

FCC Test Report

Report No.: AGC02764190302FE03

FCC ID	: 2ALJXD8
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: Bluetooth speaker
BRAND NAME	: WK
MODEL NAME	D6, D8, D9, D10, D11, D12, D13, D15, D16, D18, D19, D20, D21, D22, D23, D25
CLIENT	: Shenzhen WK Technology Co., Ltd
DATE OF ISSUE	: Apr. 12, 2019
STANDARD(S)	: FCC Part 15.247
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results show the first streport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.ago.gott.com.

Report No.: AGC02764190302FE03 Page 2 of 70

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0		Apr. 12, 2019	Valid	Initial Release

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02764190302FE03 Page 3 of 70

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY		5
2. GENERAL INFORMATION		
2.1. PRODUCT DESCRIPTION	The the company	
2.2. TABLE OF CARRIER FREQUENCYS		
2.3. RECEIVER INPUT BANDWIDTH		7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	<u>A</u>	7
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	a. J. S. S.	7
2.6. RELATED SUBMITTAL(S) / GRANT (S)	- C	
2.7. TEST METHODOLOGY	<u> </u>	8
2.8. SPECIAL ACCESSORIES		
2.9. EQUIPMENT MODIFICATIONS	Contraction Contraction	
3. MEASUREMENT UNCERTAINTY	200	9
4. DESCRIPTION OF TEST MODES	• • •	
5. SYSTEM TEST CONFIGURATION		
5.1. CONFIGURATION OF EUT SYSTEM		11
5.2 EQUIPMENT USED IN TESTED SYSTEM	<u> </u>	
5.3. SUMMARY OF TEST RESULTS		11
6. TEST FACILITY		12
7. PEAK OUTPUT POWER	18 M	
7.1. MEASUREMENT PROCEDURE		
7.1. MEASUREMENT PROCEDURE		
7.3. LIMITS AND MEASUREMENT RESULT		
	and the state of t	
8. 20DB BANDWIDTH	- 6	
8.1. MEASUREMENT PROCEDURE	0	
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)		
8.3. LIMITS AND MEASUREMENT RESULTS	# 10 m	
9. CONDUCTED SPURIOUS EMISSION	<u> </u>	
9.1. MEASUREMENT PROCEDURE		
9.1. MEASUREMENT PROCEDURE		

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by / SC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gent.com.

ACC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 4 of 70

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	
9.3. MEASUREMENT EQUIPMENT USED	
9.4. LIMITS AND MEASUREMENT RESULT	
10. RADIATED EMISSION	
10.1. MEASUREMENT PROCEDURE	
10.2. TEST SETUP	
10.3. LIMITS AND MEASUREMENT RESULT	
10.4. TEST RESULT	
11. NUMBER OF HOPPING FREQUENCY	
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	51
11.3. MEASUREMENT EQUIPMENT USED	
11.4. LIMITS AND MEASUREMENT RESULT	51
12. TIME OF OCCUPANCY (DWELL TIME)	
12.1. MEASUREMENT PROCEDURE	
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
12.3. MEASUREMENT EQUIPMENT USED	
12.4. LIMITS AND MEASUREMENT RESULT	
13. FREQUENCY SEPARATION	56
13.1. MEASUREMENT PROCEDURE	
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	
13.3. MEASUREMENT EQUIPMENT USED	56
13.4. LIMITS AND MEASUREMENT RESULT	
14. FCC LINE CONDUCTED EMISSION TEST	
14.1. LIMITS OF LINE CONDUCTED EMISSION TEST	
14.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	
14.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	
14.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	61
APPENDIX B: PHOTOGRAPHS OF EUT	63

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document to cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02764190302FE03 Page 5 of 70

1. VERIFICATION OF CONFORMITY

ALC .			
Applicant	Shenzhen WK Technology Co., Ltd		
Address	1F, A2 Building, Mingjun Industrial Park, Huaning Rd. Dalang, Longhua District, Shenzhen		
Manufacturer	Shenzhen WK Technology Co., Ltd		
Address	1F, A2 Building, Mingjun Industrial Park, Huaning Rd. Dalang, Longhua District, Shenzhen		
Factory	Shenzhen WK Technology Co., Ltd		
Address	1F, A2 Building, Mingjun Industrial Park, Huaning Rd. Dalang, Longhua District, Shenzhen		
Product Designation	Bluetooth speaker		
Brand Name	WK		
Test Model	D6		
Series Model	D8, D9, D10, D11, D12, D13, D15, D16, D18, D19, D20, D21, D22, D23, D25		
Difference description	All the same except for the model name and different colors.		
Date of test	Apr. 01, 2019 to Apr. 12, 2019		
Deviation	None		
Condition of Test Sample	Normal		
Test Result	Pass		
Report Template	AGCRT-US-BR/RF		

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC PART 15.247.

AGO I	Donjon Huang(Huang Dongyang)	Apr. 12, 2019
Reviewed By	Now 2hang	
No No	Max Zhang(Zhang Yi)	Apr. 12, 2019
Approved By	Forversto en a	
A COMPACT NGC MARKED	Forrest Lei(Lei Yonggang) Authorized Officer	Apr. 12, 2019

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.ago.gott.com.

