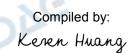
DAG	DE	Report No.: DACE240904003RF001
2r		ORT
	erican Technology Net oduct Name: Laser Ra Test Model(s).: ABL	ngefinder
Report Reference No.	: DACE240904003RF001 : 2BKIH-ABL	DAC
Applicant's Name	: American Technology Network	corp
Address	: 2400 NW 95th Avenue, Doral, I	FL 33172 USA
Testing Laboratory Address		nology Co., Ltd. ng H, Hongfa Science & Technology Park, odistrict, Bao'an District, Shenzhen,
Test Specification Standard	47 CFR Part 15.247 C63.10:2013 & KDB558074 D	01 15.247 Meas Guidance v05r02
Date of Receipt	: September 4, 2024	
Date of Test	: September 4, 2024 to October	
Data of Issue Result	: October 17, 2024 : Pass	
Testing Technology Co., Ltd. Th	hall be noted in the revision section of	written approval of Shenzhen DACE ed by Shenzhen DACE Testing Technology f the document. The test results in the

Report No.: DACE240904003RF001

Ce.

Revision History Of Report


Version Description		REPORT No.	Issue Date		
V1.0	Original	DACE240904003RF001	October 17, 2024		
	24	6			
		J.			

NOTE1:

DAG

DΔG

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Keren Huang/Test Engineer

Supervised by: Shone Im

Stone Yin/ projector Engineer

Approved by:

