

TC		F
16	ST REPOR	
Report No	CHTEW22010091	Report Verification:
Project No	SHT2112037203EW	
FCC ID:	2A3OORT45P	Received Contraction
Applicant's name:	Shenzhen Ysair Technolog	y Co., LTD
Address		ent park, No. 3, Changfa Middle Bantian street, Longgang District, a
Test item description:	Two Way Radio	
Trade Mark	RETEVIS	
Model/Type reference	RT45P	
Listed Model(s)	RT69	
Standard:	FCC CFR Title 47 Part 95 S	ubpart B
Date of receipt of test sample	Dec.14, 2021	
Date of testing	Dec.15, 2021-Jan.17, 2022	
Date of issue	Jan.17, 2022	
Result	PASS	
Compiled by (Position+Printed name+Signature):	File administrator Fanghui Zl	
Supervised by (Position+Printed name+Signature):	Project Engineer Cheng Xiao	Chenexiao Homsty
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu	Homsty
Testing Laboratory Name:	Shenzhen Huatongwei Inte	rnational Inspection Co., Ltd.
Address	1/F, Bldg 3, Hongfa Hi-tech I Tianliao, Gongming, Shenzh	
Shenzhen Huatongwei International Insper This publication may be reproduced in whole Huatongwei International Inspection Co., Ltd Shenzhen Huatongwei International Inspection damages resulting from the reader's interpret The test report merely correspond to the test	or in part for non-commercial pu . is acknowledged as copyright of on Co., Ltd. takes no responsibilit tation of the reproduced material	rposes as long as the Shenzhen wner and source of the material. y for and will not assume liability for

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1. 1.2.	Test Standards Report version	3 3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Test frequency list	7
4.2.	Test mode	7
4.3.	Support unit used in test configuration and system	8
4.4.	Testing environmental condition	9
4.5.	Measurement uncertainty	9
4.6.	Equipment Used during the Test	10
<u>5.</u>	TEST CONDITIONS AND RESULTS	11
5.1.	Carrier Output Power (ERP)	11
5.2.	99% Occupied Bandwidth & 26dB Bandwidth	12
5.3.	Emission Mask	13
5.4.	Modulation Limit	14
5.5.	Audio Frequency Response	15
5.6.	Audio Low Pass Filter Response	17
5.7.	Frequency stability VS Temperature	18
5.8.	Frequency stability VS Voltage	19
5.9.	Transmit Radiated Spurious Emission	20
<u>6.</u>	TEST SETUP PHOTOS	24
<u>7.</u>	EXTERANAL AND INTERNAL PHOTOS	25
7.1.	EXTERANAL PHOTOS	25
7.2.	INTERNAL PHOTOS	28
<u>8.</u>	APPENDIX REPORT	30

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- <u>FCC Rules Part 95:</u> PERSONAL RADIO SERVICES
- FCC Rules Part 2: Frequency allocations and radio treaty matters; General rules and regulations
- <u>ANSI C63.26-2013</u>: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
- <u>ANSI C63.4-2014</u>: American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-01-18	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Carrier Output Power(ERP)	Part 95.567 Part 2.1046(a)	PASS
5.2	99% Occupied Bandwidth & 26dB bandwidth	Part 95.573 Part 2.1049	PASS
5.3	Emission Mask	Part 95.579(a)(1)(2)(3) Part 2.1049	PASS
5.4	Modulation Limit	Part 95.575 Part 2.1047(b)	PASS
5.5	Audio Frequency Response	Part 95.575 Part 2.1047(a)	PASS
5.6	Audio Low Pass Filter Response	Part 95.575 Part 2.1047(a)	PASS
5.7	Frequency Stability V.S. Temperature	Part 95.565 Part 2.1055	PASS
5.8	Frequency Stability V.S. Voltage	Part 95.565 Part 2.1055	PASS
5.9	Transmit Radiated Spurious Emission	Part 95.579(a)(3) Part 2.1053	PASS

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen Ysair Technology Co., LTD	
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen,Guangdong,China	
Manufacturer:	Shenzhen Ysair Technology Co., LTD	
Address:	6/F, building 6, Yunli intelligent park, No. 3, Changfa Middle Road, Yangmei community, Bantian street, Longgang District, Shenzhen,Guangdong,China	

3.2. Product Description

Name of EUT:	Two Way Radio
Trade Mark:	RETEVIS
Model No.:	RT45P
Listed Model(s):	RT69
Power supply:	DC 3.7V
Battery information:	AA 1000mAh 1.2V*3
Adapter information:	Model: DSA-5PF07-05 FUS 050100 Input: 100-240Va.c., 50/60Hz 0.2A Output: 5Vd.c., 1A
Hardware version:	V1.1
Software version:	V2.1

3.3. Radio Specification Description

	CH01~CH07:	462.5625MHz~ 462.7125MHz
Support Frequency Range:	CH08~CH14:	467.5625MHz~ 467.7125MHz
	CH15~CH22:	462.5500MHz~ 462.7250MHz
Modulation Type:	FM	
Emission Designator: *1	11K0F3E	
Antenna Type:	Integral	
Antenna Gain:	1.8dBi	

Note:

(1) *1 According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation
Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz
Bn = 2M + 2DK = 2*3 + 2*2.5*1 = 11 KHz
Emission designation: 11K0F3E

(2) The device only supports voice communication.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Connect information:	Tel: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>		
Qualifications		Accreditation Number	
Qualifications	FCC	762235	

4. TEST CONFIGURATION

4.1. Test frequency list

According to ANSI C63.26 section 5.1.2.1:

Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2.

Frequency range over which EUT operates	Number of frequencies	Location in frequency range of operation
1 MHz or less	1	Middle
1 MHz to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom

Test Channel	Channel No.	Frequency (MHz)	Frequency band (MHz)
CH _{M1}	CH4	462.6375	462.5625~462.7125
CH _{M2}	CH11	467.6375	467.5625~467.7125

The Product channel frequency table:

Test Channel	Channel No.	Frequency (MHz)	Frequency band (MHz)
01	462.5625	12	467.6625
02	462.5875	13	467.6875
03	462.6125	14	467.7125
04	462.6375	15	462.5500
05	462.6625	16	462.5750
06	462.6875	17	462.6000
07	462.7125	18	462.6250
08	467.5625	19	462.6500
09	467.5875	20	462.6750
10	467.6125	21	462.7000
11	467.6375	22	462.7250

4.2. Test mode

Test mode	Transmitting	FRS
TX-FRS	\checkmark	\checkmark

Note:

 $\sqrt{\cdot}$ is operation mode.

