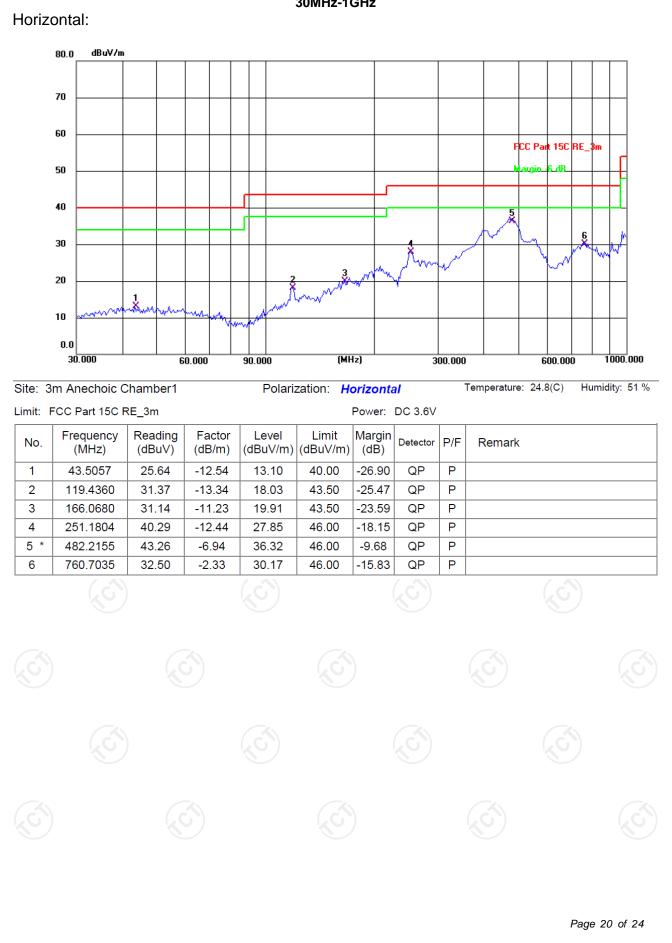
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.1603	57.89	20.14	78.03	103.51	-25.48	peak	Р	
2	0.2502	60.02	20.28	80.30	99.64	-19.34	peak	Р	
3 *	0.4999	44.94	20.72	65.66	73.63	-7.97	peak	Р	
4	1.1253	30.67	21.88	52.55	66.60	-14.05	peak	Р	
5	1.3752	26.17	22.38	48.55	64.86	-16.31	peak	Ρ	
6	1.7501	22.73	23.12	45.85	69.50	-23.65	peak	Р	

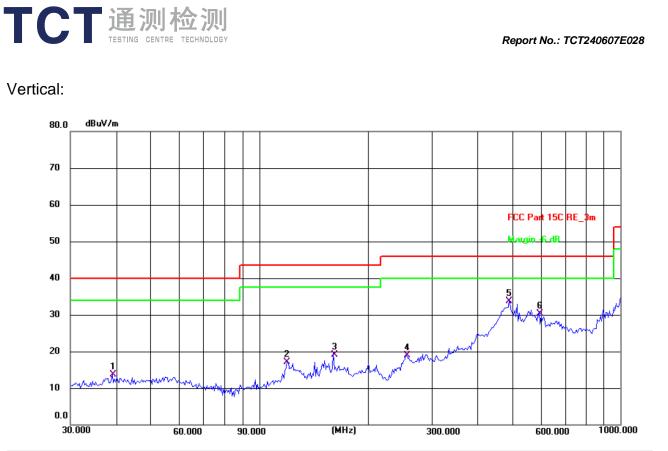
Site: 3m Anechoic Chamber Polarization: Coplanar Temperature: 24.5(°C) Humidity: 59 %

Limit: FCC Part15.209(9K-30M)