Tomchen

Tom Chen / Manager

0

)De

Ne

)DE

NE

AC

24C

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 2 of 53

)AC

CONTENTS

V1.0	Report No.: DACE240904003RF
	CONTENTS
I TEST SUMMARY	
GENERAL INFORMATION	
	JT)*
	ES INITS
	THE TEST
2.6 STATEMENT OF THE MEASUR	REMENT UNCERTAINTY
B EVALUATION RESULTS (EVALUA	TION)
	~~~
RADIO SPECTRUM MATTER TES	T RESULTS (RF)
	C POWER LINE
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram	ח:
4.2.1 E.U.T. Operation:	n:
4.2.2 Test Setup Diagram	n:
	PUT POWER
	OT POWER
•	ח:
4.4.2 Test Setup Diagram	n:
4.4.3 Test Data:	
4.5 EMISSIONS IN NON-RESTRICT	ED FREQUENCY BANDS
	1:
•	NATED)
-	n:
	ANDS (BELOW 1GHZ)
•	n:
	~
4.8 EMISSIONS IN FREQUENCY BA	ANDS (ABOVE 1GHz)
4.8.1 E.U.T. Operation:	

	Report No.: DACE240904003RF001
4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	
160B BANDWIDTH	
2. 99% OCCUPIED BANDWIDTH	
3. DUTY CYCLE	
4. PEAK OUTPUT POWER	45
5. Power Spectral Density	
6. BANDEDGE	
7. Spurious Emission	

NE

DAG

)DE

DAG

DAG

DAG

DAG

)AC

DAG

)De

DAG

3

DAE

DAG

DAE

DAG

DAE

-

#### **TEST SUMMARY** 1

## 1.1 Test Standards

DΔC

NE

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

## 1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement	1	47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	N/A
Occupied Bandwidth	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

)AC

)AC

Note: 1.N/A -this device(EUT) is not applicable to this testing item 2. RF-conducted test results including cable loss.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

C

ο <u>λ</u> ε -	V1.0	2			Re	port No.: DACI	5240904003RF00 ²
	RAL INFO	ORMAT	ION				
Applicant	t's Name	: Americar	n Technology Ne	twork corp			
Address		: 2400 NW	95th Avenue, D	Ooral, FL 33	172 USA		
Manufactor			lua Orata ala atao a				
Manufact Address	urer		ks Optoelectron				
Audress		<ul> <li>F10, No.3</li> <li>Guangdo</li> </ul>	3 Bldg, Dushi Zh	nigu, 19th .	JinPeng Rd, Fe	nggang , D	Dongguan,
		Guanguo	ing				
2.2 Descript	tion of Devi	ce (EUT)*					
Product N	_	Laser Rang	efinder		. 6		
	be reference:	ABL1000			200		
Series Mo		ABL1500					
Model Diff	ference:	The built-in distance is o	circuits and PCI different.	3s of the tw	o models are th	e same, but	t the testing
Trade Mai	ſk:	ATN 🔄	C				
Product D	escription:	Laser Rang	efinder			10	
Power Su	pply:	DC3.0V fro	m battery				
Operation	Frequency:	2402MHz to	2480MHz		V		
