

FCC TEST REPORT

FCC ID: 2AIN7-BSK-150

On Behalf of

JOYO TECHNOLOGY CO., LTD MULTIFUNCTIONAL LIVE STREAMING AMP Model No.: BSK-150

Prepared for	: JOYO TECHNOLOGY CO., LTD
Address	2/F, Lushi Industry Building, 28th District, Bao' an, Shenzhen, 518101, China

Prepared By	: Shenzhen Alpha Product Testing Co., Ltd.
Address	Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

Report Number	:	A2305157-C04-R01
Date of Receipt	:	June 20, 2023
Date of Test	:	June 20, 2023 - July 27, 2023
Date of Report	:	July 27, 2023
Version Number	:	V0
Result		Pass

ALPHA's reports is using a digital certificate that is trusted on Adobe's official server. If there is no digital certificate or the digital certificate shows damaged in your report. Please do not accept the report. E-mail: service@a-lab.cn Tel: 4008-3008-95 Website: http://www.a-lab.cn

TABLE OF CONTENTS

	Desc	cription	Page
ТА	BLE (DF CONTENTS	2
1.		mary of Standards And Results	6
	1.1.	Description of Standards and Results	6
2.	Gen	eral Information	7
	2.1.	Description of Device (EUT)	7
	2.2.	Accessories of Device (EUT)	8
	2.3.	Tested Supporting System Details	8
	2.4.	Block Diagram of connection between EUT and simulators	
	2.5.	Test Mode Description	8
	2.6.	Test Conditions	
	2.7.	Test Facility	
	2.8.	Measurement Uncertainty	9
	2.9.	Test Equipment List	
3.	-	ious Emission	
	3.1.	Test Limits Test Procedure	
	3.2.	Test Setup	
	3.3. 3.4.	Test Results	
4.		er Line Conducted Emission	
4.	4.1.	Test Limits	
	4.2.	Test Procedure	
	4.3.	Test Setup	
	4.4.	Test Results	
5.		ducted Maximum peak Output Power	
	5.1.	Test limits	27
	5.2.	Test Procedure	27
	5.3.	Test Setup	27
	5.4.	Test Results	
6.	Peak	Power Spectral Density	28
	6.1.	Test limits	28
	6.2.	Test Procedure	-
	6.3.	Test Setup	
	6.4.	Test Results	-
7.		dwidth	
	7.1.	Test limits	
	7.2.	Test Procedure	
	7.3.	Test Setup	
•	7.4.	Test Results	
8.		d Edge Check Test limits	
	8.1.		
	8.2.	Test Procedure	
	8.3. 8.4.	Test Setup Test Results	
٥		nna Requirement	
Э.	9.1.	Standard Requirement	
	9.1.	Antenna Connected Construction	47 47
		Results	

10	Test setup photo	18
	10.1. Photo of Radiated Emission test	18
	10.2. Photo of Conducted Emission test	19

TEST REPORT DECLARATION

Applicant	:	JOYO TECHNOLOGY CO., LTD					
Address	:	2/F, Lushi Industry Buildin	g, 28th District, Bao'an, Shenzhen, 518101, China				
Manufacturer	:	JOYO TECHNOLOGY CC	D., LTD				
Address	:	2/F, Lushi Industry Buildin	2/F, Lushi Industry Building, 28th District, Bao' an, Shenzhen, 518101, China				
EUT Description	:	MULTIFUNCTIONAL LIVE	E STREAMING AMP				
		(A) Model No.	BSK-150				
		(B) Trademark	ΟΥΟ				

Measurement Standard Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10-2013

The device described above is tested by Shenzhen Alpha Product Testing Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits both conducted and radiated emissions. The test results are contained in this test report and Shenzhen Alpha Product Testing Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Alpha Product Testing Co., Ltd.

Tested by (name + signature):	Yannis Wen Project Engineer	Yannis wen
Approved by (name + signature):	Reak Yang Project Manager	Rr. 43
Date of issue	July 27, 2023	

Revision History

Revisio	on Issue Date	Revisions	Revised By
V0	July 27, 2023	Initial released Issue	Yannis Wen

1. SUMMARY OF STANDARDS AND RESULTS

1.1. Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Test Requirement	Standards Paragraph	Result
FCC PART 15	15.207	Р
FCC PART 15	15.247 (a)(2)	Р
FCC PART 15	15.247 (b)(3)	Р
FCC PART 15	15.247 (c)	Р
FCC PART 15	15.247 (d)	Р
FCC PART 15	15.247 (e)	Р
FCC PART 15 15.205		Р
FCC PART 15	15.203	Р
	FCC PART 15 FCC PART 15	FCC PART 15 15.207 FCC PART 15 15.247 (a)(2) FCC PART 15 15.247 (b)(3) FCC PART 15 15.247 (c) FCC PART 15 15.247 (d) FCC PART 15 15.247 (e) FCC PART 15 15.247 (e)

Note: 1. P is an abbreviation for Pass.

2. F is an abbreviation for Fail.

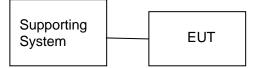
3. N/A is an abbreviation for Not Applicable.

4. The conclusion of this test report is judged by actual test data without considering measurement uncertainty.

2. GENERAL INFORMATION

2.1. Description of Device (EUT)

Description	:	MULTIFUNCTIONAL LIVE STREAMING AMP			
Model Number Diff	:	BSK-150 N/A			
Power supply	:	DC 22.2V from battery, DC 28V from adapter.			
Radio Technology	:	Bluetooth V5.0 BLE			
Operation frequency	:	2402-2480MHz			
Channel No.	:	40 Channels			
Channel spacing	:	2MHz			
Rate	:	1Mbps, 2Mbps			
Modulation type	:	GFSK			
Antenna Type	:	Internal antenna, Maximum Gain is -0.58dBi.			
		(Antenna information is provided by applicant.)			
Software version	:	V1.0			
Hardware version	:	V1.0			
Connector cable loss	:	N/A			
Intend use environment	:	Residential, commercial and light industrial environment			


2.2. Accessories of Device (EUT)

Accessories	:	SWITCHING ADAPTER
Manufacturer	:	SHENZHEN FUJIA APPLIANCE CO., LTD.
Model	:	FJ-SW202828005500
Ratings	:	INPUT: 100-240V~50/60Hz 3.5A MAX OUTPUT: 28.0V≕5.5A, 154.0W

2.3. Tested Supporting System Details

No.	Description	Manufacturer	Model	Serial Number	Certification or SDoC
1.	Notebook PC	Lenovo	ThinkPad E14	/	/
2.	Guitar	Mooer	/	/	/
3.	USB disk	Kingston	/	/	/
4.	Microphone	Sony	/	/	/

2.4. Block Diagram of connection between EUT and simulators

2.5. Test Mode Description

Duty cycle :100%						
Mode	Channel	Frequency (MHz)				
GFSK (1M/2Mbps)	Low :CH1	2402				
	Middle: CH20	2440				
	High: CH40	2480				

2.6. Test Conditions

Items	Required	Actual	
Temperature range:	15-35 ℃	24 ℃	
Humidity range:	25-75%	56%	
Pressure range:	86-106kPa	980kPa	

2.7. Test Facility

Shenzhen Alpha Product Testing Co., Ltd Building i, No.2, Lixin Road, Fuyong Street, Bao'an District, 518103, Shenzhen, Guangdong, China

June 21, 2018 File on Federal Communication Commission Registration Number: 293961

July 25, 2017 Certificated by IC Registration Number: 12135A

2.8. Measurement Uncertainty

(95% confidence levels, k=2)