Attestation of Global Compliance

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is designed as "Bluetooth speaker". It is designed by way of utilizing the GFSK, Pi/4 DQPSK and 8DPSK technology to achieve the system operation.

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	-3.251dBm(Max)
Bluetooth Version	V 2.1+EDR
Modulation	BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK 1Mbps □GFSK 2Mbps
Number of channels	79 GG The
Hardware Version	V1.0
Software Version	V1.0
Antenna Designation	PCB Antenna(Comply with requirements of the FCC part 15.203)
Antenna Gain	1.5dBi
Power Supply	DC 3.7V by battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency
SC SC	0	2402MHZ
	the the state of t	2403MHZ
	38	2440 MHZ
2402~2480MHZ	39	2441 MHZ
	40	2442 MHZ
	77	2479 MHZ
	78	2480 MHZ

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc?gatt.com.

Attestation of Global Compliance

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 7 of 70

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ, In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the

connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values: 1. LAP/UAP of the master of the connection.

2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us.The clock has a cycle of about one day(23h30).In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations)are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

The results spoword frustest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cont.com.

AGC [®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 8 of 70

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2ALJXD8** filing to comply with the FCC PART 15.247 requirements.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.gatt.com.

Report No.: AGC02764190302FE03 Page 9 of 70

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, Uc = ±4.8 dB
- Uncertainty of total RF power, conducted, $Uc = \pm 0.8$ dB
- Uncertainty of spurious emissions, conducted, Uc = ±2.7dB
- Uncertainty of Occupied Channel Bandwidth: Uc = ±2 %
- Uncertainty of Dwell Time: Uc = ±2 %
- Uncertainty of Frequency: $Uc = \pm 2 \%$

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Low channel GFSK
© 2	Middle channel GFSK
3	High channel GFSK
4	Low channel π/4-DQPSK
5 0	Middle channel π/4-DQPSK
6	High channel π/4-DQPSK
7	Low channel 8DPSK
8	Middle channel 8DPSK
9	High channel 8DPSK
10	Hopping mode GFSK
11	Hopping mode π/4-DQPSK
12	Hopping mode 8DPSK

Note:

1. Only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC02764190302FE03 Page 11 of 70

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Radiated Emission Configure :

EUT

Conducted Emission Configure :

5.2 EQUIPMENT USED IN TESTED SYSTEM

ltem	Equipment	Model No.	ID or Specification	Remark
L ^C	Bluetooth speaker	D6	2ALJXD8	EUT The advantage
2	Adapter	N/A	DC 5V/2A	AE
3	USB	N/A	N/A	AE

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
15.247 (b)(1)	Peak Output Power	Compliant
15.247 (a)(1)	20 dB Bandwidth	Compliant
15.247 (d)	Conducted Spurious Emission	Compliant
15.209	Radiated Emission	Compliant
15.247 (a)(1)(iii)	Number of Hopping Frequency	Compliant
15.247 (a)(1)(iii)	Time of Occupancy	Compliant
15.247 (a)(1)	Frequency Separation	Compliant
15.207	Conducted Emission	Compliant

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd		
Location	1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Designation Number	CN1259		
FCC Test Firm Registration Number	975832		
A2LA Cert. No.	5054.02		
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by A2LA		

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun. 12, 2018	Jun. 11, 2019
LISN	R&S	ESH2-Z5	100086	Aug. 28, 2018	Aug. 27, 2019

TEST EQUIPMENT OF RADIATED EMISSION TEST

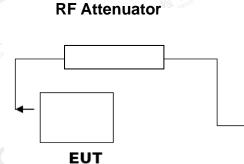
				The pollo	
Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun. 12, 2018	Jun. 11, 2019
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec. 20, 2018	Dec. 19, 2019
2.4GHz Fliter	Micro-tronics	087	N/A	Jun. 12, 2018	Jun. 11, 2019
Attenuator	Weinachel Corp	58-30-33	N/A	Jun. 12, 2018	Jun. 11, 2019
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 21, 2017	Sep. 20, 2020
Active loop antenna (9K-30MHz)	ZHINAN	ZN30900C	18051	Jun. 14, 2018	Jun. 13, 2020
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May. 26, 2018	May. 25, 2020
Broadband Preamplifier	ETS LINDGREN	3117PA	00225134	Oct. 25, 2018	Oct. 24, 2019
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep. 28, 2017	Sep. 27, 2019
108-	ALSI, AND		C AR INC	Star Star	

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

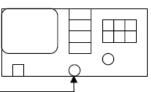
Report No.: AGC02764190302FE03 Page 13 of 70

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE


For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.


Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

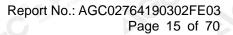
PEAK POWER TEST SETUP

Spectrum Analyzer

RF Cable

The results show the first store only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

7.3. LIMITS AND MEASUREMENT RESULT


	PEAK OUTPUT POWER MEASU FOR GFSK MOUDUL		
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	-6.103	30	Pass
2.441	-6.003	30	Pass
2.480	-6.315	30	Pass

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.