Number o	f Channels:	40					
Modulatio	n Type:	GFSK	6				
Antenna T	уре:	PCB ANTER	NNA				C
Antenna C	Gain:	5.3dBi					
Hardware	Version:	V4.0					
Software	Version:	V1.0					
	. (						
Operation	n Frequency e	ach of chan	nel				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25 🧹	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 6 of 53

Report No.: DACE240904003RF001

Test shannel	Frequency (MHz)
Test channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

6

DAG

## 2.3 Description of Test Modes

DΔG

No	Title	Description
TM1	TX mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation at lowest, middle and highest channel.

## 2.4 Description of Support Units

The EUT was tested as an independent device.

## 2.5 Equipments Used During The Test

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2023-12-12	2024-12-11			
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/			
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11			
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11			
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13			
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26			
EMI test software	EZ -EMC	EZ	V1.1.42	1				

#### **Occupied Bandwidth** Maximum Conducted Output Power

**Power Spectral Density** 

#### Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V1.0.0	1	/
RF Sensor Unit	TACHOY	TR1029-2	000001	1	/
Signal Generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal Generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 7 of 53

DAG

Band edge emissions Emissions in frequenc Emissions in frequenc	y bands (below 10			ad	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller		MF-7802		/	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13
Cable(LF)#2	Schwarzbeck	1	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-03-20	2025-03-19
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20

## 2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded u confidence level using a coverage factor of k=2.	ncertainty expressed at approximately the 95%

## 2.7 Authorizations

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
	6

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

1

1

#### Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration No.:	778666
A2LA Certificate Number:	6270.01

#### 2.8 Announcement

NE

DAC