Modulation Type	Description
UM	Un-modulation
AM2	Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
AM6	Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB
AM5	Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dB greater than that necessary to produce 50% of rated system deviation.

Test item	Modulation Type	Test mode
Output Power(ERP)	UM	TX-FRS
99% Occupied Bandwidth & 26dB bandwidth	AM6	TX-FRS
Emission Mask	AM5	TX-FRS
Modulation Limit	AM6	TX-FRS
Audio Frequency Response	AM2	TX-FRS
Audio Low Pass Filter Response	AM2	TX-FRS
Frequency Stability VS Temperature	UM	TX-FRS
Frequency Stability VS Voltage	UM	TX-FRS
Transmit Radiated Spurious Emission	AM5	TX-FRS

4.3. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whet	Whether support unit is used?					
No						
Item	Equipment	Trade Name	Model No.	FCC ID	Power cord	
1						
2						

•		
Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar
	Normal voltage:	
Test voltage:	Extreme lower voltage:	
	Extreme upper voltage:	

4.4. Testing environmental condition

4.5. Measurement uncertainty

Test Item	Measurement Uncertainty
Frequency stability	25 Hz
Carrier output power (ERP)	2.20 dB
Occupied Bandwidth	35 Hz
Modulation Limiting	0.42 %
FM deviation	25 Hz
Audio level	0.62 dB
Radiated Spurious Emission 30~1000MHz	4.65 dB
Radiated Spurious Emission 1~18GHz	5.16 dB
AC power line Conducted Emission 9KHz-30MHz	3.39 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.6. Equipment Used during the Test

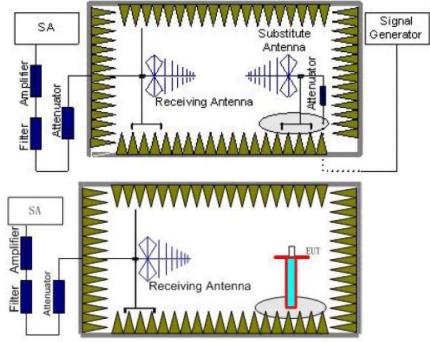
•	Radiated emission-7th test site								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2022/09/26		
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/9/13	2022/9/12		
•	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31		
•	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2020/4/27	2023/4/27		
•	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2021/11/5	2022/11/4		
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0119-05	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6m 3GHz RG Serisa	N/A	2021/02/26	2022/02/25		
•	RF Connection Cable	HUBER+SUHNER	HTWE0121-01	6m 18GHz S Serisa	N/A	2021/02/26	2022/02/25		
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A		

•	TS8613 Test system									
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)			
•	Spectrum Analyzer	Agilent	HTWE0286	N9020A	MY50510187	2021/9/13	2022/9/12			
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2021/9/13	2022/9/12			
•	RF Communication Test Set	HP	HTWE0038	8920A	3813A10206	2021/9/13	2022/9/12			
•	RF Control Unit	Tonscend	HTWE0294	JS0806-2	N/A	N/A	N/A			
•	Filter-UHF	Microwave	HTWE0311	N25155M2	498704	N/A	N/A			
•	Attenuator	JFW	HTWE0292	50FH-030-100	N/A	2021/05/17	2022/05/16			
•	Test software	HTW	N/A	Radio ATE	N/A	N/A	N/A			

•	Auxiliary Equipment								
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
•	Climate chamber	ESPEC	HTWE0254	GPL-2	N/A	2021/9/14	2022/9/13		
•	DC Power Supply	Gwinstek	HTWE0274	SPS-2415	GER835793	N/A	N/A		

5. TEST CONDITIONS AND RESULTS

5.1. Carrier Output Power (ERP)


<u>LIMIT</u>

FCC Part FCC Part 95.567, FCC Part 2.1046

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does **not exceed 0.5 Watts** and

the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The measuring distance of at 3m shall be used for measurements
- 2) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- The spectrum setting for Equivalent Isotropically Radiated Power (EIRP) is RBW = 100kHz, VBW = 300kHz. Detector Mode is Positive Peak
- 5) Record the field strength level of the EUT from the spectrum
- 6) The substitution antenna is substituted for EUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be moved height from 1m to 4m to find the highest radiation. Adjust the S.G. output level and repeat this step to get the same field strength level as the EUT
- 7) The EIRP level = S.G. output level(dBm)- TX cable(dB) + Substituted Antenna Gain(dBi)
- 8) The ERP level = EIRP-2.15

TEST MODE

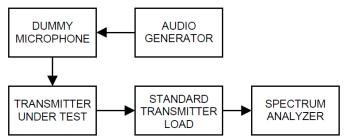
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix A on the appendix report


5.2. 99% Occupied Bandwidth & 26dB Bandwidth

<u>LIMIT</u>

FCC Part 95.573, FCC Part 2.1049

Each FRS transmitter type must be designed such that the occupied bandwidth does not exceed 12.5 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated
- 2) Spectrum set as follow:

Centre frequency = the nominal EUT channel center frequency,

The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW $\ge 3 \times RBW$, Sweep = auto,

Detector function = peak, Trace = max hold

- 3) Set 99% Occupied Bandwidth and 26dB Bandwidth
- 4) Measure and record the results in the test report.

TEST MODE

Please reference to the section 4.2

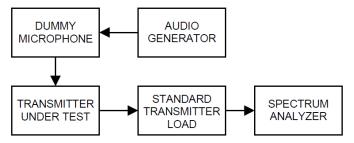
TEST RESULTS

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix B on the appendix report

5.3. Emission Mask


<u>LIMIT</u>

FCC Part 95.579(a)(1)(2)(3), FCC Part 2.1049

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits

- a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
 - (1) 25dB in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
 - (2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
 - (3) 43 +10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- Spectrum set as follow: Centre frequency = fundamental frequency, RBW=300Hz, VBW=1000Hz, Sweep = auto, Detector function = peak, Trace = max hold
- 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement.
- 4) Apply Input Modulation Signal to EUT according to Section 4.2
- 5) Measure and record the results in the test report.