Item	Uncertainty		
Uncertainty for Power point Conducted Emissions Test	2.74dB		
Uncertainty for Radiation Emission test in 3m chamber	2.13 dB(Polarize: V)		
(below 30MHz)	2.57dB(Polarize: H)		
Uncertainty for Radiation Emission test in 3m chamber	3.77dB(Polarize: V)		
(30MHz to 1GHz)	3.80dB(Polarize: H)		
Uncertainty for Radiation Emission test in 3m chamber	4.13dB(Polarize: H)		
(1GHz to 25GHz)	4.16dB(Polarize: V)		
Uncertainty for radio frequency	5.4×10-8		
Uncertainty for conducted RF Power	0.37dB		
Uncertainty for temperature	0.2 °C		
Uncertainty for humidity	1%		
Uncertainty for DC and low frequency voltages	0.06%		

2.9. Test Equipm	nent List
------------------	-----------

Equipment	Manufacture	Model No.	Firmware version	Serial No.	Last cal.	Cal Interval
9*6*6 anechoic chamber	CHENYU	9*6*6	/	N/A	2022.05.17	3Year
Spectrum analyzer	ROHDE&SCHWARZ	FSV40-N	2.3	102137	2022.08.22	1Year
Spectrum analyzer	Agilent	N9020A	A.14.16	MY499100060	2022.08.22	1Year
Receiver	ROHDE&SCHWARZ	ESR	2.28 SP1	1316.3003K03-10 2082-Wa	2022.08.22	1Year
Receiver	R&S	ESCI	4.42 SP1	101165	2022.08.22	1Year
Bilog Antenna	Schwarzbeck	VULB 9168	/	VULB 9168#627	2021.08.30	2Year
Horn Antenna	SCHWARZBECK	BBHA 9120 D	/	2106	2021.08.30	2Year
Active Loop Antenna	SCHWARZBECK	FMZB 1519B	/	00059	2021.08.30	2Year
RF Cable	Resenberger	Cable 1	/	RE1	2022.08.22	1Year
RF Cable	Resenberger	Cable 2	/	RE2	2022.08.22	1Year
RF Cable	Resenberger	Cable 3	/	CE1	2022.08.22	1Year
Pre-amplifier	HP	HP8347A	/	2834A00455	2022.08.22	1Year
Pre-amplifier	Agilent	8449B	/	3008A02664	2022.08.22	1Year
L.I.S.N.#1	Schwarzbeck	NSLK8126	/	8126-466	2022.08.22	1Year
L.I.S.N.#2	ROHDE&SCHWARZ	ENV216	/	101043	2022.08.23	1 Year
Horn Antenna	SCHWARZBECK	BBHA9170	/	00946	2021.08.30	2 Year
Preamplifier	SKET	LNPA_1840 -50	/	SK2018101801	2022.08.22	1 Year
Power Meter	Agilent	E9300A	/	MY41496628	2022.08.22	1 Year
Power Sensor	DARE	RPR3006W	/	15100041SNO91	2022.08.22	1 Year
Temp. & Humid. Chamber	Weihuang	WHTH-1000 -40-880	/	100631	2022.08.22	1 Year
Switching Mode Power Supply	JUNKE	JK12010S	/	20140927-6	2022.08.22	1 Year
Adjustable attenuator	MWRFtest	N/A	/	N/A	N/A	N/A
10dB Attenuator	Mini-Circuits	DC-6G	/	N/A	N/A	N/A

	Software Information					
Test Item Software Name Manufacturer Version						
RE	EZ-EMC	Farad	Alpha-3A1			
CE	EZ-EMC	Farad	Alpha-3A1			
RF-CE	MTS 8310	MW	V2.0.0.0			

3. SPURIOUS EMISSION

3.1. Test Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)Measurement Distance (meters)2400/F(KHz)30024000/F(KHz)302020				
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

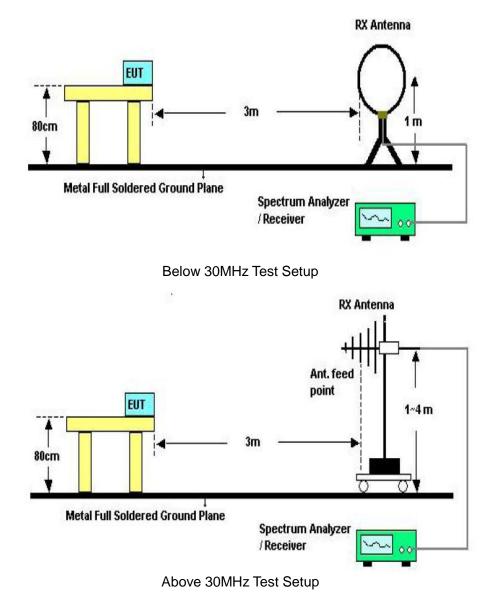
Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed.

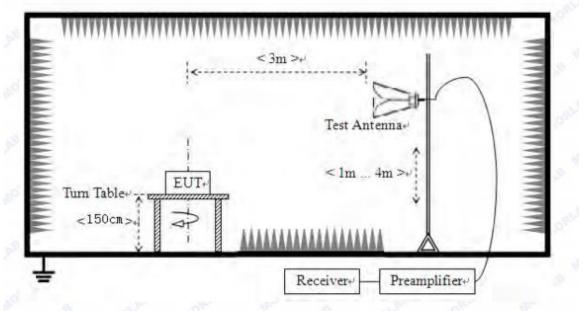
NOTE:

- a) The tighter limit applies at the band edges.
- b) Emission Level(dB uV/m)=20log Emission Level(uv/m)

3.2. Test Procedure

The measuring distance of 3m shall be used for measurements at frequency up to 1GH and above 1GHz, The EUT was placed on a rotating 0.8 m high above ground for below 1GHz and 1.5m high for above1GHz testing, The table was rotated 360 degrees to determine the position of the highest radiation


The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set of make measurement.


The initial step in collecting conducted emission data is a spectrum analyzer Peak detector mode pre-scanning the measurement frequency range. Significant Peaks are then marked. and then Qusia Peak Detector mode premeasured

If Peak value comply with QP limit Below 1GHz. The EUT deemed to comply with QP limit. But the Peak value and average value both need to comply with applicable limit above 1GHz.

For the actual test configuration, please see the test setup photo.

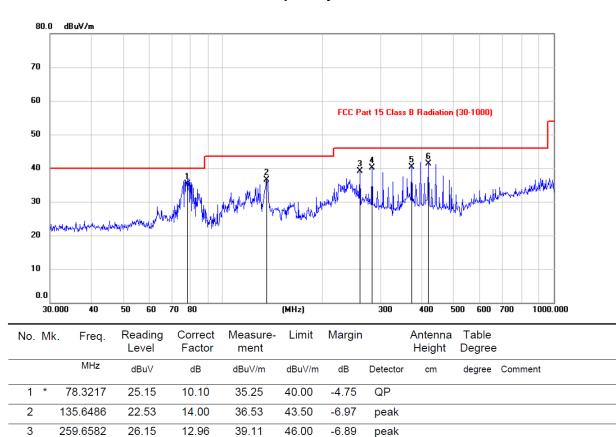
3.3. Test Setup

Above 1GHz Test Setup

3.4. Test Results

Test Condition

Continual Transmitting in maximum power.


9KHz~150KHz	RBW200Hz	VBW1KHz
150KHz~30MHz	RBW9KHz	VBW 30KHz
30MHZ~1GHz	RBW120KHz	VBW 300KHz
Above1GHz	RBW1MHz	VBW 3MHz

We have scanned the 10th harmonic from 9 kHz to the EUT.

Detailed information please see the following page.

From 9KHz to 30MHz: Conclusion: PASS

- Note: 1.The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
 - 2. Only show the test data of the worst Channel in this report.