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

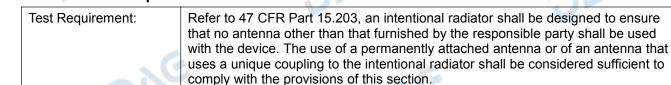
(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant(information with "*" provided by applicant). the laboratory is not responsible for the accuracy of the information provided by the client. When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

C

AC


DAG

NE

76

#### **Evaluation Results (Evaluation)** 3

## 3.1 Antenna requirement



#### 3.1.1 Conclusion:

Q

DAG

DΔG



)AC

)AC

)De

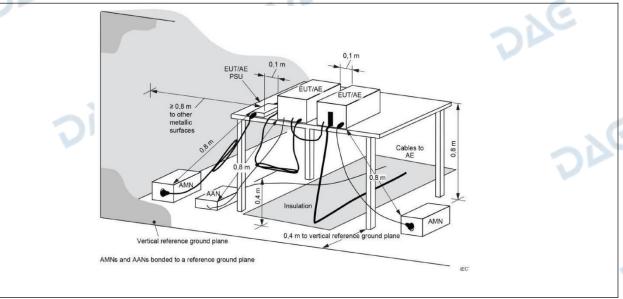
24C

1

-

#### Radio Spectrum Matter Test Results (RF) 4

## 4.1 Conducted Emission at AC power line


Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 $\mu$ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)	2				
		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
4.1.1 E.U.T. Operation:	.e		4				

#### 4.1.1 E.U.T. Operation:

DAC

Operating Envir	onment:		- DP			e
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1			V	
Final test mode:		TM1				

#### 4.1.2 Test Setup Diagram:



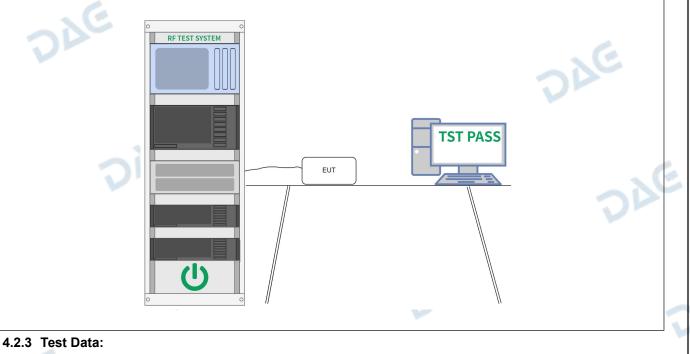
DAG

## 4.1.3 Test Data:

N/A (Not applicable to this device, it is battery powered)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 11 of 53 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

## 4.2 Occupied Bandwidth


DAC

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	<ul> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the VBW &gt;= [3 × RBW].</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</li> </ul>

#### 4.2.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1	20			6
Final test mode	:	TM1	V			
4.0.0 Teat Cat						

#### 4.2.2 Test Setup Diagram:



)AC

Please Refer to Appendix for Details.

ø

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 12 of 53

C

DAG

Report No.: DACE240904003RF001

,AC

## 4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. (alculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6

## 4.3.1 E.U.T. Operation:

Operating Enviro	onment:				NC.		
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa	~ ~
Pretest mode:		TM1		•		•	<b>NC</b>
Final test mode:		TM1					

## 4.3.2 Test Setup Diagram:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 13 of 53

Se

DAC	V1.0	Report No.: DACE240904003RF001
DAG	O O	DIE
e Di		EUT
<b>4.3.3 Test Data:</b> Please Refer to App	• • • •	DIE