TEST MODE

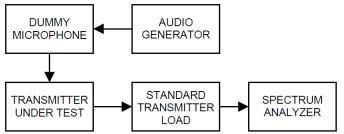
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix C on the appendix report


5.4. Modulation Limit

LIMIT

FCC Part 95.575, FCC Part 2.1047(b)

Each FRS transmitter type must be designed such that the peak frequency deviation does **not exceed 2.5kHz**, and the highest audio frequency contributing substantially to modulation must **not exceed 3.125kHz**.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off.
- 4) Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation.
- 5) Increase the level from the audio frequency generator by 20 dB in one step (rise time between the 10% and 90% points shall be 0.1 second maximum).
- 6) Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level
- 7) With the level from the audio frequency generator held constant at the level obtained in step 4), slowly vary the audio frequency from 300 Hz to 3000 Hz and observe the steady-state deviation. Record the maximum deviation.

TEST MODE

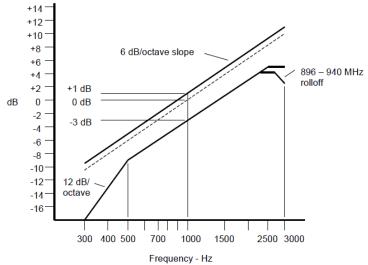
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

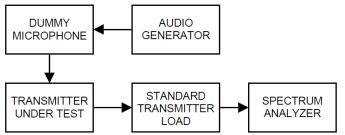
TEST Data

Please refer to appendix D on the appendix report


5.5. Audio Frequency Response

<u>LIMIT</u>

FCC Part 95.575, FCC Part 2.1047(a):


Each FRS transmitter type must be designed such that the peak frequency deviation does **not exceed 2.5kHz**, and the highest audio frequency contributing substantially to modulation must **not exceed 3.125kHz**.

Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted.

An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Connect the equipment as illustrated.
- 2) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off.
- 3) Set the DMM to measure rms voltage.
- 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation.
- 5) Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation.
- 6) Set the test receiver to measure rms deviation and record the deviation reading.
- 7) Record the DMM reading as V_{REF} .
- 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz.
- Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained.
- 10) Record the DMM reading as V_{FREQ}
- 11) Calculate the audio frequency response at the present frequency as: audio frequency response= $20\log_{10} (V_{FREQ}/V_{REF})$.
- 12) Repeat steps 8) through 11) for all the desired test frequencies

TEST MODE

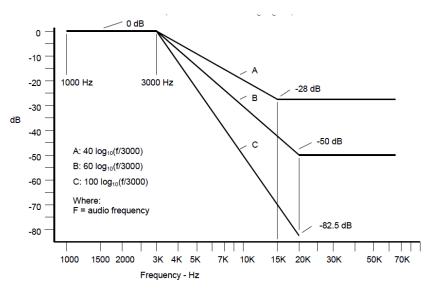
Please reference to the section 4.2

TEST RESULTS

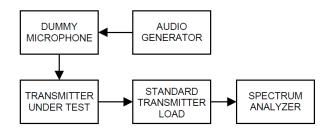
🛛 Passed

□ Not Applicable

TEST Data


Please refer to appendix E on the appendix report

5.6. Audio Low Pass Filter Response


LIMIT

FCC Part 95.575),FCC Part 2.1047(a):

The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least 60 log10 (f/3) dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.

TEST CONFIGURATION

TEST PROCEDURE

- 1) Configure the EUT as shown in figure .
- Apply a 1000 Hz tone from the audio signal generator and adjust the level per manufacturer's specifications. Record the dB level of the 1000 Hz tone as LEV_{REF}.
- Set the audio signal generator to the desired test frequency between 3000 Hz and the upper low pass filter limit. Record the dB level at the test frequency as LEV_{FREQ}.
- Calculate the audio frequency response at the test frequency as: low pass filter response = LEV_{FREQ} - LEV_{REF}

TEST MODE

Please reference to the section 4.2

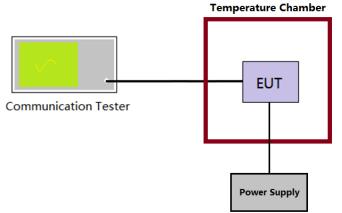
TEST RESULTS

🛛 Passed

Not Applicable

TEST Data

Please refer to appendix F on the appendix report


5.7. Frequency stability VS Temperature

<u>LIMIT</u>

FCC Part 95.565:

Each FRS transmitter type must be designed such that the carrier frequencies remain **within ±2.5 parts-permillion** of the channel center frequencies specified in §95.563 during normal operating conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber.
- 3) Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz} .
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST MODE

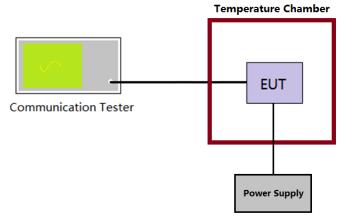
Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix G on the appendix report


5.8. Frequency stability VS Voltage

LIMIT

FCC Part 95.565:

Each FRS transmitter type must be designed such that the carrier frequencies remain **within ±2.5 parts-permillion** of the channel center frequencies specified in §95.563 during normal operating conditions.

TEST CONFIGURATION

TEST PROCEDURE

- 1) The EUT output port was connected to communication tester.
- 2) The EUT was placed inside the temperature chamber at 25°C
- 3) Record the carrier frequency of the transmitter as MCF_{MHZ}
- Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz
- 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT

TEST MODE

Please reference to the section 4.2

TEST RESULTS

☑ Passed □ Not Applicable

TEST Data

Please refer to appendix H on the appendix report

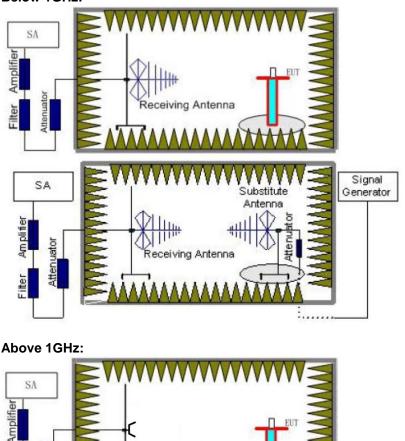
5.9. Transmit Radiated Spurious Emission

<u>LIMIT</u>

FCC Part 95.579(a)(3):

Each FRS transmitter type must be designed to satisfy the applicable unwanted emissions limits

- a) Attenuation requirements. The power of unwanted emissions must be attenuated below the carrier power output in Watts (P) by at least:
 - 1) 25dB in the frequency band 6.25 kHz to 12.5 kHz removed from the channel center frequency.
 - 2) 35 dB in the frequency band 12.5 kHz to 31.25 kHz removed from the channel center frequency.
 - 3) 43 +10 log (P) dB in any frequency band removed from the channel center frequency by more than 31.25 kHz.