46.00

46.00

46.00

40.13

40.36

41.25

-5.87

-5.64

-4.75

QP

QP

QP

Antenna polarity: Horizontal

Note:1. *:Maximum data; x:Over limit; !:over margin.

26.49

24.64

24.57

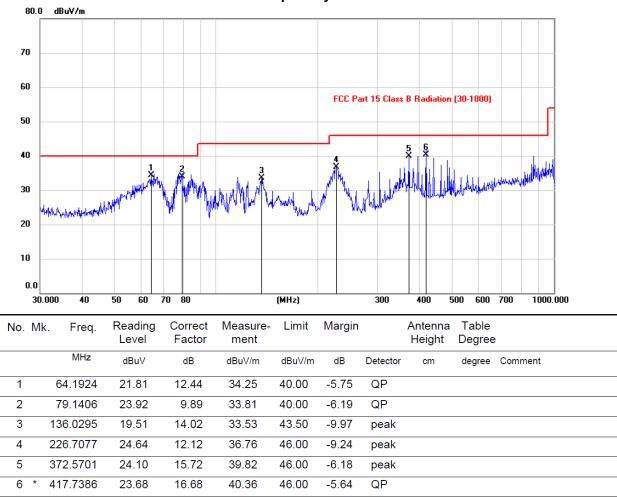
13.64

15.72

16.68

282.2583

372.5701


417.7386

4

5

6

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

Antenna polarity: Vertical

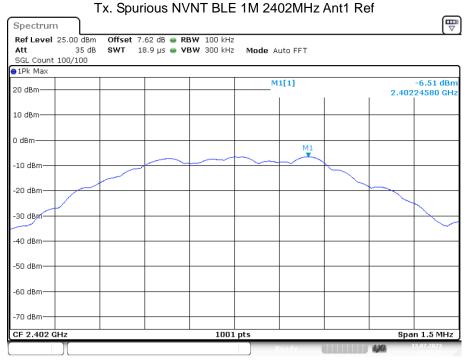
Note:1. *:Maximum data; x:Over limit; !:over margin.

2.Measurement=Reading Level+Correct Factor; Correct Factor=Antenna Factor+Cable Loss.

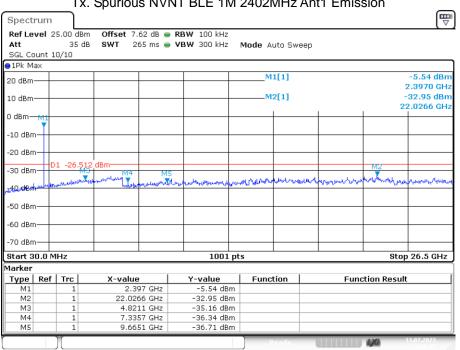
Notes: Above is below 1GHz test data. This report only shall the worst case mode for TX 2402MHz(1Mbps).

1Mbp	s:
From	1G-25GHz

				Test Mo	ode: TX Lov	v			
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	44.60	V	33.95	10.18	34.26	54.47	74	-19.53	PK
4804	38.25	V	33.95	10.18	34.26	48.12	54	-5.88	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	43.24	Н	33.95	10.18	34.26	53.11	74	-20.89	PK
4804	34.81	Н	33.95	10.18	34.26	44.68	54	-9.32	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
				Test Mo	ode: TX Mic	ł			
4880	41.94	V	33.93	10.2	34.29	51.78	74	-22.22	PK
4880	33.70	V	33.93	10.2	34.29	43.54	54	-10.46	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
4880	45.64	Н	33.93	10.2	34.29	55.48	74	-18.52	PK
4880	36.59	Н	33.93	10.2	34.29	46.43	54	-7.57	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
				Test Mc	de: TX Hig	h			
4960	43.49	V	33.98	10.22	34.25	53.44	74	-20.56	PK
4960	32.90	V	33.98	10.22	34.25	42.85	54	-11.15	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	45.27	Н	33.98	10.22	34.25	55.22	74	-18.78	PK
4960	34.57	Н	33.98	10.22	34.25	44.52	54	-9.48	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/


1, Result = Read level + Antenna factor + cable loss-Amp factor 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

2Mbp	s:
From	1G-25GHz


				Test Mo	ode: TX Lov	v			
Freq (MHz)	Read Level (dBuV/m)	Polar (H/V)	Antenna Factor (dB/m)	Cable loss(dB)	Amp Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4804	46.19	V	33.95	10.18	34.26	56.06	74	-17.94	PK
4804	36.41	V	33.95	10.18	34.26	46.28	54	-7.72	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
4804	45.22	Н	33.95	10.18	34.26	55.09	74	-18.91	PK
4804	35.70	Н	33.95	10.18	34.26	45.57	54	-8.43	AV
7206	/	/	/	/	/	/	/	/	/
9608	/	/	/	/	/	/	/	/	/
				Test Mo	ode: TX Mic	ł			
4880	43.48	V	33.93	10.2	34.29	53.32	74	-20.68	PK
4880	33.87	V	33.93	10.2	34.29	43.71	54	-10.29	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
4880	44.04	Н	33.93	10.2	34.29	53.88	74	-20.12	PK
4880	33.90	Н	33.93	10.2	34.29	43.74	54	-10.26	AV
7320	/	/	/	/	/	/	/	/	/
9760	/	/	/	/	/	/	/	/	/
				Test Mc	ode: TX Hig	h			
4960	44.28	V	33.98	10.22	34.25	54.23	74	-19.77	PK
4960	34.55	V	33.98	10.22	34.25	44.50	54	-9.50	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/
4960	43.12	Н	33.98	10.22	34.25	53.07	74	-20.93	PK
4960	32.03	Н	33.98	10.22	34.25	41.98	54	-12.02	AV
7440	/	/	/	/	/	/	/	/	/
9920	/	/	/	/	/	/	/	/	/

1, Result = Read level + Antenna factor + cable loss-Amp factor 2, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Conducted RF Spurious Emission

Date: 13.JUL.2023 13:31:28

Tx. Spurious NVNT BLE 1M 2402MHz Ant1 Emission

Date: 13.JUL.2023 13:31:46

Tx. Spurious NVNT BLE 1M 2440MHz Ant1 Ref

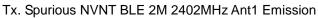
Date: 13.JUL.2023 13:36:42

Spectrum						
Ref Level 2 Att SGL Count 1	35 d			Mode Auto Sw	еер	X
⊙1Pk Max						
20 dBm				M1[1]		-5.80 dBm
10 dBm				M2[1]		2.4500 GHz -32.81 dBm 6.8857 GHz
0 dBm						
-10 dBm						
-20 dBm						
		25 dBm M2	иъ —			
ADedBriter	whenthered	mlathall at yohn manakaland	. Mutoreetussiler stratiqueter	and the Astrony the the	and a state and a state of the second state of	monanter
-50 dBm						
-60 dBm						
-70 dBm						
Start 30.0 M	1Hz		1001 pt	s		Stop 26.5 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.45 GHz	-5.80 dBm			
M2	1	6.8857 GHz	-32.81 dBm			
M3	1	4.7946 GHz 7.3093 GHz	-34.75 dBm -36.43 dBm			
M4 M5	1	9.9298 GHz	-36.43 dBm -36.49 dBm			
	1			Ready		13.07.2023