CH0

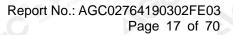
CH39

® 鑫宇环检测 Attestation of Global Compliance

GC

CH78

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.


	PEAK OUTPUT POWER MEASU	REMENT RESULT	
	FOR II /4-DQPSK MOD	ULATION	
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	-4.027	30	Pass
2.441	-3.960	30	Pass
2.480	-4.282	30	Pass

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.

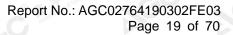
GC[®]鑫宇环检测 Attestation of Global Compliance

CH39

CH78

The results shown in the set report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance


	The company is the prophetic	atteste.	Allow
	PEAK OUTPUT POWER MEAS	SUREMENT RESULT	
	FOR 8-DPSK MOD	ULATION	
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
2.402	-3.288	30	Pass
2.441	-3.251	30	Pass
2.480	-3.616	30	Pass

CH0

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.


CH39

® 鑫宇环检测 Attestation of Global Compliance

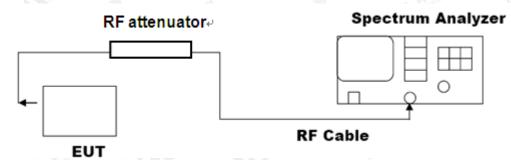
GC

CH78

The results shown in the set report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

AGC[®]鑫宇环检测 Attestation of Global Compliance


Report No.: AGC02764190302FE03 Page 20 of 70

8. 20DB BANDWIDTH

8.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hoping channel The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

8.3. LIMITS AND MEASUREMENT RESULTS

MEASUREMENT RESULT FOR GFSK MOUDULATION					
	Measurement Result				
Applicable Limits	Test Data (MHz)		Criteria		
The transformer of the standard	Low Channel	0.7019	PASS		
N/A	Middle Channel	0.7010	PASS		
C NO	High Channel	0.7009	PASS		

The results show the first store only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

鑫 宇 环 检 测 Attestation of Global Compliance

GC

02:34:24 PM Apr 08, 2019 Radio Std: None Center Freq: 2.441000000 GHz Trig: Free Run Avg|Ho Frequency Center Freq 2.441000000 GHz Avg|Hold:>10/10 **P** #IFGain:Low #Atten: 20 dB Radio Device: BTS Ref 10.00 dBm dB/div og **Center Freq** 2 441000000 GHz Center 2.441 GHz #Res BW 30 kHz Span 3 MHz Sweep 4.133 ms **CF** Step #VBW 100 kHz 300.000 kHz Auto Mar **Occupied Bandwidth Total Power** -1.55 dBm 740.13 kHz **Freq Offset** 0 H 33.758 kHz 99.00 % Transmit Freg Error **OBW Power** x dB Bandwidth -20.00 dB 701.0 kHz x dB Alignment Completed STATUS

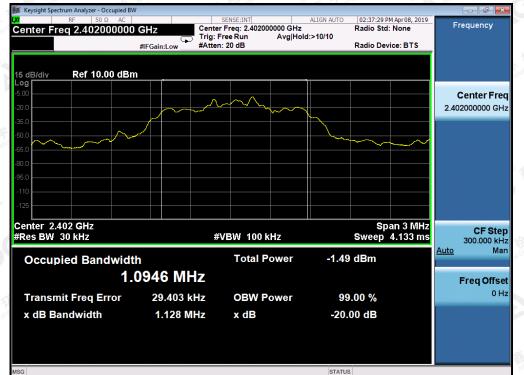
TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

STATUS

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attrp://www.agc.gatt.com.

STATUS

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

GC

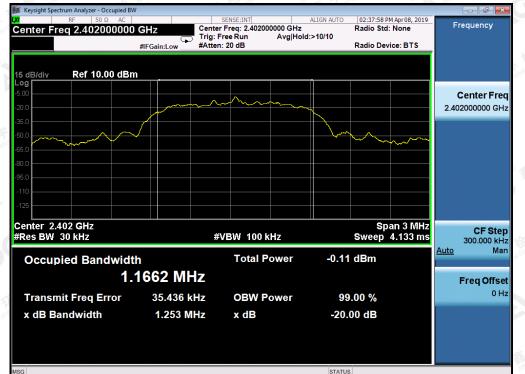
鑫 宇 环 检 测 Attestation of Global Compliance

MEASURE	MENT RESULT FOR II /4-I	DQPSK MODULATIO	N		
Applicable Limits		Measurement Result			
	Test Data	ı (MHz)	Criteria		
N/A	Low Channel	1.128	PASS		
	Middle Channel	1.127	PASS		
	High Channel	1.125	PASS		

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL


TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

MEASU	REMENT RESULT FOR 8-D	PSK MODULATION			
Annlinghla Limita		Measurement Result			
Applicable Limits	Test Data	(MHz)	Criteria		
GU	Low Channel	1.253	PASS		
N/A	Middle Channel	1.253	PASS		
Tunnion of Count	High Channel	1.258	PASS		

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gatt.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 27 of 70