Note:

SA

lator

Limit (dBm)=EL-[43+10log(P)] =10log(P*1000)-[43+10log(P)] = 10log(P)+30-43-10log(P)=-13dBmEL is the emission level of the Output Power expressed in dBm,

TEST CONFIGURATION Below 1GHz:

Receiving Antenna

Receiving Antenna

Substitute

Antenna

Signal

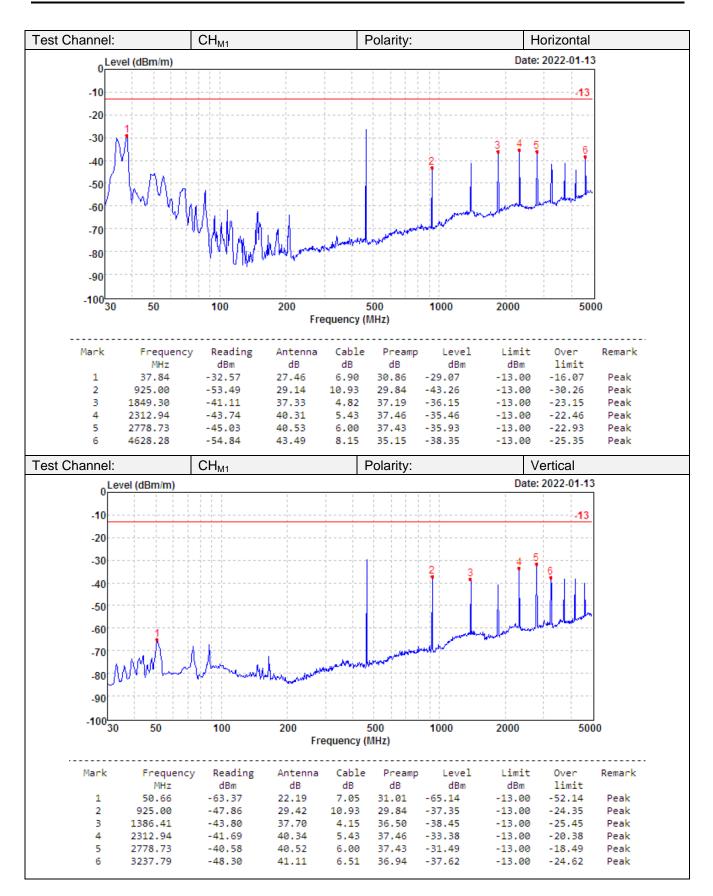
Generator

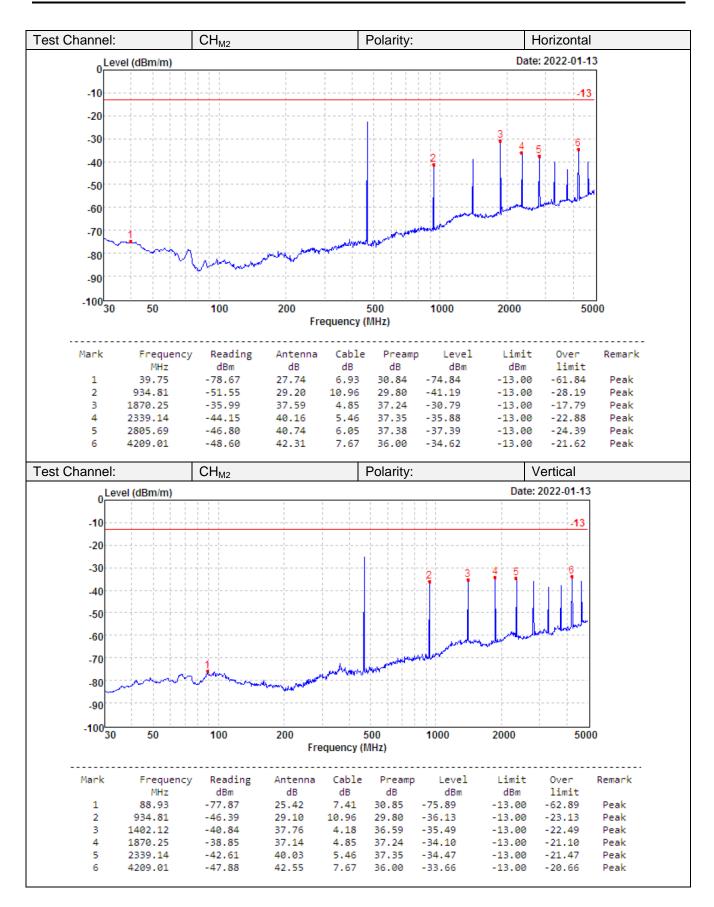
TEST PROCEDURE

- 1) The measuring distance of at 3m shall be used for measurements
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation
- 3) The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) The spectrum setting as follow

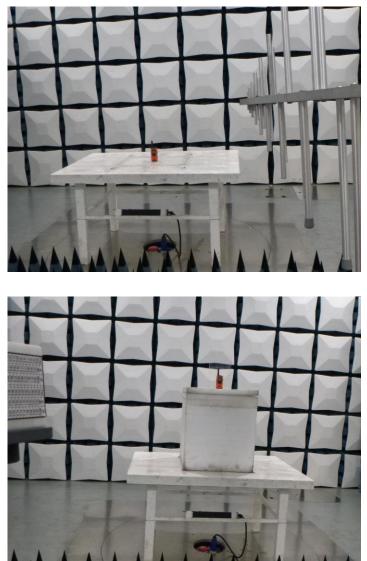
Below 1 GHz: RBW=120kHz, VBW=300kHz, Sweep time=auto, Detector =peak, Trace=max hold;