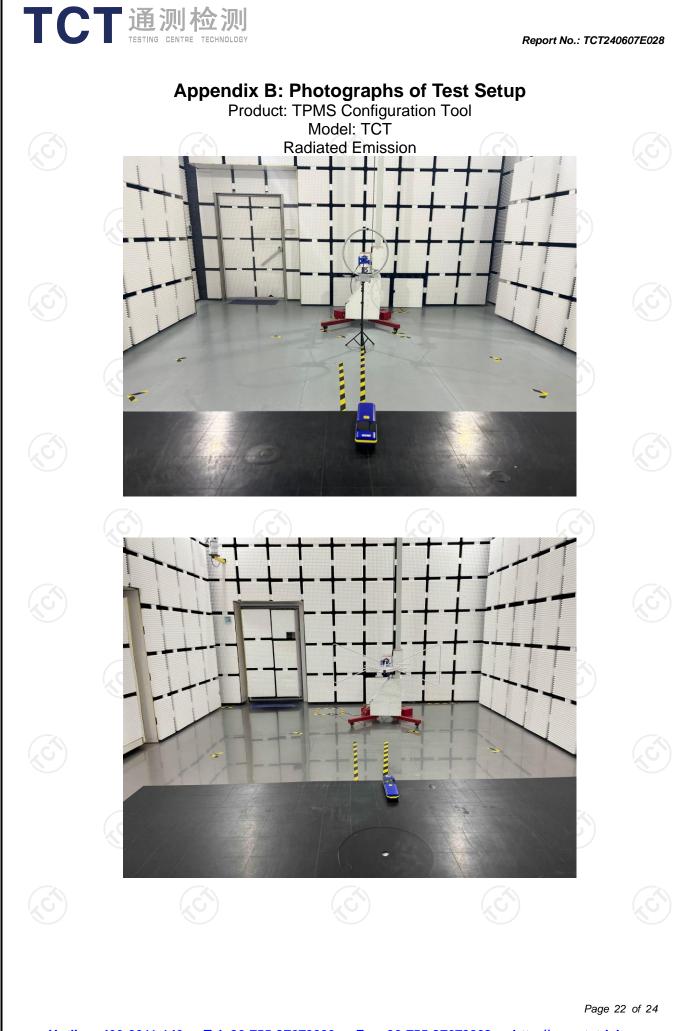
Power:DC 3.6V

Ennic.	1001 att10.2	200(01000	v1)		1.0				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	0.2507	36.54	20.28	56.82	99.62	-42.80	peak	Р	
2	0.3735	28.13	20.49	48.62	96.16	-47.54	peak	Р	
3 *	0.5008	26.51	20.72	47.23	73.61	-26.38	peak	Ρ	
4	0.8008	20.57	21.26	41.83	69.55	-27.72	peak	Ρ	
5	2.8760	15.03	25.39	40.42	69.50	-29.08	peak	Ρ	
6	6.3018	7.70	32.18	39.88	69.50	-29.62	peak	Ρ	

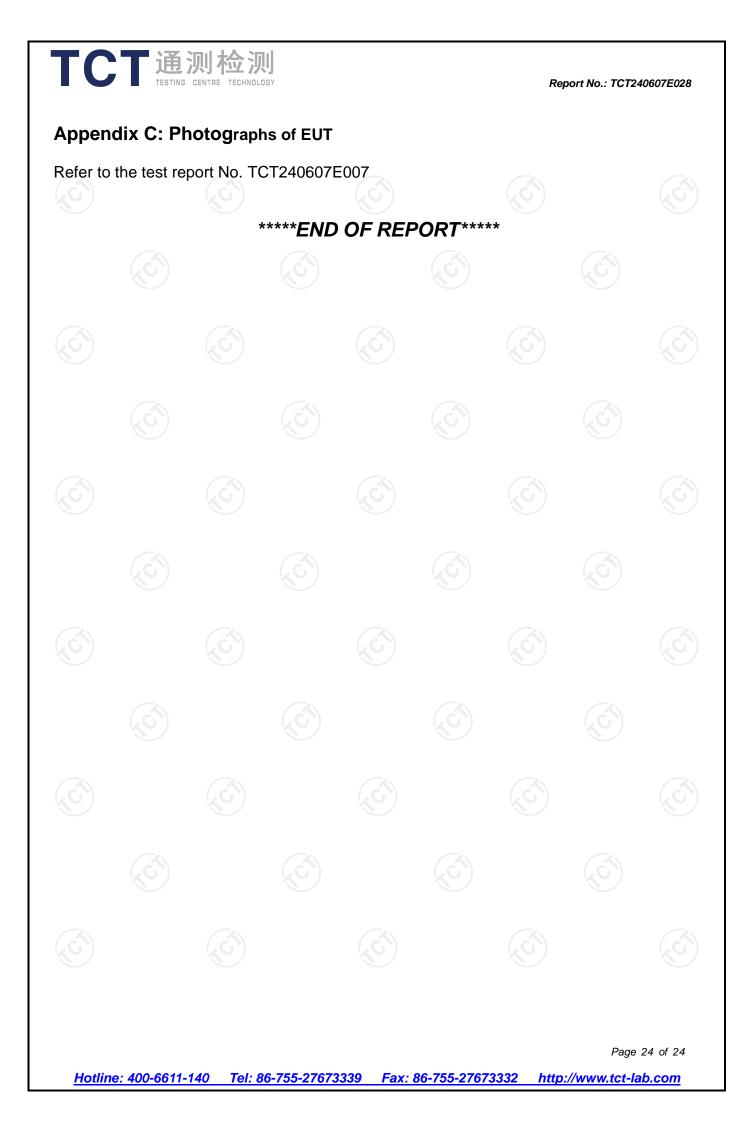




30MHz-1GHz


Site: 3m Anechoic Chamber1 Polarization: Vertical Temperature: 24.8(C) Humidity: 51 %

Limit:	FCC Part 15C F	RE_3m			Power: DC 3.6V					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	39.1615	26.01	-12.40	13.61	40.00	-26.39	QP	Ρ		
2	119.4360	30.38	-13.34	17.04	43.50	-26.46	QP	Ρ		
3	160.3456	30.20	-11.09	19.11	43.50	-24.39	QP	Ρ		
4	254.7283	31.13	-12.28	18.85	46.00	-27.15	QP	Ρ		
5 *	492.4685	40.29	-6.67	33.62	46.00	-12.38	QP	Ρ		
6	595.1327	34.69	-4.41	30.28	46.00	-15.72	QP	Ρ		


Note:

Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