9. CONDUCTED SPURIOUS EMISSION

9.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW= 300 kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

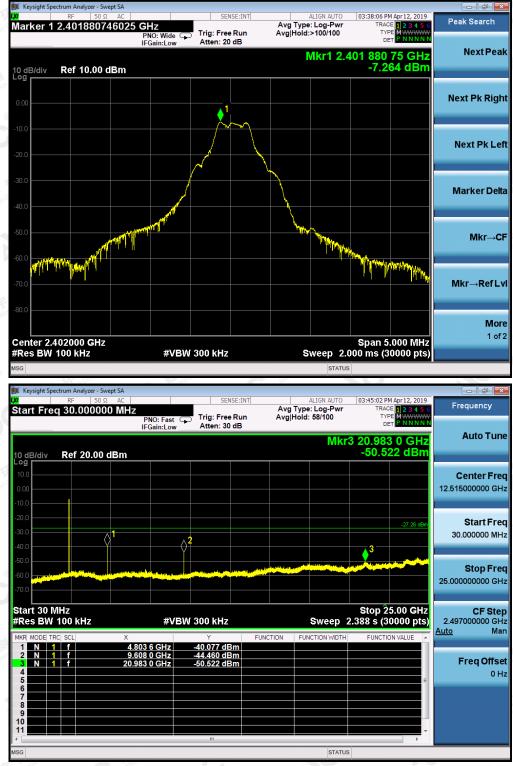
The same as described in section 8.2

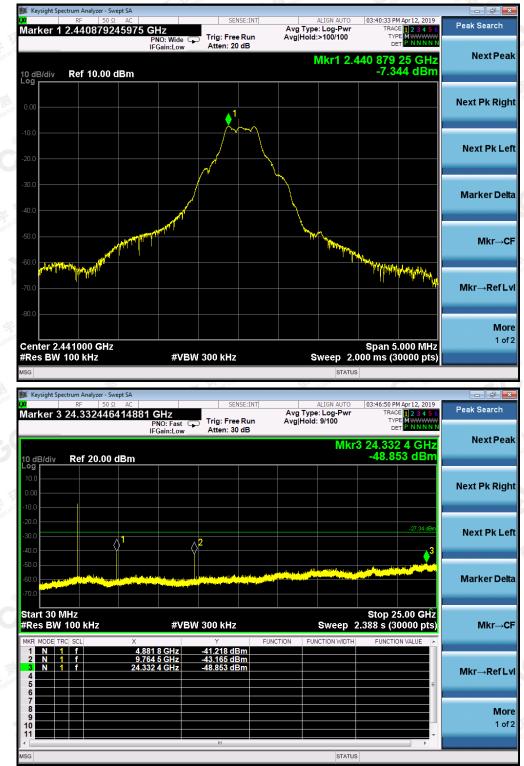
9.3. MEASUREMENT EQUIPMENT USED

The same as described in section 6

9.4. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEAS	SUREMENT RESULT		
Applicable Limite	Measurement Result		
Applicable Limits	Test Data	Criteria	
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS	
power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS	

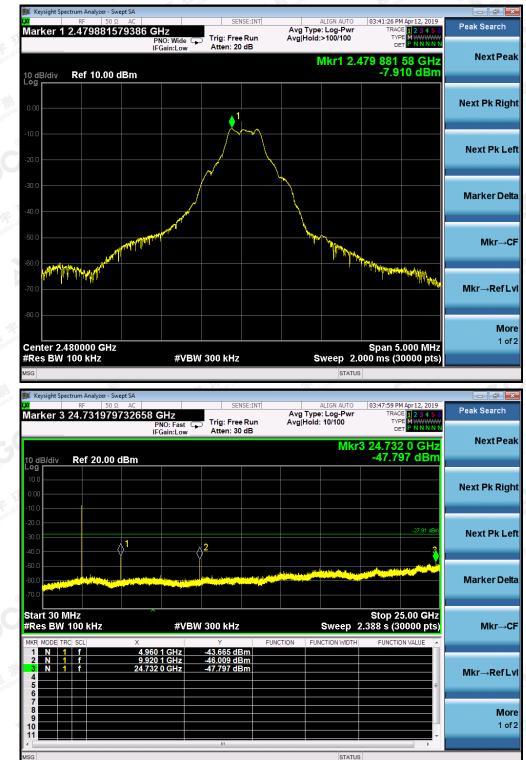

The results show the first report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.ago.gott.com.



Report No.: AGC02764190302FE03 Page 28 of 70

TEST RESULT FOR ENTIRE FREQUENCY RANGE TEST PLOT OF OUT OF BAND EMISSIONS WITH THE WORST CASE OF GFSK MODULATION IN LOW CHANNEL

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.



TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

GC

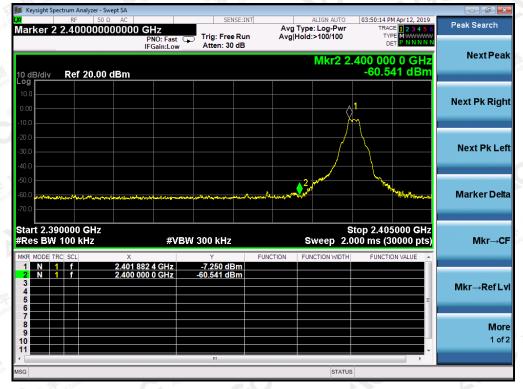
Attestation of Global Compliance

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

鑫 宇 环 检 测 Attestation of Global Compliance

Note: The peak emissions without marker on the above plots are fundamental wave and need not to compare with the limit. The GFSK modulation is the worst case and only those data recorded in the report.

The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.geit.com.



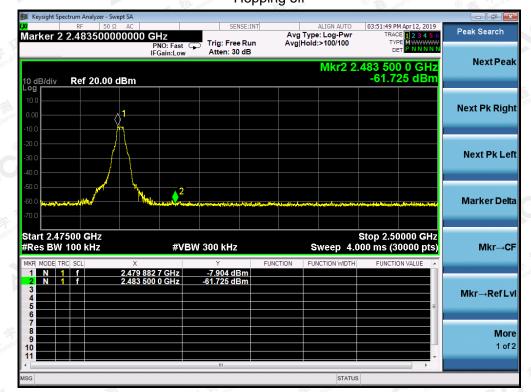
Report No.: AGC02764190302FE03 Page 31 of 70

TEST RESULT FOR BAND EDGE

GFSK MODULATION IN LOW CHANNEL

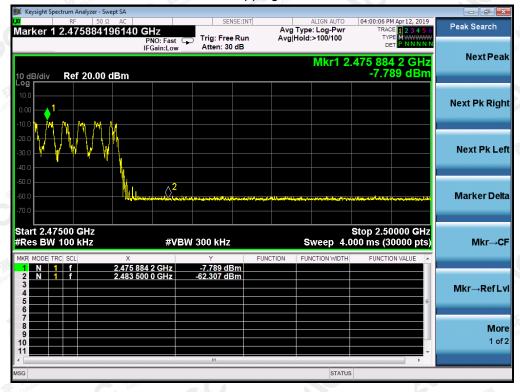
Hopping off

Hopping on

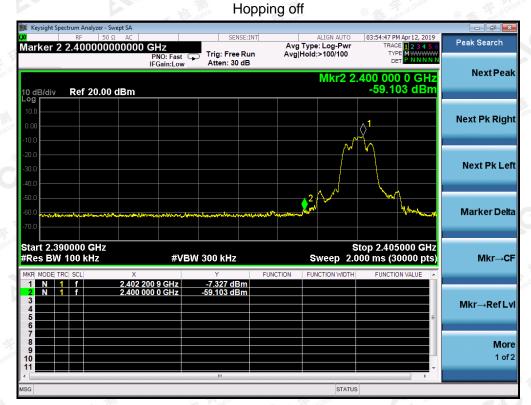


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Attestation of Global Compliance