Above 1GHz: RBW=1MHz, VBW=3MHz Sweep time=auto, Detector=peak, Trace=max hold

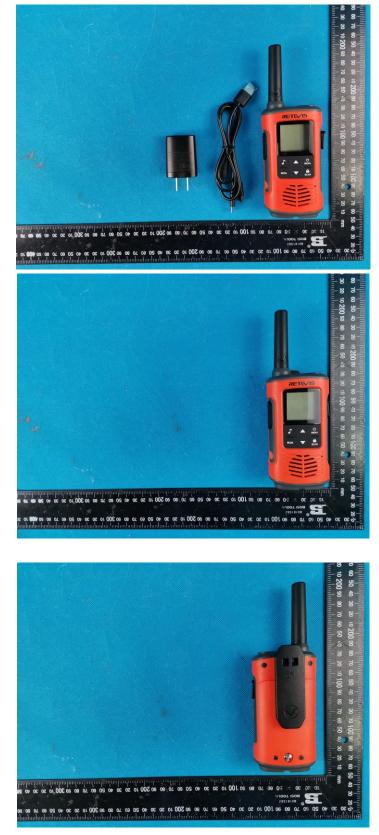

- 5) Record the field strength level of the EUT from the spectrum
- 6) The substitution antenna is substituted for EUT at the same position and signals generator (S.G) export the CW signal to the substitution antenna via a TX cable. The receiver antenna shall be moved height from 1m to 4m to find the highest radiation. Adjust the S.G. output level and repeat this step to get the same field strength level as the EUT
- 7) The EIRP level = S.G. output level(dBm)- TX cable(dB) + Substituted Antenna Gain(dBi)
- 8) Record the ERP value for below 1GHz, ERP value = EIRP-2.15; Record the EIRP for above 1GHz.


TEST MODE

Please reference to the section 4.2


TEST RESULTS

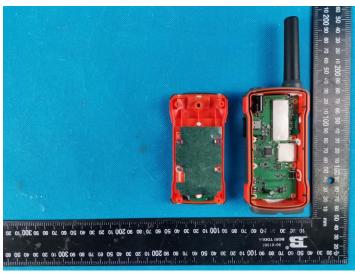
☑ Passed □ Not Applicable

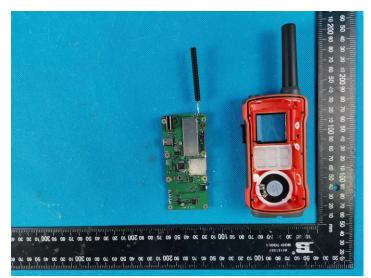


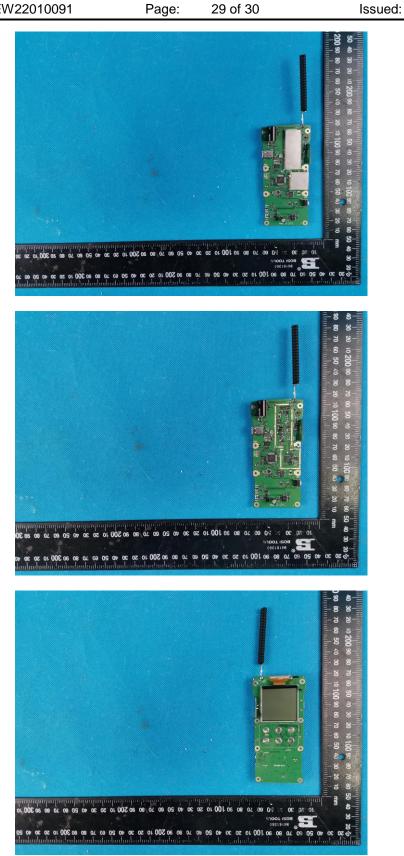
6. TEST SETUP PHOTOS

7. EXTERANAL AND INTERNAL PHOTOS

7.1. EXTERANAL PHOTOS







7.2. INTERNAL PHOTOS

8. APPENDIX REPORT

Project No.	SHT2112037203EW				
Test sample No.	YPHT21120372007	Model No.	RT45P		
Start test date	2021/12/20	Finish date	2022/1/13		
Temperature	23.7 ℃	Humidity	48%		
Test Engineer	Caspar Chen	Auditor	\times iaodong Zheo		

Appendix clause	Test Item	Test date (M/D)	Test Result (PASS/FAIL)
А	Transmit Power (ERP)	2022/1/13	PASS
В	Occupied Bandwidth	2021/12/20	PASS
С	Emission Mask	2021/12/20	PASS
D	Modulation Limit	2021/12/20	PASS
E	Audio Frequency Response	2021/12/20	PASS
F	Audio Low Pass Filter Response	2021/12/21	PASS
G	Frequency Stability Test & Temperature	2021/12/20	PASS
н	Frequency Stability Test & Voltage	2021/12/20	PASS

Appendix A: Transmit Power (ERP)

Test Mode	Modulation Type	Test Channel	Measured power (dBm)	Measured power (W)	Limit(W)	Result
TX-FRS	FM	CH _{M1}	30.7	1.17	≤2	PASS
TX-FRS	FM	CH _{M2}	26.51	0.45	≤0.5	PASS

§95.567 FRS transmit power.

Each FRS transmitter type must be designed such that the effective radiated power (ERP) on channels 8 through 14 does not exceed 0.5 Watts and the ERP on channels 1 through 7 and 15 through 22 does not exceed 2.0 Watts.

Appendix B: 99% Occupied Bandwidth & 26dB Bandwidth

Test Mode Test Modulation	Test Channel	Occupied I	Bandwidth	99% Limit(kHz)	Result	
Type		rest onanner	99%(kHz)	26dB(kHz)		3370 Einii((KHZ)
TX-FRS	FM	CH _{M1}	10.000	10.19	≤12.5	PASS
TX-FRS	FM	CH _{M2}	10.000	10.21	≤12.5	PASS