Date: 13.JUL.2023 13:37:00

Tx. Spurious NVNT BLE 1M 2480MHz Ant1 Ref

Date: 13.JUL.2023 13:38:58


Spectrum						
Ref Level 25 Att SGL Count 10	35 dB			Mode Auto Sw	еер	
1Pk Max						
20 dBm				M1[1]		-6.80 dBn
						2.4760 GH
10 dBm				M2[1]		-32.10 dBn 6.9122 GH
0 dBm						0.9122 GH
-10 dBm						
-20 dBm						
-30 dBm D1	-28.342	2 dBm M2	vi5			
A COLORING CONTRACTOR	horesultur	anonoto and with a land worth	Just an Mon Mitally Mar	mound the worked	والمعادية والمعادلين والمعادية	rif with the received and the second
Atha Burran						
-50 dBm						
-60 dBm						
-70 dBm						
Start 30.0 MH 1arker	1Z		1001 pt	5		Stop 26.5 GHz
	Tral	X-value	Y-value	Function	Г	nction Result
Type Ref M1	1	2.476 GHz	-6.80 dBm	Function	Fu	ICTION RESUL
M2	1	6.9122 GHz	-32.10 dBm			
M3	1	4.7681 GHz	-35.29 dBm			
M4	1	7.4151 GHz	-37.63 dBm			
M5	1	9.8239 GHz	-36.17 dBm			
				Ready		13.07.2023

Date: 13.JUL.2023 13:39:16

Tx. Spurious NVNT BLE 2M 2402MHz Ant1 Ref

Date: 13.JUL.2023 14:29:26

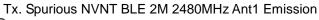
Spectrum						
Ref Level 2	20.00 dB	m Offset 7.62 dB 🧉	• RBW 100 kHz			
Att	30 c	dB SWT 265 ms 🧉	• VBW 300 kHz (Mode Auto Sw	eep	
SGL Count :	10/10					
∋1Pk Max						
				M1[1]		-5.22 dBm
10 dBm						2.3970 GHz
10 abiii				M2[1]		-37.39 dBm
0 dBm				<u> </u>		19.9090 GHz
Ť						
-10 dBm						
-20 dBm						
-30 dBm	01 -27.7	78 dBm			M2	
	M	3 ма м	5			
-40 dBm		an hall and the agent of all playing a south it	moundermounder	where the states of the states	֎ֈ֏֎֎ ֈֈ֍֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎֎	and the second way on the second
-50 dBm	A					
-50 dBm						
-60 dBm						
-70 dBm						
Start 30.0 N	/IHz		1001 pt:	5		Stop 26.5 GHz
Marker						
Type Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1	1	2.397 GHz	-5.22 dBm			
M2	1	19.909 GHz	-37.39 dBm			
MЗ	1	4.6358 GHz	-40.52 dBm			
M4	1	7.3093 GHz	-41.75 dBm			
M5	1	9.6386 GHz	-40.94 dBm			

Date: 13.JUL.2023 14:29:44

Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Ref

Tx. Spurious NVNT BLE 2M 2440MHz Ant1 Emission

Spectrum						
Ref Level 🔅	20.00 dE	3m 🛛 Offset 7.78 dB 🗧	RBW 100 kHz			
Att	30	dB SWT 265 ms 🧉	🛯 VBW 300 kHz 🛛 f	Mode Auto Sw	еер	
SGL Count	10/10					
1Pk Max						
				M1[1]		-10.77 dBn
10 dBm						2.4500 GH
				M2[1]		-37.32 dBn
) dBm					1 1	21.3119 GH
-10 dBm						
-10 ubiii						
-20 dBm 🕂						
	01 -27.1	06 dBm				
-30 aBm					M2	
40 d8m		M3 M4 M	15	. I di datamatika	the start of the start of the start of the	about a state but the
-40 uBm	gestanter	with the top war with a farmer that the second s	and a start way and the same	and the second s	- the second second second	a walker all and and
-50 dBm						
-60 dBm —						
-70 dBm						
-/0 ubiii—						
Start 30.0 I	MHZ		1001 pt:	5		Stop 26.5 GHz
larker						
	Trc	X-value	Y-value	Function	Functio	n Result
M1	1	2.45 GHz	-10.77 dBm			
M2 M3	1	21.3119 GHz 5.0593 GHz	-37.32 dBm			
M3 M4	1	7.3093 GHz	-40.76 dBm -41.71 dBm			
M5	1	9.7974 GHz	-39.87 dBm			
					1	


Date: 13.JUL.2023 14:30:58

Date: 13.JUL.2023 14:30:40

Tx. Spurious NVNT BLE 2M 2480MHz Ant1 Ref

Date: 13.JUL.2023 14:37:07

10 dBm	E)	m	Spectr
SGL Count 10/10 • 1Pk Max • 10 dBm · · · · · · · · · · · · · · · · · · ·							BW 100 kHz	60 dB 👄 🛛	Offset 7.		el 20.0	Ref Lev
● 1Pk Max M1[1] -11 10 dBm 2.4 0 dBm M2[1] -33 -10 dBm 15.3 -20 dBm 11 -20 dBm 12 -30 dBm 12 -30 dBm 12 -30 dBm 12 -40 dBm M3 M3 M4 M4 M5 -40 dBm M2 -40 dBm M4 -50 dBm 1 -60 dBm 1 -70 dBm 1 -70 dBm 1001 pts Start 30.0 MHz 1 1 2.476 GHz -10.27 dBm 1 M1 1 1 2.476 GHz -10.27 dBm 1				еер	uto Sw	Mode A	' BW 300 kHz	55 ms 😑 🕻	SWT 26			
10 dBm 11 dBm <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td> <td></td> <td></td>)		
10 dBm												⊜1Pk Ma
10 dBm M2	0.27 dBn				1[1]	M						
0 dBm 15.4 -10 dBm	4760 GH:											10 dBm-
-10 dBm	7.42 dBn				2[1]	M						
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -60 dBm -70	5414 GH:	15.	1	1	1							0 dBm—
-20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70 dBm -10 -27											11 T	-10 dBm-
-30 dBm - M3 M4 M5 M2 M2 M2 M2 M2 M3 M4 M5 M2 M2 M4 M5 M2 M3 M4 M5 M2 M3 M4 M5 M2 M3 M4 M5 M3 M3 M3 M4 M5 M3												10 000
M3 M4 M5 M2 -40 dBm -40 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm -70 dBm -50 dBm -50 dBm -50 dBm -50 dBm M1 1 2.476 GHz -10.27 dBm -50 dBm M2 1 15.5414 GHz -37.42 dBm -50 dBm												-20 dBm-
M3 M4 M5 M2 -40 dBm -40 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>dBm</td><td>99.033</td><td></td><td></td></td<>									dBm	99.033		
-40 dBm						M2						-30 dBm·
-50 dBm -50 dBm <t< td=""><td>ater tendes</td><td>and sugardie and</td><td>mound</td><td></td><td>and the second</td><td></td><td></td><td>MIS</td><td>M4</td><td>Ma</td><td></td><td>-40 dBm·</td></t<>	ater tendes	and sugardie and	mound		and the second			MIS	M4	Ma		-40 dBm·
-50 dBm -60 dBm -70	,						and the state of the second	Low AL AND	thereased & Party	when	A way	
Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm - - - M2 1 15.5414 GHz -37.42 dBm - - - -							+				-	-50 dBm
Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm - - - M2 1 15.5414 GHz -37.42 dBm - - - -												<0.40
Start 30.0 MHz 1001 pts Stop 2 Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm M <												-60 aBm-
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm M2 1 15.5414 GHz -37.42 dBm											_	-70 dBm-
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm M2 1 15.5414 GHz -37.42 dBm												
Type Ref Trc X-value Y-value Function Function Result M1 1 2.476 GHz -10.27 dBm M2 1 15.5414 GHz -37.42 dBm	6.5 GHz	Stop 2				ts	1001 pt				0 MHz	Start 30
M1 1 2.476 GHz -10.27 dBm M2 1 15.5414 GHz -37.42 dBm												Marker
M2 1 15.5414 GHz -37.42 dBm		tion Result	Funct		tion	Func				c	ef T	
										-		
							-41.42 dBm			1		M3
M4 1 7.2563 GHz -41.59 dBm M5 1 9.8768 GHz -40.42 dBm												
				1			-40.42 UBIII		9.670	1	-	(VIS