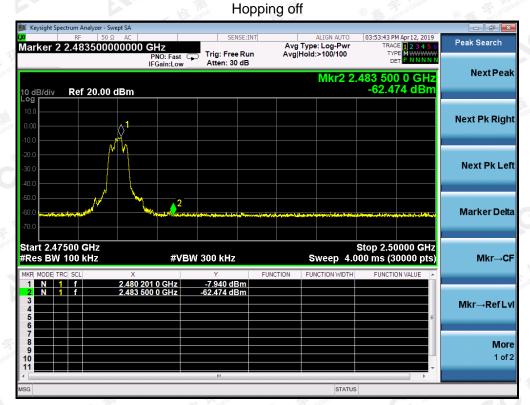


Report No.: AGC02764190302FE03 Page 32 of 70

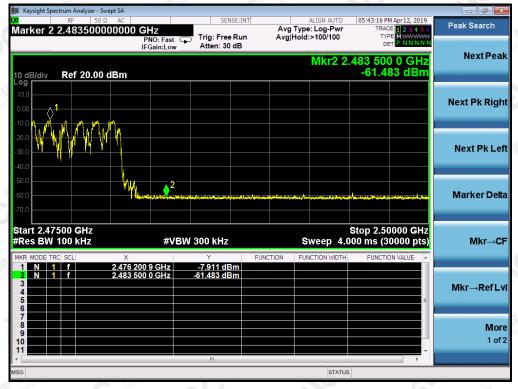

GFSK MODULATION IN HIGH CHANNEL Hopping off

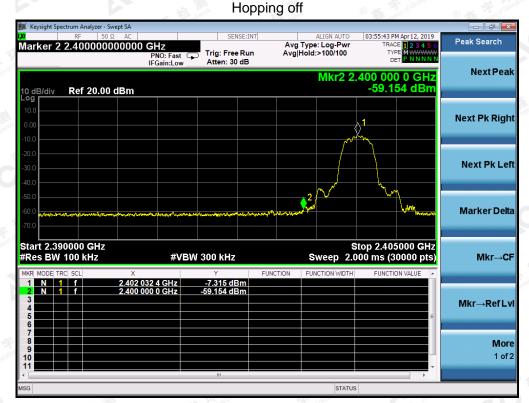
Hopping on

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

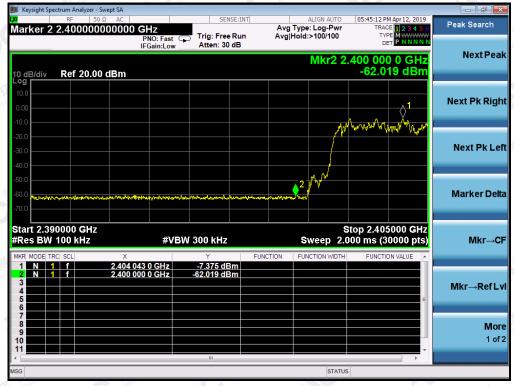

π /4-DQPSK MODULATION IN LOW CHANNEL

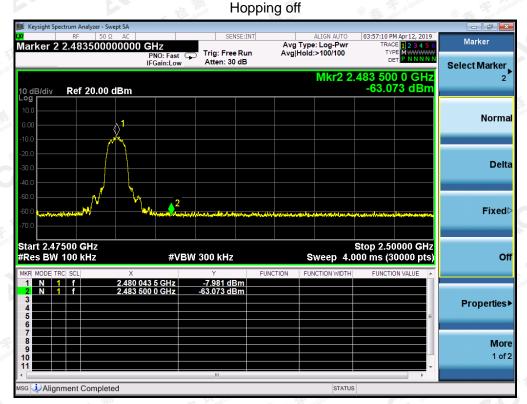
Hopping on


The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

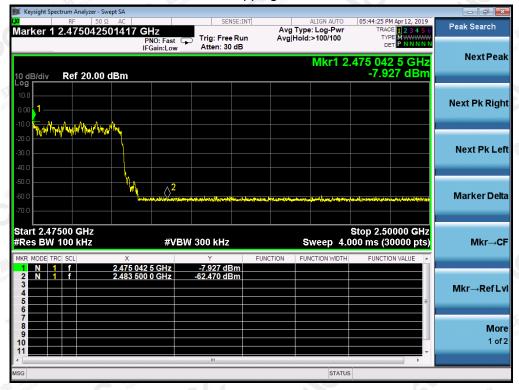

π /4-DQPSK MODULATION IN HIGH CHANNEL

Hopping on


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.


8-DPSK MODULATION IN LOW CHANNEL

Hopping on


The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

8-DPSK MODULATION IN HIGH CHANNEL

Hopping on

The results shown if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agconter.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

10. RADIATED EMISSION

10.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

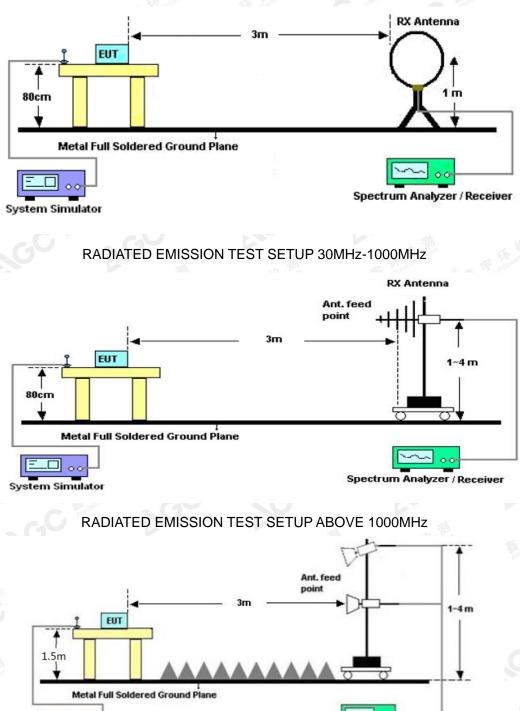
Report No.: AGC02764190302FE03 Page 38 of 70

The following table is the setting of spectrum analyzer and receiver.

	Spectrum Parameter	Setting		
Harman Complements	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
© 5	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
GC "	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
THE THE	Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average		

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

The results show on this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.



AGC [®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 39 of 70

10.2. TEST SETUP

Radiated Emission Test-Setup Frequency Below 30MHz

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

tem Simulato

ctrum Analyzer

10.3. LIMITS AND MEASUREMENT RESULT

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30	30		
30~88	100	3		
88~216	150	The stand of the s		
216~960	200	3		
Above 960	500	3		

Note: All modes were tested For restricted band radiated emission,

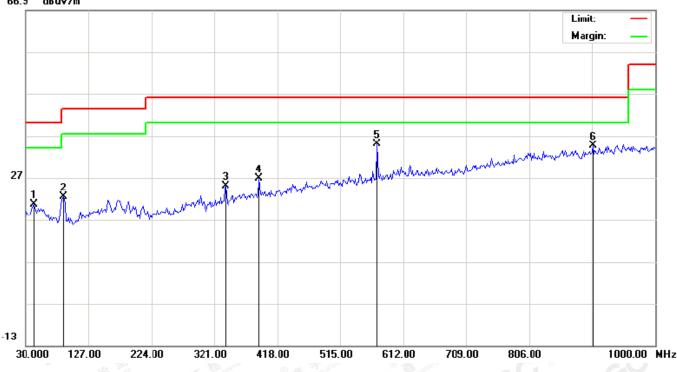
the test records reported below are the worst result compared to other modes.