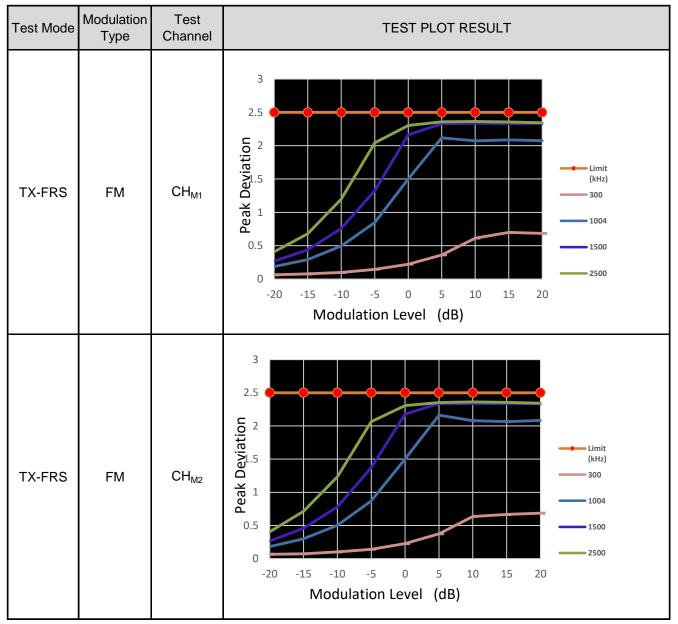
Appendix B: 99% Occupied Bandwidth & 26dB Bandwidth

Operation Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-FRS	FM	CH _{M1}	Adjent Spectrum Analyzer - Occupied BW Style Rule ALIGNAUTO OLI2307 MORC20, 2021 Frequency Center Freq. 462.637500 MHz Center Freq. 462.637500 MHz Radio Std: None Radio Device: BTS Radio Device: BTS 10 dB/div Ref 36.41 dBm Center Freq. 462.637500 MHz Radio Device: BTS Radio Device: BTS 10 dB/div Ref 36.41 dBm Center Freq. 462.637500 MHz Radio Device: BTS Center Freq. 462.637500 MHz 35 Center Advance Ref 36.41 dBm Center Freq. 462.637500 MHz Center Freq. 462.637500 MHz 36 Center Advance Ref 36.41 dBm Center Freq. 462.637500 MHz Center Freq. 462.637500 MHz 36 Center Advance Ref 36.41 dBm Center Freq. 462.637500 MHz Center Freq. 462.637500 MHz 36 Center Advance Ref 36.41 dBm Center Freq. 462.637500 MHz Center Freq. 462.637500 MHz Center Advance Ref 36.41 dBm Ref 36.41 dBm Span 50 kHz Center Freq. 462.637500 MHz Center Advance #VBW 300 Hz Span 50 kHz Span 50 kHz Man Cocupied Bandwidth Total Power 33.2 dBm Man Freq Offset OHz Mas -26.00 dB
TX-FRS	FM	CH _{M2}	Applete System Addytor: Occupied BW Stressel velocities Ausplut Occupied BW Origination Center Freq 467.637500 MHz Center Freq 467.637500 MHz Center Freq 467.637500 MHz Radio Std: None Radio Std: None 10 dB/div Ref 34.70 dBm Center Freq 467.637500 MHz 10 dB/div Ref 34.70 dBm Center Freq 467.637500 MHz Center Freq 467.637500 MHz Center Freq 467.637500 MHz 33 dag Center Advance Span 50 kHz Span 50 kHz CF Step 5.000 kHz Center 467.6 MHz #VBW 300 Hz Span 50 kHz Soco kHz Web Total Power 32.0 dBm Freq Offset 0 Hz 10.0000 kHz Total Power 99.00 % Ma X dB Bandwidth 10.21 kHz x dB -26.00 dB Ma Ma Center Strus 0 Hz

Appendix C:Emission Mask

Test Mode	Modulation Type	Test Channel	TEST PLOT RESULT					
TX-FRS	FM	CH _{M1}	Multiview Spectrum Ref Level 43.00 dbm 0156 dbm 20.50 dbm Mode Auto FT If an Unit View 115 MOIL 20.50 dbm Mode Auto FT If an Unit View PAS: 113 MOIL 20.50 dbm If an Unit View PAS: 113 MOIL 20.50 dbm If an Unit View PAS: 113 MOIL 20.50 dbm If an Unit View PAS: 113 MOIL 20.50 dbm If an Unit View PAS: 113 MOIL 20.50 dbm If an Unit View PAS: 114 MOIL 402.538100 MBr If an Unit View PAS: 114 MOIL 402.538100 MBr If an Unit View PAS: 114 MOIL 402.538100 MBr If an Unit View PAS: 114 MOIL 402.538100 MBr If an Unit View If an Unit View If an Unit View 402.638100 MBr If an Unit View If an Unit View If an Unit View 402.638100 MBr If an Unit View If an Unit View If an Unit View If an Unit View If an Unit View If an Unit View <					
TX-FRS	FM	CH _{M2}	Multiview Spectrum Ref Level 43.00 dbm 0156 WBW 20.50 db = R8W 100 Hz Att 22 db SWT 41.9 ms (~56 ms) * VBW 200 Hz Mark SWT 00 Hz PASS Mark SWT 00 Hz PASS <t< td=""></t<>					

	Modulation	Test	Modulation	Peak Frequency Deviation (Hz)				Limit	Desult
Test Mode	Туре	Channel	Level (dB)	300	1004	1500	2500	(kHz)	Result
TX-FRS	FM	CH _{M1}	-20	0.061	0.187	0.269	0.408	2.5	PASS
TX-FRS	FM	CH _{M1}	-15	0.076	0.291	0.438	0.68	2.5	PASS
TX-FRS	FM	CH _{M1}	-10	0.098	0.495	0.758	1.199	2.5	PASS
TX-FRS	FM	CH _{M1}	-5	0.144	0.847	1.326	2.044	2.5	PASS
TX-FRS	FM	CH _{M1}	0	0.221	1.5	2.165	2.303	2.5	PASS
TX-FRS	FM	CH _{M1}	5	0.361	2.118	2.331	2.358	2.5	PASS
TX-FRS	FM	CH _{M1}	10	0.613	2.072	2.337	2.363	2.5	PASS
TX-FRS	FM	CH _{M1}	15	0.698	2.087	2.333	2.357	2.5	PASS
TX-FRS	FM	CH _{M1}	20	0.684	2.075	2.335	2.345	2.5	PASS
TX-FRS	FM	CH _{M2}	-20	0.065	0.181	0.266	0.405	2.5	PASS
TX-FRS	FM	CH _{M2}	-15	0.072	0.3	0.459	0.715	2.5	PASS
TX-FRS	FM	CH _{M2}	-10	0.101	0.503	0.779	1.234	2.5	PASS
TX-FRS	FM	CH _{M2}	-5	0.141	0.87	1.373	2.066	2.5	PASS
TX-FRS	FM	CH _{M2}	0	0.226	1.501	2.177	2.307	2.5	PASS
TX-FRS	FM	CH _{M2}	5	0.374	2.163	2.339	2.353	2.5	PASS
TX-FRS	FM	CH _{M2}	10	0.635	2.081	2.336	2.363	2.5	PASS
TX-FRS	FM	CH _{M2}	15	0.666	2.065	2.338	2.355	2.5	PASS
TX-FRS	FM	CH _{M2}	20	0.685	2.082	2.333	2.344	2.5	PASS