102, Building H1, & 1/F., Buildin	ng H, Hongfa Science & Technology Park, Tang	tou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Report No.: DACE240904003RF001

## 4.4 Power Spectral Density

DΔC

4.4.1 E.U.T. Operation:	
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Requirement:	47 CFR 15.247(e)

6

## 4.4.1 E.U.T. Operation:

Operating Envir	onment:	J			. 6	
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1				
Final test mode:		TM1				

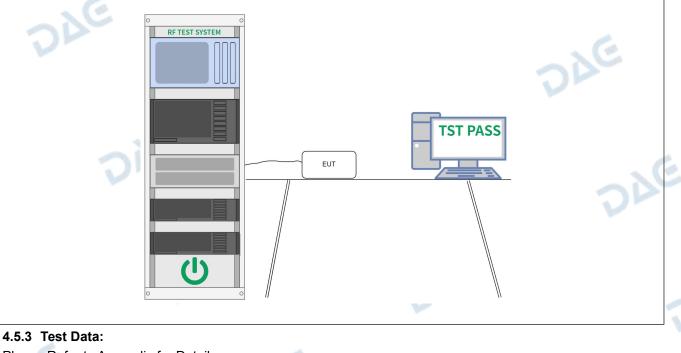
#### 4.4.2 Test Setup Diagram:

4.4.2 Test Setup Diagram:			
	RF TEST SYSTEM		E
DAC		TST PASS	DAG
			DAG
<b>4.4.3 Test Data:</b> Please Refer to Appendix fo	r Details.	DAG	
102, Building H1, & 1/F., Building H, Hongfa	a Science & Technology Park, Tangtou Connunity, Shiya	n Subdistrict, Bao'an District, Shenzh	en, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

## 4.5 Emissions in non-restricted frequency bands


Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

#### 4.5.1 E.U.T. Operation:

DAG

Operating Environment:						
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1	20			6
Final test mode: T		TM1	V			
4 5 0 Tast Osta						

#### 4.5.2 Test Setup Diagram:



)AC

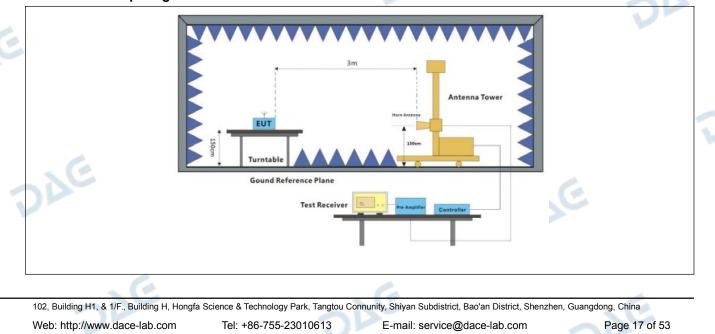
Please Refer to Appendix for Details.

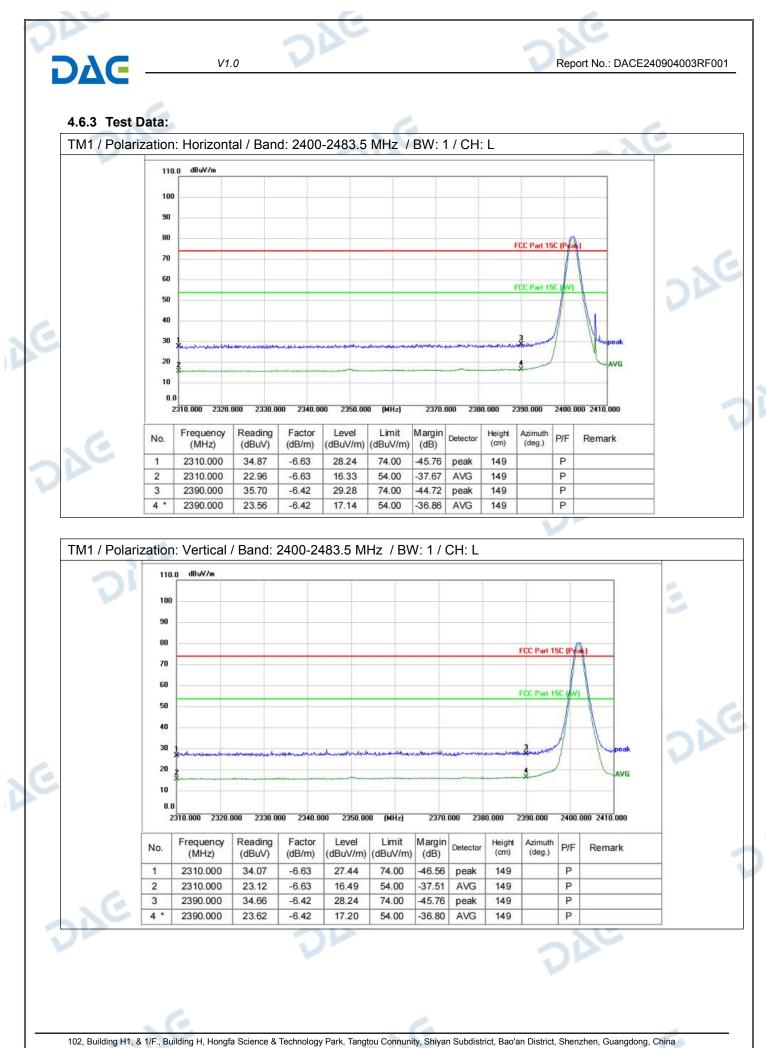
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 16 of 53 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

e

## 4.6 Band edge emissions (Radiated)

DγG

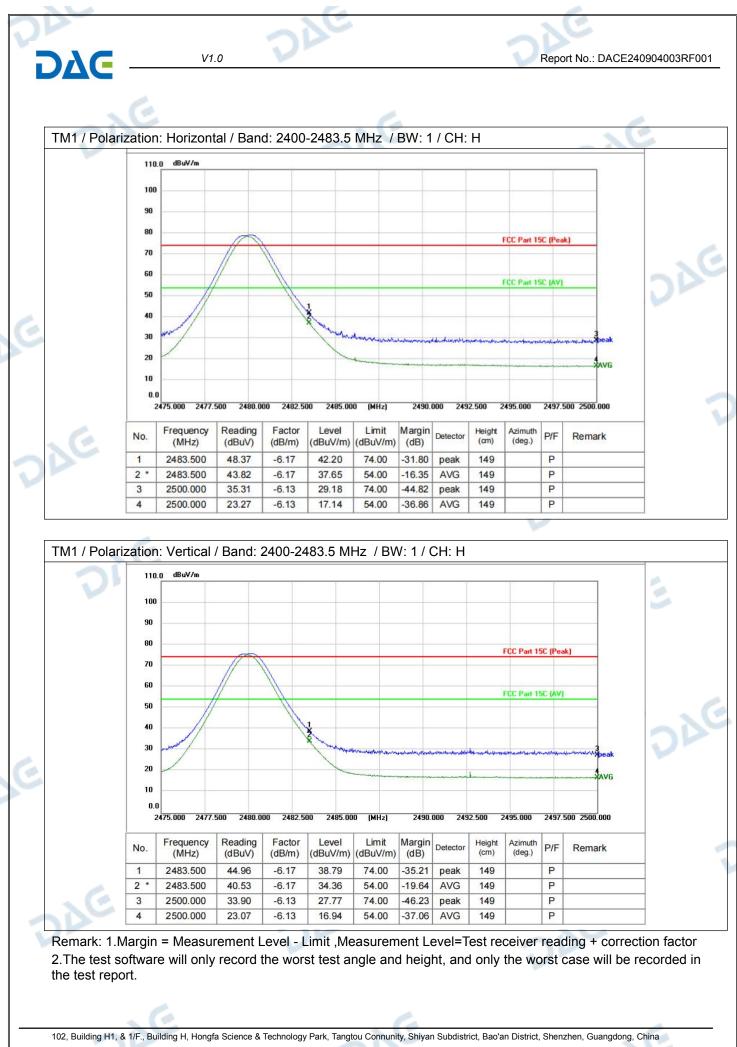

Test Requirement:		(d), In addition, radiated emissio	
		ined in § 15.205(a), must also co 1 in § 15.209(a)(see § 15.205(c))	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
AC	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands and 15.241. In the emission table ab The emission limits sho employing a CISPR qua 110–490 kHz and above	a paragraph (g), fundamental em er this section shall not be locate , 174-216 MHz or 470-806 MHz. is permitted under other sections ove, the tighter limit applies at th wn in the above table are based asi-peak detector except for the t e 1000 MHz. Radiated emission nents employing an average det	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	10
4.6.1 E.U.T. Operation			20


6

#### 4.6.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1			6	
Final test mode:	<b>OP</b>	TM1			200	
•						