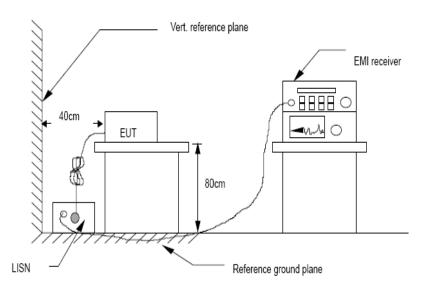
Date: 13.JUL.2023 14:37:25

4. POWER LINE CONDUCTED EMISSION

4.1. Test Limits

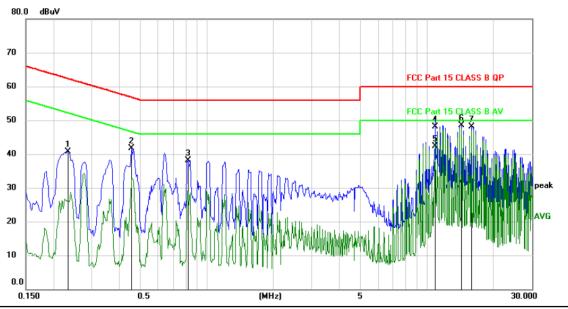
Frequency	Limits dB(μV)				
MHz	Quasi-peak Level	Average Level			
0.15 -0.50	66 -56*	56 - 46*			
0.50 -5.00	56	46			
5.00 -30.00	60	50			

Notes: 1. *Decreasing linearly with logarithm of frequency.


- 2. The lower limit shall apply at the transition frequencies.
 - 3. The limit decreases in line with the logarithm of the frequency in rang of 0.15 to 0.50 MHz.

4.2. Test Procedure

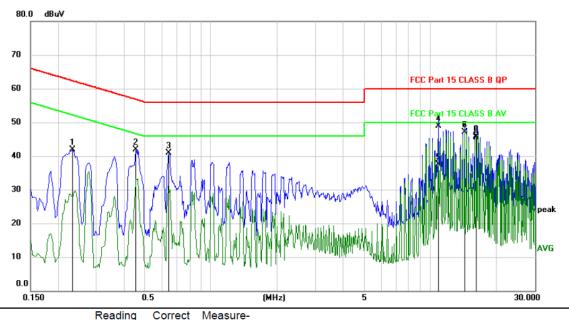
The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10:2013 on Conducted Emission Measurement.


The bandwidth of test receiver is set at 9 kHz.

4.3. Test Setup

4.4. Test Results

Pass


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	ı	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2340	30.95	9.83	40.78	62.31	-21.53	peak	
2	0.4560	31.82	9.83	41.65	56.77	-15.12	peak	
3	0.8190	28.35	9.82	38.17	56.00	-17.83	peak	
4	10.9200	38.18	10.02	48.20	60.00	-11.80	QP	
5 *	10.9200	32.31	10.02	42.33	50.00	-7.67	AVG	
6	14.3520	38.52	10.03	48.55	60.00	-11.45	peak	
7	15.9600	38.10	10.05	48.15	60.00	-11.85	peak	

*:Maximum data x:Over limit !:over margin

 $\langle \ensuremath{\mathsf{Reference}}\xspace$ Only

Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable

Polarity: L

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margir	ı	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2340	31.99	9.83	41.82	62.31	-20.49	peak	
2		0.4560	32.11	9.83	41.94	56.77	-14.83	peak	
3		0.6419	31.01	9.83	40.84	56.00	-15.16	peak	
4		10.9360	38.96	10.02	48.98	60.00	-11.02	QP	
5		10.9360	27.40	10.02	37.42	50.00	-12.58	AVG	
6		14.3161	37.16	10.03	47.19	60.00	-12.81	QP	
7	*	14.3161	37.13	10.03	47.16	50.00	-2.84	AVG	
8		16.2239	35.82	10.05	45.87	60.00	-14.13	QP	
9		16.2239	35.47	10.05	45.52	50.00	-4.48	AVG	

Polarity: N

*:Maximum data x:Over limit !:over margin

(Reference Only

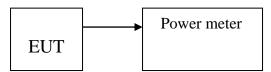
Note: Measurement=Reading Level+Correc Factor. Factor=(LISN or ISN or PLC or Current Probe)Factor+Cable Note: All modes and channels have been tested and only the BLE 2402MHz(1Mbps) mode with the worst data is listed.

5. CONDUCTED MAXIMUM PEAK OUTPUT POWER

5.1. Test limits

Please refer section RSS-247 & 15.247.

5.2. Test Procedure


Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

5.2.1 Place the EUT on the table and set it in transmitting mode.

5.2.2 Measure out each mode and each bands peak output power of EUT.

Note: The cable loss and attenuator loss were offset into measure device as amplitude offset.

5.3. Test Setup

5.4. Test Results

GFSK (1M)

Condition	Mode	Frequency	Antenna	Conducted Power	EIRP	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-3.579	-4.159	30	Pass
NVNT	BLE 1M	2440	Ant1	-4.155	-4.735	30	Pass
NVNT	BLE 1M	2480	Ant1	-5.197	-5.777	30	Pass

GFSK (2M)

Condition	Mode	Frequency	Antenna	Conducted Power	EIRP	Limit	Verdict
		(MHz)		(dBm)	(dBm)	(dBm)	
NVNT	BLE 2M	2402	Ant1	-3.584	-4.164	30	Pass
NVNT	BLE 2M	2440	Ant1	-4.040	-4.620	30	Pass
NVNT	BLE 2M	2480	Ant1	-5.049	-5.629	30	Pass

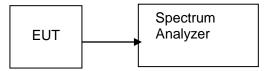
6. PEAK POWER SPECTRAL DENSITY

6.1. Test limits

6.1.1 Please refer section RSS-247 & 15.247.

6.1.2 For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.

6.1.3 The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

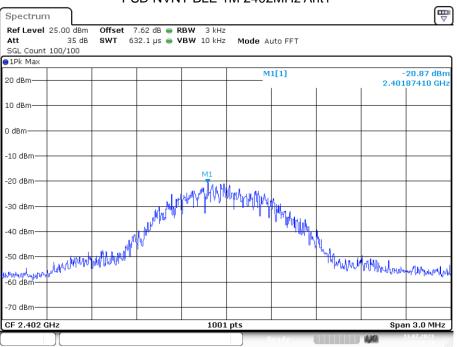

6.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

6.2.1 Place the EUT on the table and set it in transmitting mode.

- 6.2.2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.2.3 Set the spectrum analyzer as RBW = 3kHz(Set the RBW to: 3 kHz≤RBW≤100 kHz.), VBW = 10kHz(Set the VBW≥3×RBW), span=1.5×DTS bandwidth., detail see the test plot.
- 6.2.4 Record the max reading.
- 6.2.5 Repeat the above procedure until the measurements for all frequencies are completed.