10.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.



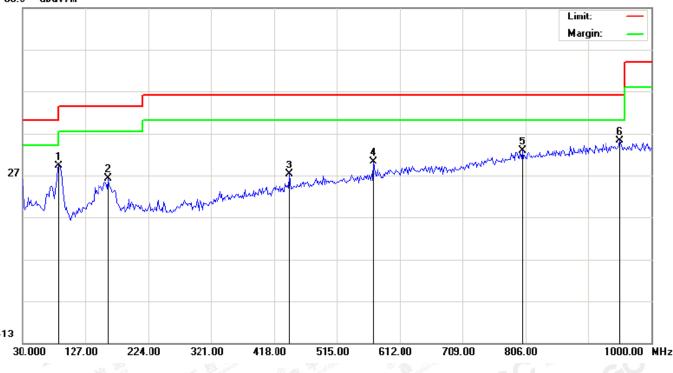
EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Horizontal

RADIATED EMISSION BELOW 1GHZ

66.9 dBuV/m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		42.9333	0.53	19.98	20.51	40.00	-19.49	peak			
2		88.2000	7.37	14.97	22.34	43.50	-21.16	peak			
3		338.7833	4.17	20.83	25.00	46.00	-21.00	peak			
4		390.5167	4.22	22.65	26.87	46.00	-19.13	peak			
5	*	571.5833	8.57	26.39	34.96	46.00	-11.04	peak			
6		904.6167	2.95	31.74	34.69	46.00	-11.31	peak			

RESULT: PASS


The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 42 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 4	Antenna	Vertical

66.9 dBuV/m

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		86.5833	14.16	14.97	29.13	40.00	-10.87	peak			
2		162.5667	7.31	18.93	26.24	43.50	-17.26	peak			
3		442.2500	3.40	23.83	27.23	46.00	-18.77	peak			
4		571.5833	3.84	26.39	30.23	46.00	-15.77	peak			
5		801.1500	2.40	30.42	32.82	46.00	-13.18	peak			
6	*	951.5000	3.00	32.14	35.14	46.00	-10.86	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. All test modes had been pre-tested. The mode 4 is the worst case and recorded in the report.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

环 检 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 43 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

RADIATED EMISSION ABOVE 1GHZ

Reading Fac \$µV\$) (dE .65 0.0	3) (dBµ	n Level Limits V/m) (dBµV/m .73 74.00	- J	Value Type
.65 0.0	,	, , , ,		
	8 51.	73 74.00		- Mar +
15 0.0		11.00	-22.21	7 peak
.15 0.0	8 🔬 47.	.23 54.00	-6.77	AVG
.51 2.2	.1 44	.72 74.00	-29.28	B peak
.71 2.2	.1 41	.92 54.00	-12.08	B AVG
ion of C	estation		0	
		N.		The second
		-01	The Hamplance	The Compile
)	0.71 2.2	0.71 2.21 41.		0.71 2.21 41.92 54.00 -12.08

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type
4804.022	52.37	0.08	52.45	74.00	-21.55	peak
4804.022	47.55	0.08	47.63	54.00	-6.37	AVG
7206.033	44.50	2.21	46.71	74.00	-27.29	peak
7206.033	40.32	2.21	42.53	54.00	-11.48	AVG
	-		Sh.	Compliance	The comp	Attestation*
			dob.	(R) the		

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 44 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Horizontal
Test Mode		Antenna	Horizontai

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Value Type	
4882.022	50.61	0.14	50.75	74	-23.25	peak	
4882.022	46.54	0.14	46.68	54	-7.32	AVG	
7323.033	47.48	2.36	49.84	74	-24.16	peak	
7323.033	44.69	2.36	47.05	54	-6.95	AVG	
astation of	C The station of C	Allestation		S			
	La Maria				1107	in the	
Remark:			10-	1	ter mpliance	The acomp	
actor = Ante	enna Factor + Ca	ble Loss – I	Pre-amplifier.		lobar B	ation of Gran	

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 2	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV) (dB) (dBµV/m)		(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.022	50.11	0.14	50.25	74.00	-23.75	peak 🧹
4882.022	49.53	0.14	49.67	54.00	-4.33	AVG
7323.033	48.28	2.36	50.64	74.00	-23.36	peak
7323.033	43.60	2.36	45.96	54.00	-8.04	AVG
R ALLES I	Col Clour Co	lion o'	<u> </u>	60		
Remark:	G			in the		HE WAR
actor = Ante	enna Factor + Cal	ole Loss –	Pre-amplifier.	The Compliant	The second	alcom