#### 4.6.2 Test Setup Diagram:






Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com



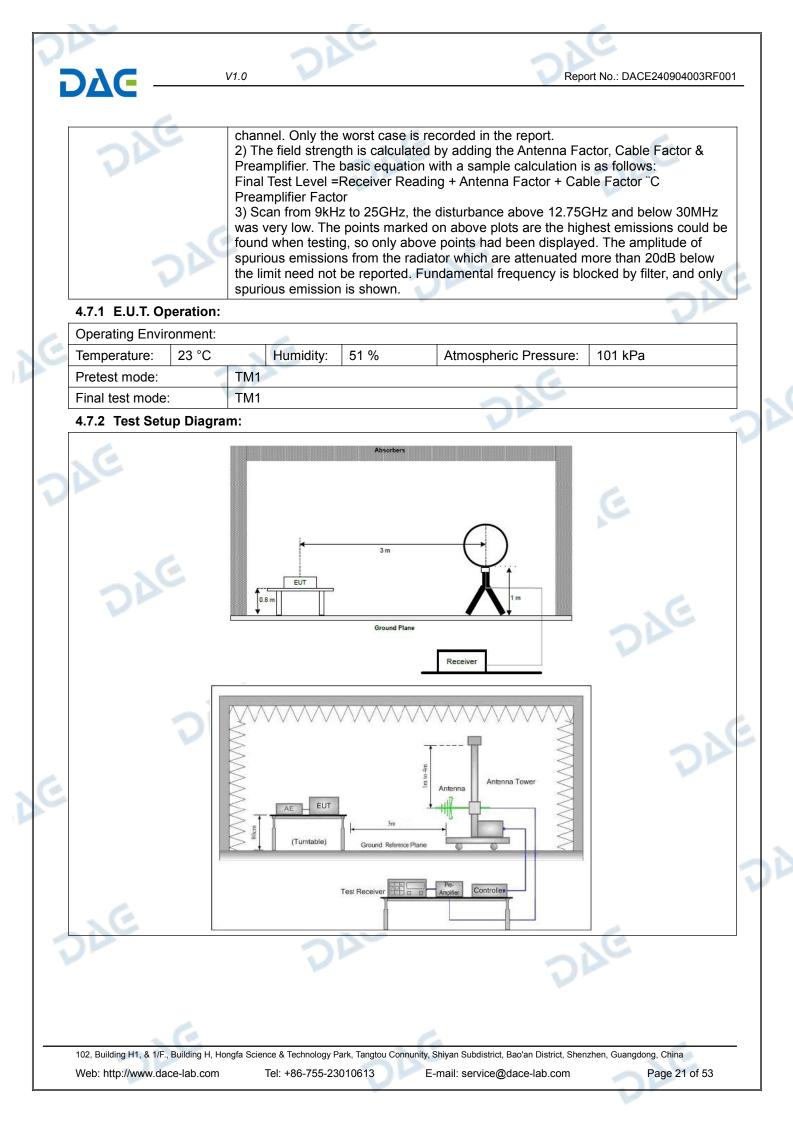
Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 19 of 53

DΔC


#### Report No.: DACE240904003RF001

< C

## 4.7 Emissions in frequency bands (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiate emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
	** Except as provided in p radiators operating under 54-72 MHz, 76-88 MHz, 1 these frequency bands is and 15.241. In the emission table abov	aragraph (g), fundamental this section shall not be loc 74-216 MHz or 470-806 MI	emissions from intentional ated in the frequency bands Hz. However, operation within ons of this part, e.g., §§ 15.23 at the band edges.		
Test Method:	employing a CISPR quasi 110–490 kHz and above 1	peak detector except for th 000 MHz. Radiated emissi nts employing an average on 6.6.4	ne frequency bands 9–90 kHz on limits in these three bands		
Procedure:	above the ground at a 3 o 360 degrees to determine b. For above 1GHz, the El above the ground at a 3 m degrees to determine the c. The EUT was set 3 or 1 which was mounted on the d. The antenna height is v determine the maximum v polarizations of the antenn e. For each suspected em the antenna was tuned to below 30MHz, the antenna was turned from 0 degree	r 10 meter semi-anechoic of the position of the highest JT was placed on the top of neter fully-anechoic chambe position of the highest radia 0 meters away from the int e top of a variable-height and aried from one meter to fou alue of the field strength. B ha are set to make the mean ission, the EUT was arrang heights from 1 meter to 4 r a was tuned to heights 1 m is to 360 degrees to find the	of a rotating table 1.5 meters er. The table was rotated 360 ation. erference-receiving antenna, ntenna tower. ur meters above the ground to oth horizontal and vertical surement. ged to its worst case and then neters (for the test frequency eter) and the rotatable table e maximum reading.		
	Bandwidth with Maximum g. If the emission level of t specified, then testing cour reported. Otherwise the en- tested one by one using p reported in a data sheet. h. Test the EUT in the low i. The radiation measurem Transmitting mode, and for	he EUT in peak mode was ld be stopped and the peal nissions that did not have eak, quasi-peak or average	10dB lower than the limit c values of the EUT would be 10dB margin would be re- e method as specified and the annel, the Highest channel. Z axis positioning for which it is the worst case.		