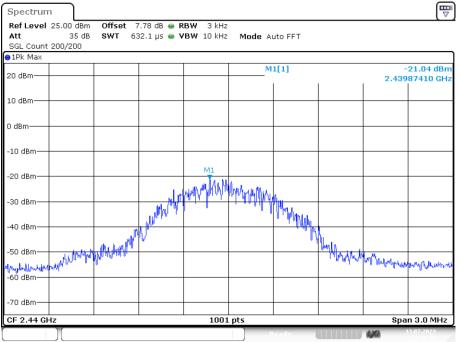
6.3. Test Setup

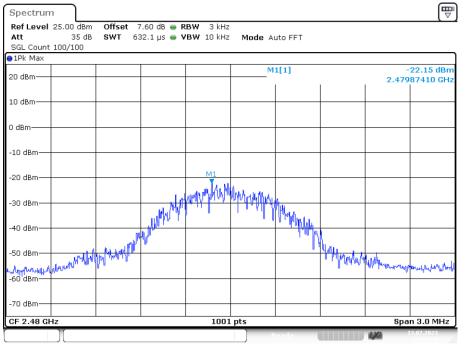

6.4. Test Results

Pass

The test results are listed in next pages.

GFSK (1M)

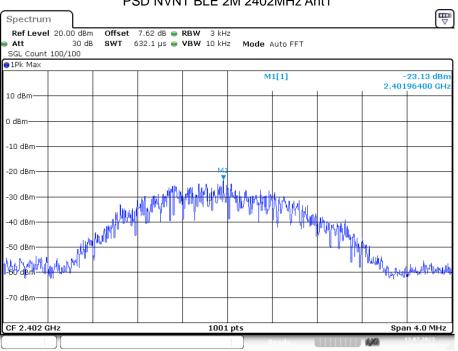

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-20.866	8	Pass
NVNT	BLE 1M	2440	Ant1	-21.042	8	Pass
NVNT	BLE 1M	2480	Ant1	-22.152	8	Pass


PSD NVNT BLE 1M 2402MHz Ant1

Date: 13.JUL.2023 13:31:11

PSD NVNT BLE 1M 2440MHz Ant1

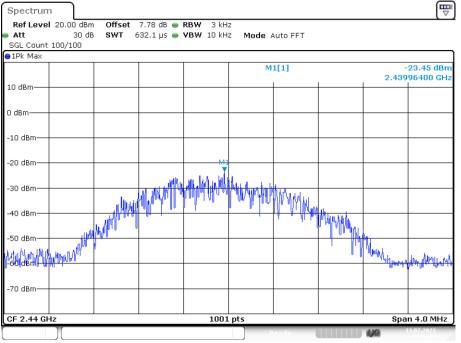
Date: 13.JUL.2023 13:36:36

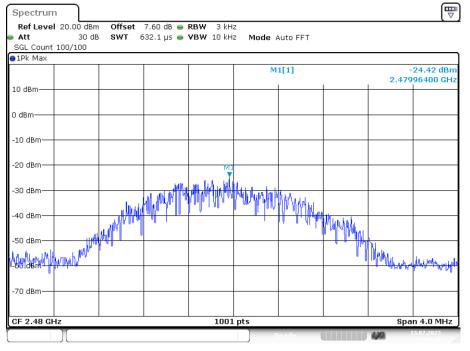


PSD NVNT BLE 1M 2480MHz Ant1

Date: 13.JUL.2023 13:38:38

GFSK (2M)


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-23.133	8	Pass
NVNT	BLE 2M	2440	Ant1	-23.446	8	Pass
NVNT	BLE 2M	2480	Ant1	-24.417	8	Pass


PSD NVNT BLE 2M 2402MHz Ant1

Date: 13.JUL.2023 14:29:09

PSD NVNT BLE 2M 2440MHz Ant1

Date: 13.JUL.2023 14:30:34

PSD NVNT BLE 2M 2480MHz Ant1

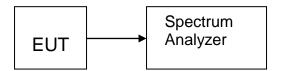
Date: 13.JUL.2023 14:36:47

7. BANDWIDTH

7.1. Test limits

Please refer section RSS-247 & 15.247

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz.

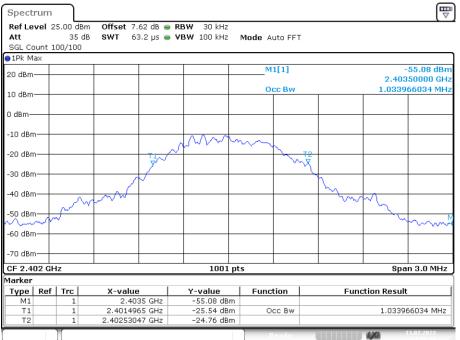

7.2. Test Procedure

Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

a) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency.
Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

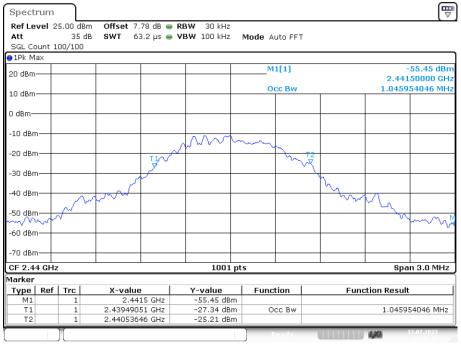
b) The test receiver set RBW = 100kHz, VBW≥3*RBW =300kHz, sweep time set auto, detail see the test plot.

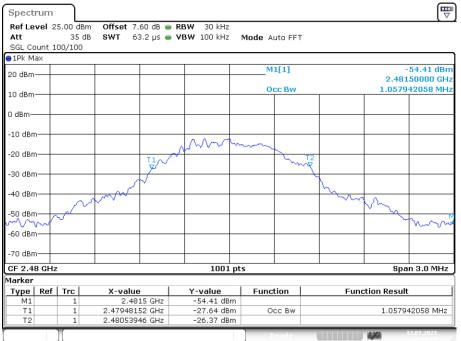
7.3. Test Setup



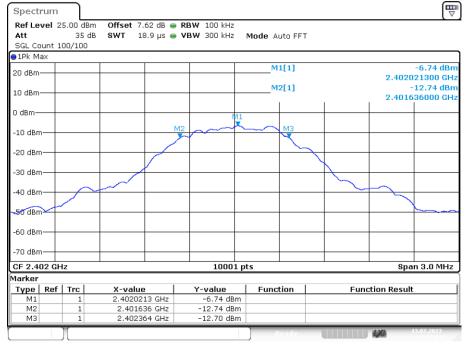
7.4. Test Results

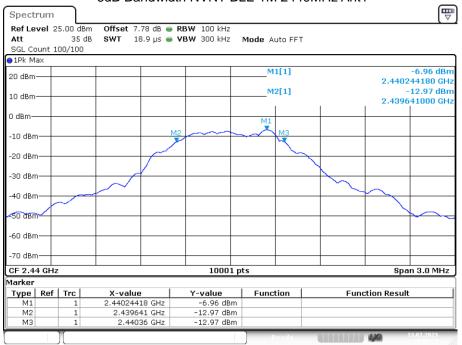
GFSK(1M)


Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	1.034	0.728	0.5	Pass
NVNT	BLE	2440	Ant 1	1.046	0.718	0.5	Pass
NVNT	BLE	2480	Ant 1	1.058	0.696	0.5	Pass