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC [®] 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 45 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4960.022	49.57	0.22	49.79	74.00	-24.21	peak
4960.022	46.79	0.22	47.01	54.00	-6.99	AVG
7440.033	45.24	2.64	47.88	74.00	-26.12	peak 🥯
7440.033	44.12	2.64	46.76	54.00	-7.24	AVG
The los	The Harrison	The second se	Company G	testation	Attesta	0
Fr Stor of Globe	(a) I Global	C ation of C		- 6		
emark:	Allestand	C Mar				tin:
actor = Ante	enna Factor + Ca	ble Loss – F	Pre-amplifier.		1 ¹¹	T HEL pollance

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Vertical

Frequency	y Meter Reading Factor Emission Level		Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m) (dB)		value Type	
4960.022	50.60	0.22	50.82	74.00	-23.18	peak	
4960.022	47.76	0.22	47.98	54.00	-6.02	AVG	
7440.033	46.05	2.64	48.69	74.00	-25.31	peak	
7440.033	44.17	2.64	46.81	54.00	-7.19	AVG	
	The second	The Constant	C station of Glob	B The states	onotGiv		
Remark:		estation of	60	G			
actor = Ante	enna Factor + C	able Loss –	Pre-amplifier.			-TIL	

RESULT: PASS

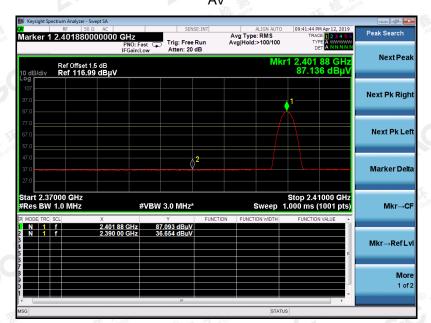
Note:

Other emissions from 1G to 25 GHz are considered as ambient noise. No recording in the test report. Factor = Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

All test modes had been tested. The GFSK modulation is the worst case and recorded in the report.

The results show the first est report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gatt.com.



EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal

TEST RESULT FOR RESTRICTED BANDS REQUIREMENTS

PK

RESULT: PASS

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC02764190302FE03 Page 47 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical
GU		PK	molarce © # Jon of Colorad

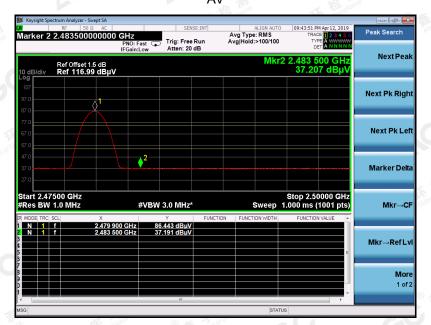
Avg Type: Log-Pw Avg|Hold:>100/100 Marker 2 2.390000000000 GHz Peak Sear Trig: Free Run Atten: 20 dB NextP 2.390 00 GH 48.209 dBu Ref Offset 1.5 dB Ref 116.99 dBu Next Pk Righ Next Pk Lef Marker Delt Stop 2.41000 GHz 1.000 ms (1001 pts) Start 2.37000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz Sweep Mkr→C 86.078 dBµV 48.209 dBµV 2.401 88 GHz 2.390 00 GHz Mkr→RefLv Mor 1 of 2

AV

		Trig: Free		Avg Hold	: RMS :>100/100	TYP	123456 A WWWWW A NNNNN	Peak Search
ef Offset 1.5 dB ef 116.99 dBµV	IFGain:Low	Atten: 20	dB		Mkr	1 2.401		NextPea
						1		Next Pk Rigl
								Next Pk Le
			2 ²					Marker Del
0 GHz 0 MHz ×	#VB\	V 3.0 MHz*			· · ·	.000 ms (1	001 pts)	Mkr→C
							E	Mkr→RefL
								Mo 1 of
	0 GHz MHz	0 GHz MHz #VB1	0 GHz MHz #VBW 3.0 MHz 2.401 88 GHz 85.005 dBµV	0 GHz 1 MHz #VBW 3.0 MHz [®] 2 401 88 CHz 85.005 dByV 2 390 00 CHz 36.659 dByV 2 390 00 CHz 36.659 dByV	0 GHz 1 MHz #VBW 3.0 MHz* 9 2 2401 88 GHz 85 005 dByV 2 390 00 GHz 36 659 dByV 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 GHz 1 MHz #VBW 3.0 MHz* Sweep 1 2.401 88 GHz 2.390 00 GHz 36.659 dByV 1 Hz 1 Hz 2.390 00 GHz 1 Hz 2.390 00 GHz 1 Hz 1 H	D GHz 2 2 5 1 0 0 0 GHz 2 401 88 GHz #VBW 3.0 MHz* Sweep 1.000 ms (1 2 401 88 GHz 85 005 0 BbyV 2 401 88 GHz 95 0 0 GHz 3 6 659 dByV	0 GHz 1 0 GHz 1 1 2 2 0 GHz 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1

RESULT: PASS

The results show on the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.



Report No.: AGC02764190302FE03 Page 48 of 70

EUT	Bluetooth speaker	Model Name	D6
Temperature	25°C	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 3	Antenna	Horizontal

PK

RESULT: PASS

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago.gott.com.

Attestation of Global Compliance