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 20 of 53



DΔC V1.0 Report No.: DACE240904003RF001 4.7.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L 80.0 dBuV/m 70 60 FCC Part 15B Class B RE 3m 50 40 6 30 5 20 10 0.0 30.000 1000.000 60.00 (MHz) 300.00 Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (dB/m) (MHz) (dBuV) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 30.4238 26.07 0.54 26.61 -13.39 P 1 40.00 QP 100 2 123.2655 27.71 -5.28 22.43 43.50 -21.07 QP 100 P 3 285.9778 27.10 -5.54 21.56 46.00 -24.44 QP 100 P 4 356.6758 27.30 -4.39 22.91 46.00 -23.09 QP 100 P 528.2458 27.43 -1.08 26.35 46.00 -19.65 QP 100 P 5 * 32.93 P 6 912.8620 27.42 5.51 46.00 -13.07 QP 100

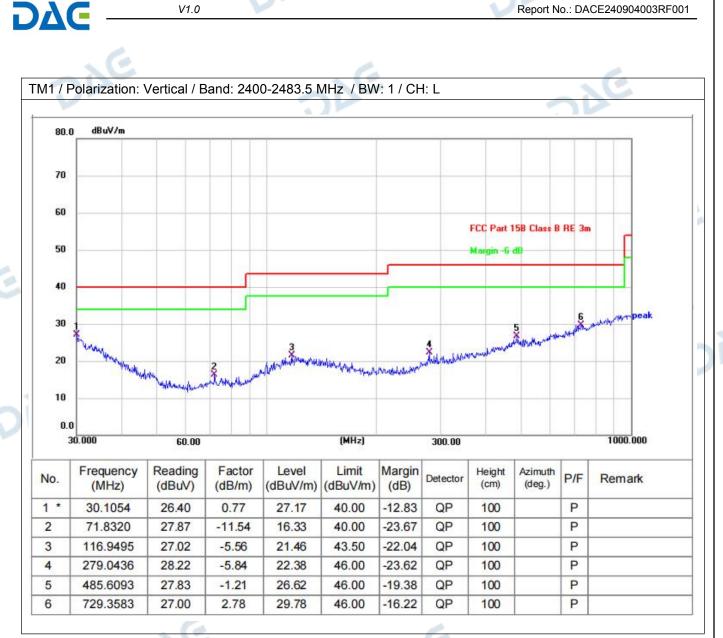
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

)De

24C

)De


\$

DAG

1

)AC

Report No.: DACE240904003RF001



Remark: 1.Margin = Measurement Level - Limit ,Measurement Level=Test receiver reading + correction factor 2. The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

De

)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 53

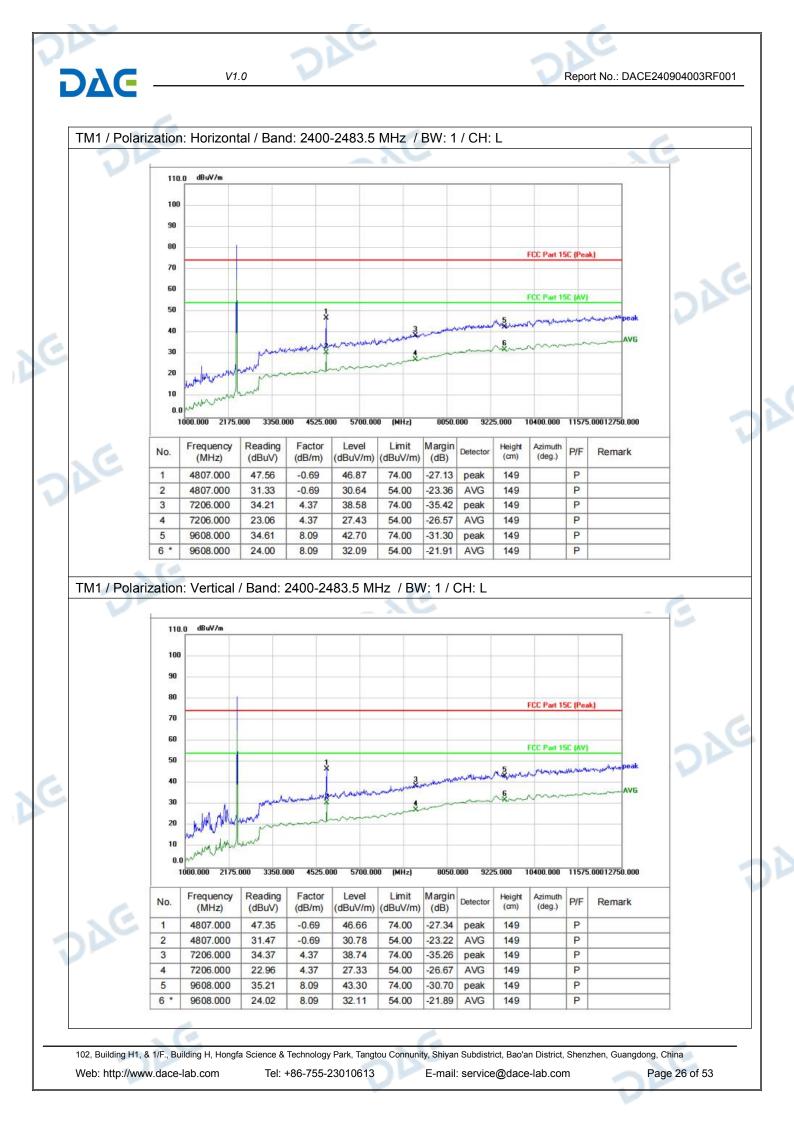
NC

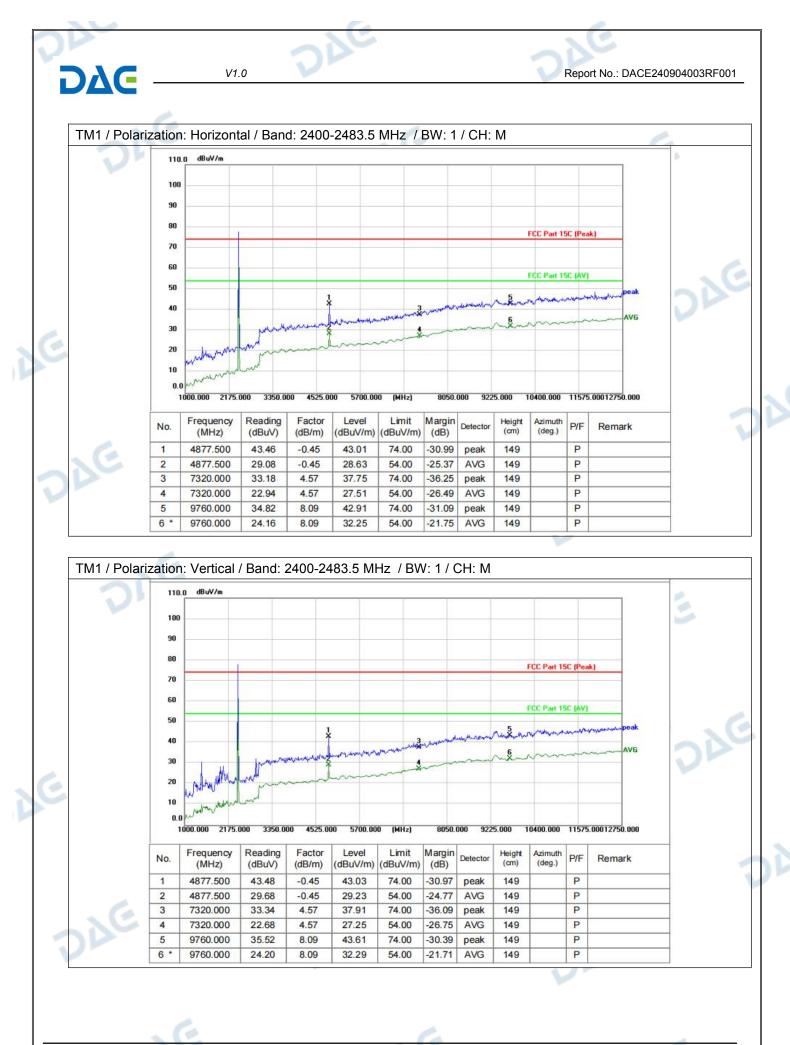
DΔC

Report No.: DACE240904003RF001

#### 4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	and 15.241. In the emission table a The emission limits sh employing a CISPR qu 110–490 kHz and abov	bove, the tighter limit applic own in the above table are l lasi-peak detector except fo	based on measurements or the frequency bands 9–90 kHz, ission limits in these three bands			
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02				
Procedure:	above the ground at a 360 degrees to determ b. For above 1GHz, the above the ground at a degrees to determine to c. The EUT was set 3 of which was mounted or d. The antenna height determine the maximu polarizations of the ant e. For each suspected the antenna was tuned below 30MHz, the anter was turned from 0 deg f. The test-receiver sys Bandwidth with Maxim g. If the emission level specified, then testing reported. Otherwise th tested one by one usin reported in a data shee h. Test the EUT in the i. The radiation measu Transmitting mode, an j. Repeat above procee Remark: 1) For emission below	3 