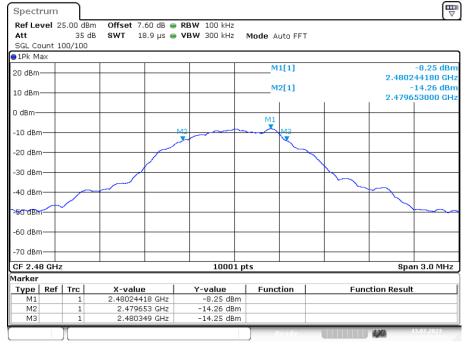

Date: 13.JUL.2023 13:30:56

OBW NVNT BLE 1M 2440MHz Ant1


Date: 13.JUL.2023 13:36:19



Date: 13.JUL.2023 13:38:20

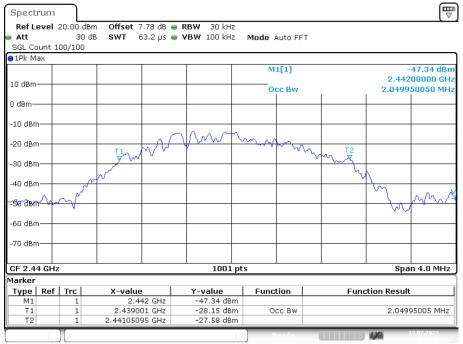

Date: 13.JUL.2023 13:31:04

-6dB Bandwidth NVNT BLE 1M 2440MHz Ant1

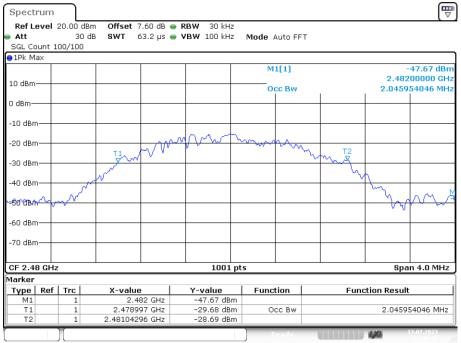
Date: 13.JUL.2023 13:36:27

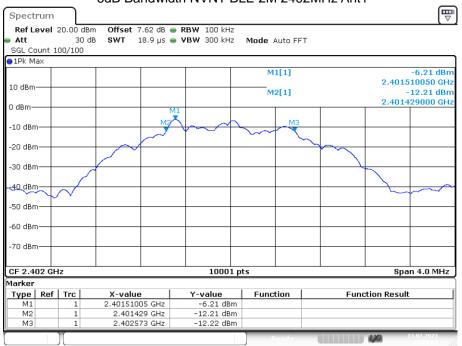
Date: 13.JUL.2023 13:38:29

GFSK(2M)


Condition	Mode	Frequency	Antenna	99% OBW	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant 1	2.03	1.144	0.5	Pass
NVNT	BLE	2440	Ant 1	2.05	1.197	0.5	Pass
NVNT	BLE	2480	Ant 1	2.046	1.136	0.5	Pass

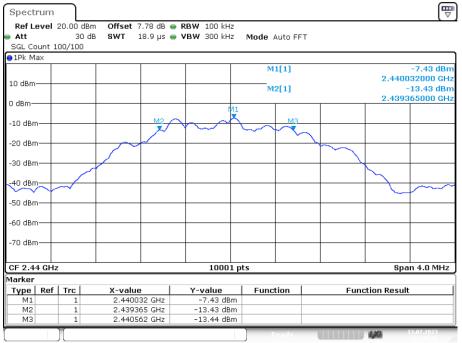
OBW NVNT BLE 2M 2402MHz Ant1

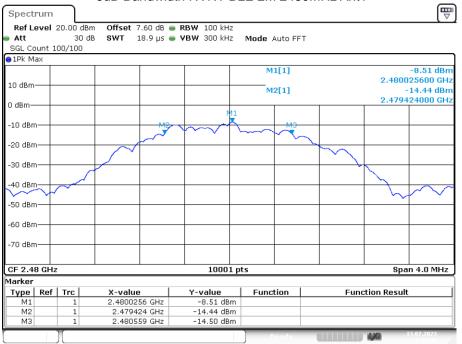

Date: 13.JUL.2023 14:28:54



Date: 13.JUL.2023 14:30:18

OBW NVNT BLE 2M 2480MHz Ant1


Date: 13.JUL.2023 14:36:30


-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

Date: 13.JUL.2023 14:29:02

-6dB Bandwidth NVNT BLE 2M 2440MHz Ant1

Date: 13.JUL.2023 14:30:26

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

Date: 13.JUL.2023 14:39:42

8. BAND EDGE CHECK

8.1. Test limits

Please refer section RSS-GEN&15.247.

8.2. Test Procedure

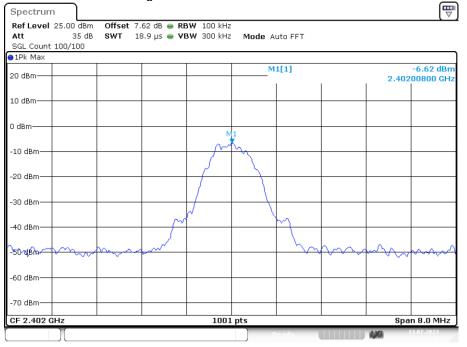
Details see the KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission

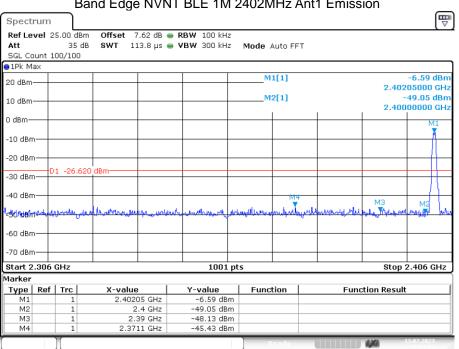
8.2.2 Check the spurious emissions out of band.

8.2.3 RBW 1MHz, VBW 3MHz, peak detector for peak value, RBW 1MHz, VBW 3MHz, RMS detector for AV value.

8.3. Test Setup

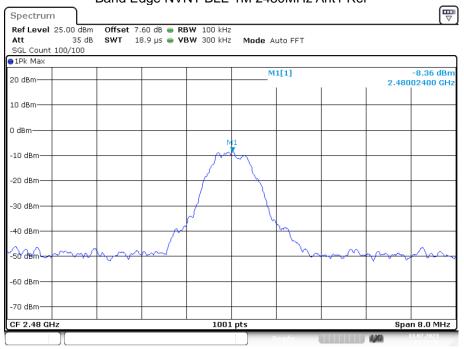

Same as 5.2.2.

8.4. Test Results


Pass The test results are listed in next pages.

GFSK (1M)