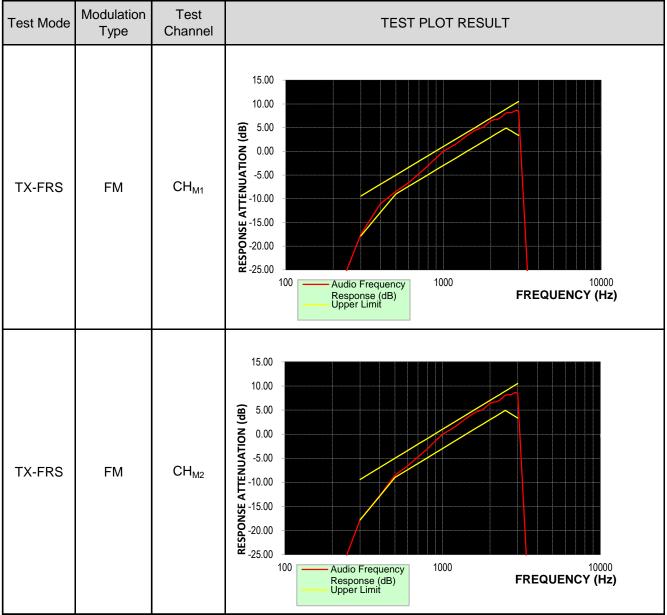

Appendix D:Modulation Limit

§95.575 FRS modulation limits.

Each FRS transmitter type must be designed such that the peak frequency deviation does not exceed 2.5 kHz, and the highest audio frequency contributing substantially to modulation must not exceed 3.125 kHz.

Appendix D:Modulation Limit

Appendix E:Audio Frequency Response


Test Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-FRS	FM	CH _{M1}	100	-32.14			PASS
TX-FRS	FM	CH _{M1}	200	-32.37			PASS
TX-FRS	FM	CH _{M1}	300	-17.50	-17.84	-9.42	PASS
TX-FRS	FM	CH _{M1}	400	-11.02	-12.86	-6.93	PASS
TX-FRS	FM	CH _{M1}	500	-8.47	-9.00	-5.00	PASS
TX-FRS	FM	CH _{M1}	600	-6.68	-7.42	-3.42	PASS
TX-FRS	FM	CH _{M1}	700	-4.75	-6.09	-2.09	PASS
TX-FRS	FM	CH _{M1}	800	-3.01	-4.93	-0.93	PASS
TX-FRS	FM	CH _{M1}	900	-1.39	-3.91	0.09	PASS
TX-FRS	FM	CH _{M1}	1000	-0.02	-3.00	1.00	PASS
TX-FRS	FM	CH _{M1}	1200	1.53	-1.42	2.58	PASS
TX-FRS	FM	CH _{M1}	1400	3.22	-0.09	3.91	PASS
TX-FRS	FM	CH _{M1}	1600	4.48	1.07	5.07	PASS
TX-FRS	FM	CH _{M1}	1800	5.15	2.09	6.09	PASS
TX-FRS	FM	CH _{M1}	2000	6.44	3.00	7.00	PASS
TX-FRS	FM	CH _{M1}	2100	6.67	3.42	7.42	PASS
TX-FRS	FM	CH _{M1}	2200	6.74	3.83	7.83	PASS
TX-FRS	FM	CH _{M1}	2300	7.06	4.21	8.21	PASS
TX-FRS	FM	CH _{M1}	2400	7.59	4.58	8.58	PASS
TX-FRS	FM	CH _{M1}	2500	8.09	4.93	8.93	PASS
TX-FRS	FM	CH _{M1}	2600	8.19	4.59	9.27	PASS
TX-FRS	FM	CH _{M1}	2700	8.17	4.27	9.60	PASS
TX-FRS	FM	CH _{M1}	2800	8.39	3.95	9.91	PASS
TX-FRS	FM	CH _{M1}	2900	8.70	3.65	10.22	PASS
TX-FRS	FM	CH _{M1}	3000	8.40	3.35	10.51	PASS
TX-FRS	FM	CH _{M1}	3500	-32.11			PASS
TX-FRS	FM	CH _{M1}	4000	-32.49			PASS
TX-FRS	FM	CH _{M1}	4500	-32.56			PASS
TX-FRS	FM	CH _{M1}	5000	-32.61			PASS
TX-FRS	FM	CH _{M2}	100	-32.99			PASS
TX-FRS	FM	CH _{M2}	200	-33.12			PASS
TX-FRS	FM	CH _{M2}	300	-17.81	-17.84	-9.42	PASS
TX-FRS	FM	CH _{M2}	400	-12.79	-12.86	-6.93	PASS
TX-FRS	FM	CH _{M2}	500	-8.52	-9.00	-5.00	PASS
TX-FRS	FM	CH _{M2}	600	-6.64	-7.42	-3.42	PASS
TX-FRS	FM	CH _{M2}	700	-4.74	-6.09	-2.09	PASS
TX-FRS	FM	CH _{M2}	800	-3.07	-4.93	-0.93	PASS
TX-FRS	FM	CH _{M2}	900	-1.40	-3.91	0.09	PASS
TX-FRS	FM	CH _{M2}	1000	-0.05	-3.00	1.00	PASS
TX-FRS	FM	CH _{M2}	1200	1.52	-1.42	2.58	PASS
TX-FRS	FM	CH _{M2}	1400	3.17	-0.09	3.91	PASS
TX-FRS	FM	CH _{M2}	1600	4.46	1.07	5.07	PASS