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref



Date: 13.JUL.2023 13:31:16

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

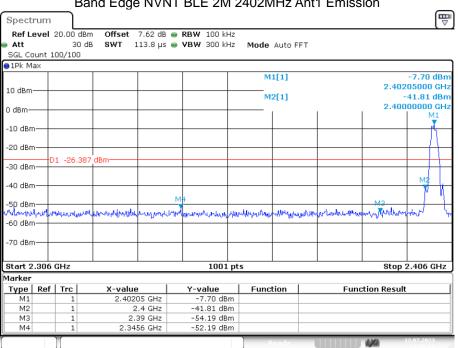
Date: 13.JUL.2023 13:31:22

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Date: 13.JUL.2023 13:38:45

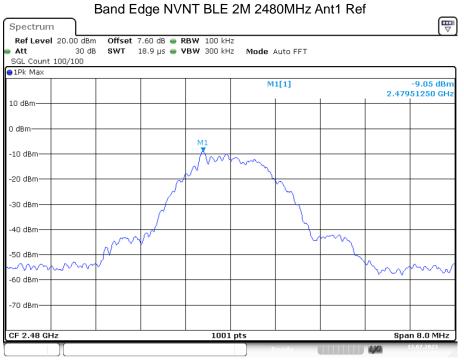


20 dbm 2.48025000 G 10 dbm	Spectrum		-				
20 dBm M1[1] -8.16 dft 20 dBm	Att SGL Count 1	35 (dB SWT 113.8 μs		Mode Auto FF	τ	
20 dBm 2.48025000 G 10 dBm 4.48.11 di 2.48055000 G 0 dBm 2.48055000 G 0 dBm 2.4805 GHz -20 dBm 4.40 H 4.41 di -20 dBm 4.	●1Pk Max						
10 dBm	20 dBm				M1[1]		-8.16 dBm
2.48350000 G 0 dbm 10 dbm 10 dbm -10 dbm -20 dbm -20 dbm -30 dbm -40 dbm -50 dbm -60 dbm -60 dbm -70 dbm <t< td=""><td></td><td></td><td></td><td></td><td>MOLT</td><td></td><td></td></t<>					MOLT		
M1 10 <	10 dBm				[VI2[1]		-48.11 dBm 2.48350000 GHz
10 dBm							
-20 dBm -28.358 dBm - </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
30 Bit Al Al 40 dBm dBm dBm 40 dBm dBm dBm 50 dBm dBm dBm 50 dBm dBm dBm 60 dBm dBm dBm 70 dBm dBm dBm </td <td>-10 aBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-10 aBm						
40 dBm M3 M3 M3 50 dBm M3 M3 M3 60 dBm M3 M3 70 dBm M3 M3	-20 dBm						
Stort 2.476 GHz Trc X-value Y-value Function Function Result M1 1 2.48025 GHz -48.16 dBm -48.11 dBm -48.11 dBm M2 1 2.48025 GHz -48.11 dBm -48.02 dBm -48.02 dBm	.30 dBm D	1 -28.3	358 dBm				
دول المرابع און אין אין אין אין אין אין אין אין אין אי	-40 dBm						
To dBm To dBm Story 2.576 GH Start 2.476 GHz 1001 pts Story 2.576 GH Marker 1 2.48025 GHz Function M1 1 2.48025 GHz -48.16 dBm M2 1 2.4835 GHz -49.02 dBm M3 1 2.5 GHz -49.02 dBm	So dente	Jack	M3	un and and and and	Apphiliterrythemet	washin washing	and manufacture plante
Start 2.476 GHz 1001 pts Stop 2.576 GH Jarker Type Ref Trc X-value Y-value Function Function Result M1 1 2.48025 GHz -8.16 dBm -48.11 dBm -48.11 dBm M3 1 2.5 GHz -49.02 dBm -49.02 dBm -49.02 dBm	-60 dBm						
Start 2.476 GHz 1001 pts Stop 2.576 GH Jarker Type Ref Trc X-value Y-value Function Function Result M1 1 2.48025 GHz -8.16 dBm -48.11 dBm -48.11 dBm M3 1 2.5 GHz -49.02 dBm -49.02 dBm -49.02 dBm	-70 dBm						
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.48025 GHz -8.16 dBm -49.11 dBm M3 1 2.5 GHz -49.02 dBm -49.02 dBm		011-		1001			010.536.011-
Type Ref Trc X-value Function Function Result M1 1 2.48025 GHz -8.16 dBm - M2 1 2.4835 GHz -48.11 dBm - M3 1 2.5 GHz -49.02 dBm -		GHZ		1001 p	15		Stup 2.370 GHz
M1 1 2.48025 GHz -8.16 dBm M2 1 2.4835 GHz -48.11 dBm M3 1 2.5 GHz -49.02 dBm		Trc	X-value	Y-value	Eunction	Eun	ction Result
M2 1 2.4835 GHz -48.11 dBm M3 1 2.5 GHz -49.02 dBm							ottori ito sait
	M2	1		-48.11 dBm			
M4 1 2.4852 GHz -46.90 dBm	M4	1	2.4852 GHz	-46.90 dBm			


Date: 13.JUL.2023 13:38:51

GFSK (2M)

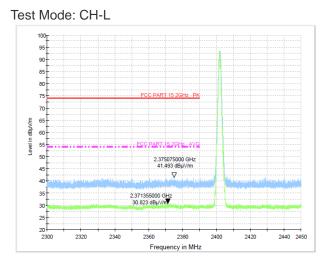
Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

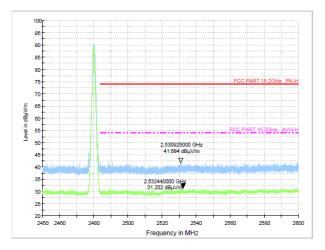


Date: 13.JUL.2023 14:29:14

Band Edge NVNT BLE 2M 2402MHz Ant1 Emission

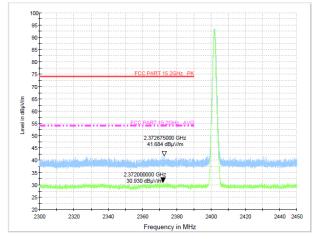
Date: 13.JUL.2023 14:29:20


Date: 13.JUL.2023 14:36:54

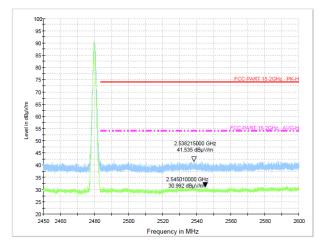

Spect	rum		3								
Att		20.00 31 100/100	db SWT		 RBW 100 kH VBW 300 kH 		Auto F	FT			
⊖1Pk M	ax										
10 dBm							11[1]				-8.22 dBm)05000 GHz
0 dBm-						N	12[1]				-55.09 dBm 350000 GHz
-10 Bm	n		_								
-20 dBn -30 dBn		01 -29.	052_dBm=====								
	M4									alist	
-60 dBm		ининату	when we we work of	now	theremany when the second	est when the standing of the	ultur	drendfrom	bludnindin	Mil Mininan	WWW.ANUU.A.
-70 dBr	n-+										
Start 2	.476	GHz			1001	pts				Stop	2.576 GHz
Marker											
Туре	Ref	Trc	X-valu	e	Y-value		tion		Functi	on Resul	t l
M1		1		DO5 GHz	-8.22 dB						
M2		1		B35 GHz	-55.09 dB						
M3 M4		1		2.5 GHz B41 GHz	-54.54 dB -51.99 dB						
		1					Ready			ya	13.07.2023

Date: 13.JUL.2023 14:37:00

Radiated Method: GFSK(1M)



Test Mode: CH-H



Radiated Method: GFSK(2M)

Test Mode: CH-L

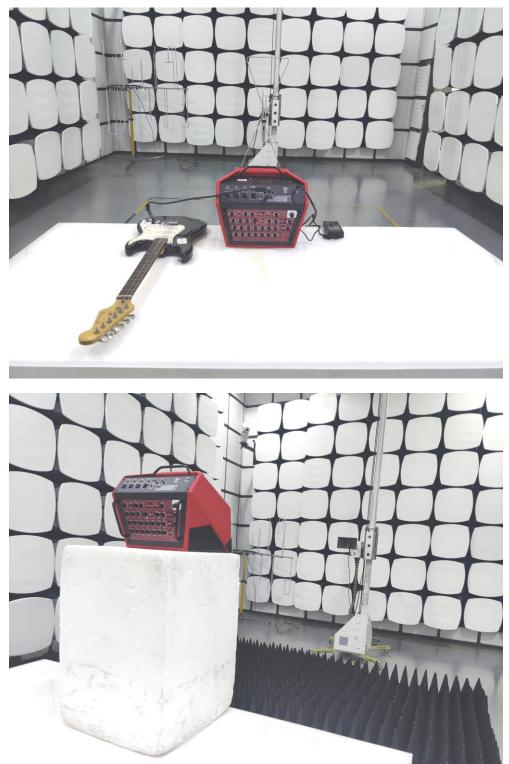
Test Mode: CH-H

9. ANTENNA REQUIREMENT

9.1. Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2. Antenna Connected Construction


The antenna is internal antenna and no consideration of replacement. Please see EUT photo for details.

9.3. Results

The EUT antenna is Internal Antenna. It complies with the standard requirement.

10. TEST SETUP PHOTO

10.1.Photo of Radiated Emission test

10.2.Photo of Conducted Emission test

-----END OF REPORT------