Test Mode	Modulation Type	Test Channel	Frequency (Hz)	Audio Frequency Response (dB)	Lower Limit	Upper Limit	Result
TX-FRS	FM	CH _{M2}	1800	5.10	2.09	6.09	PASS
TX-FRS	FM	CH _{M2}	2000	6.39	3.00	7.00	PASS
TX-FRS	FM	CH _{M2}	2100	6.64	3.42	7.42	PASS
TX-FRS	FM	CH _{M2}	2200	6.73	3.83	7.83	PASS
TX-FRS	FM	CH _{M2}	2300	7.02	4.21	8.21	PASS
TX-FRS	FM	CH _{M2}	2400	7.56	4.58	8.58	PASS
TX-FRS	FM	CH _{M2}	2500	8.06	4.93	8.93	PASS
TX-FRS	FM	CH _{M2}	2600	8.18	4.59	9.27	PASS
TX-FRS	FM	CH _{M2}	2700	8.16	4.27	9.60	PASS
TX-FRS	FM	CH _{M2}	2800	8.39	3.95	9.91	PASS
TX-FRS	FM	CH _{M2}	2900	8.70	3.65	10.22	PASS
TX-FRS	FM	CH _{M2}	3000	8.39	3.35	10.51	PASS
TX-FRS	FM	CH _{M2}	3500	-32.83			PASS
TX-FRS	FM	CH _{M2}	4000	-32.70			PASS
TX-FRS	FM	CH _{M2}	4500	-32.81			PASS
TX-FRS	FM	CH _{M2}	5000	-33.00			PASS

Appendix E:Audio Frequency Response

Appendix E:Audio Frequency Response

Note: The highest audio frequency response at 3kHz<3.125kHz, so meet the requirement.

Appendix F:Audio Low Pass Filter Response

Test Mode	Modulation Type	Test Channel	Audio Frequency(Hz)	Audio Frequency Response(dB)	Limit	Result
TX-FRS	FM	CHм1	1000	-17.34	0	PASS
TX-FRS	FM	CHм1	3000	-22.28	0	PASS
TX-FRS	FM	СНм1	4000	-31.51	-7.5	PASS
TX-FRS	FM	СНм1	5000	-43.09	-13.3	PASS
TX-FRS	FM	СНм1	6000	-49.27	-18.1	PASS
TX-FRS	FM	CHм1	8000	-55.24	-25.6	PASS
TX-FRS	FM	CHм1	10000	-55.48	-31.4	PASS
TX-FRS	FM	СНм1	15000	-55.39	-41.9	PASS
TX-FRS	FM	СНм1	20000	-55.17	-50	PASS
TX-FRS	FM	CHм1	30000	-55.26	-50	PASS
TX-FRS	FM	СНм₁	40000	-55.16	-50	PASS
TX-FRS	FM	СНм1	50000	-55.63	-50	PASS
TX-FRS	FM	СНм1	60000	-55.57	-50	PASS
TX-FRS	FM	СНм1	70000	-56.19	-50	PASS
TX-FRS	FM	СНм1	80000	-56.24	-50	PASS
TX-FRS	FM	СНм1	90000	-56.46	-50	PASS
TX-FRS	FM	СНм1	100000	-56.11	-50	PASS
TX-FRS	FM	CH _{M2}	1000	-17.56	0	PASS
TX-FRS	FM	CH _{M2}	3000	-22.19	0	PASS
TX-FRS	FM	CH _{M2}	4000	-31.73	-7.5	PASS
TX-FRS	FM	CH _{M2}	5000	-43.24	-13.3	PASS
TX-FRS	FM	CH _{M2}	6000	-49.39	-18.1	PASS
TX-FRS	FM	CH _{M2}	8000	-55.28	-25.6	PASS
TX-FRS	FM	CH _{M2}	10000	-55.66	-31.4	PASS
TX-FRS	FM	СН _{м2}	15000	-55.81	-41.9	PASS
TX-FRS	FM	CH _{M2}	20000	-55.49	-50	PASS
TX-FRS	FM	СН _{м2}	30000	-55.72	-50	PASS
TX-FRS	FM	СН _{м2}	40000	-55.21	-50	PASS
TX-FRS	FM	СН _{м2}	50000	-55.33	-50	PASS
TX-FRS	FM	СНм2	60000	-55.16	-50	PASS
TX-FRS	FM	СНм2	70000	-56.42	-50	PASS
TX-FRS	FM	CH _{M2}	80000	-56.26	-50	PASS
TX-FRS	FM	CH _{M2}	90000	-56.46	-50	PASS
TX-FRS	FM	СНм2	100000	-56.43	-50	PASS

Appendix F:Audio Low Pass Filter Response

Test Mode	Modulation Type	Test Channel	TEST PLOT RESULT
TX-FRS	FM	СНм1	0 -10 -20 -30 -40 -50 -60 -70 1000 10000 -00 -00 -00 -00 -00
TX-FRS	FM	СНм2	0 -10 -20 -30 -40 -50 -60 -70 1000 10000 100000 Audio Frequency(Hz) -Limit Audio Frequency Response(dB)

Appendix G:Frequency Stability Test & Temperature

Test	Modulation	Test Conditions		Frequency	error (ppm)	Limit (nnm)	Decult
Mode	Туре	Voltage	Temperature	CH _{M1}	CH _{M2}	Limit (ppm)	Result
TX-FRS	FM	VN	-30	0.253	-0.852	±2.5	PASS
TX-FRS	FM	VN	-20	0.261	-0.791	±2.5	PASS
TX-FRS	FM	VN	-10	0.262	-0.809	±2.5	PASS
TX-FRS	FM	VN	0	0.272	-0.783	±2.5	PASS
TX-FRS	FM	VN	10	0.278	-0.797	±2.5	PASS
TX-FRS	FM	VN	20	0.253	-0.774	±2.5	PASS
TX-FRS	FM	VN	30	0.260	-0.828	±2.5	PASS
TX-FRS	FM	VN	40	0.267	-0.809	±2.5	PASS
TX-FRS	FM	VN	50	0.258	-0.778	±2.5	PASS

Appendix H:Frequency Stability Test & Voltage

Test Modulation	Test Conditions		Frequency	error (ppm)	Limit (nom)	Deput	
Mode	Туре	Voltage	Temperature	CH _{M1}	CH _{M2}	Limit (ppm)	Result
TX-FRS	FM	VN	ΤN	0.253	-0.774	±2.5	PASS
TX-FRS	FM	VL	ΤN	0.245	-0.761	±2.5	PASS
TX-FRS	FM	Vн	ΤN	0.269	-0.845	±2.5	PASS

----End of Report----