or 10 meter semi-anecho ine the position of the highe e EUT was placed on the to 3 meter fully-anechoic char the position of the highest ra- or 10 meters away from the n the top of a variable-heigh is varied from one meter to m value of the field strength tenna are set to make the m emission, the EUT was arr d to heights from 1 meter to enna was tuned to heights 1 rees to 360 degrees to find stem was set to Peak Detect um Hold Mode. of the EUT in peak mode w could be stopped and the p e emissions that did not hav the peak, quasi-peak or aver- et. lowest channel, the middle rements are performed in X d found the X axis position dures until all frequencies m	pp of a rotating table 1.5 meters nber. The table was rotated 360 adiation. interference-receiving antenna, t antenna tower. four meters above the ground to n. Both horizontal and vertical neasurement. anged to its worst case and then 4 meters (for the test frequency of meter) and the rotatable table the maximum reading. t Function and Specified vas 10dB lower than the limit eak values of the EUT would be ve 10dB margin would be re- age method as specified and the channel, the Highest channel. C, Y, Z axis positioning for ng which it is the worst case. neasured was complete.			


Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com


	<b>ΟΔΕ</b> –		V1.0			Repo	ort No.: DACE2	40904003RF0
	DAC		Prear Final Prear 3) Sc was v founc spurie the lin	nplifier. The Test Level = nplifier Facto an from 9kH very low. The when testin ous emission	basic equation v Receiver Readir or z to 25GHz, the points marked o g, so only above is from the radia be reported. Fur	by adding the Antenna Fac with a sample calculation is ing + Antenna Factor + Cab disturbance above 12.75G on above plots are the high e points had been displaye tor which are attenuated m indamental frequency is blo	s as follows: ble Factor "C GHz and belo nest emission d. The amplo nore than 20	ow 30MHz ons could be itude of odB below
	4.8.1 E.U.T. Op	oration	spund	ous emission	i is snown.			
	•							22
	Operating Environ	23 °C		Humidity:	51 %	Atmospheric Pressure:	101 kPa	
C	Pretest mode:	20 0	TM1	riamaty.	51 /0		ισικια	
	Final test mode:	-	TM1					
	4.8.2 Test Setu							
	DA		<u> </u>	Gound Refer	ence Plane Test Receiver	rre Anglifier Controller		
	4.8.3 Test Data	24	E		1	AC		24

)D



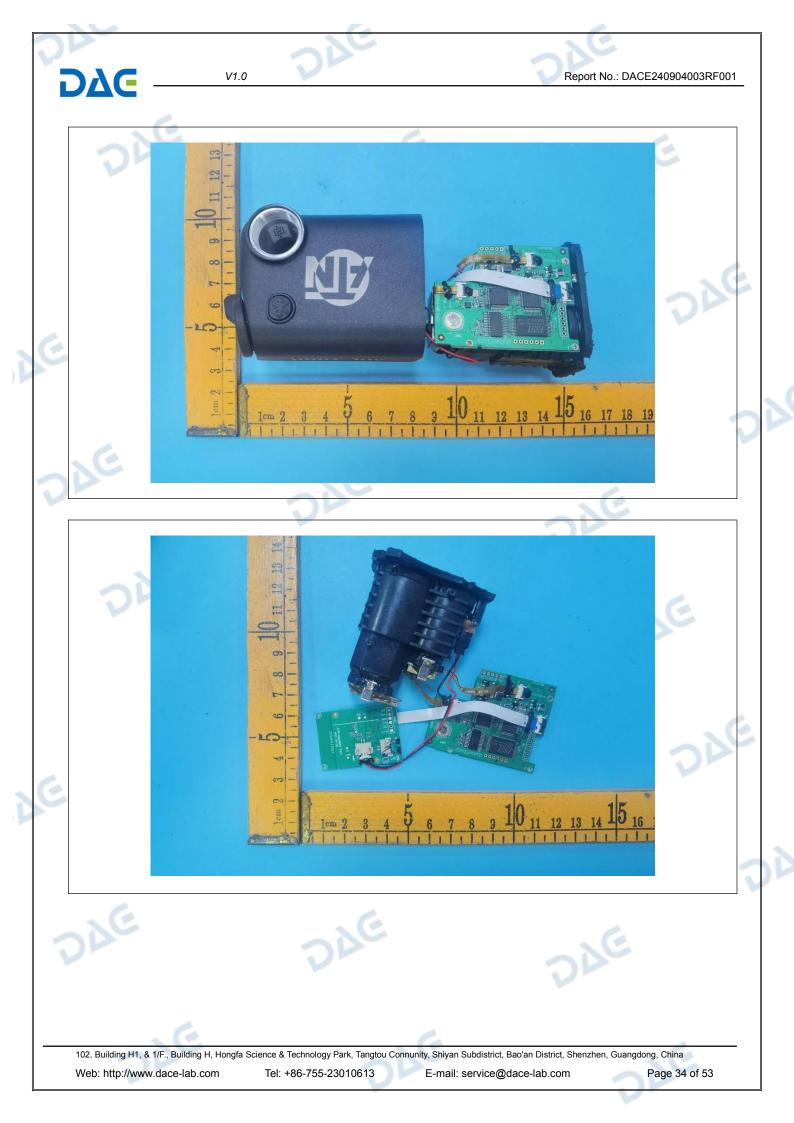


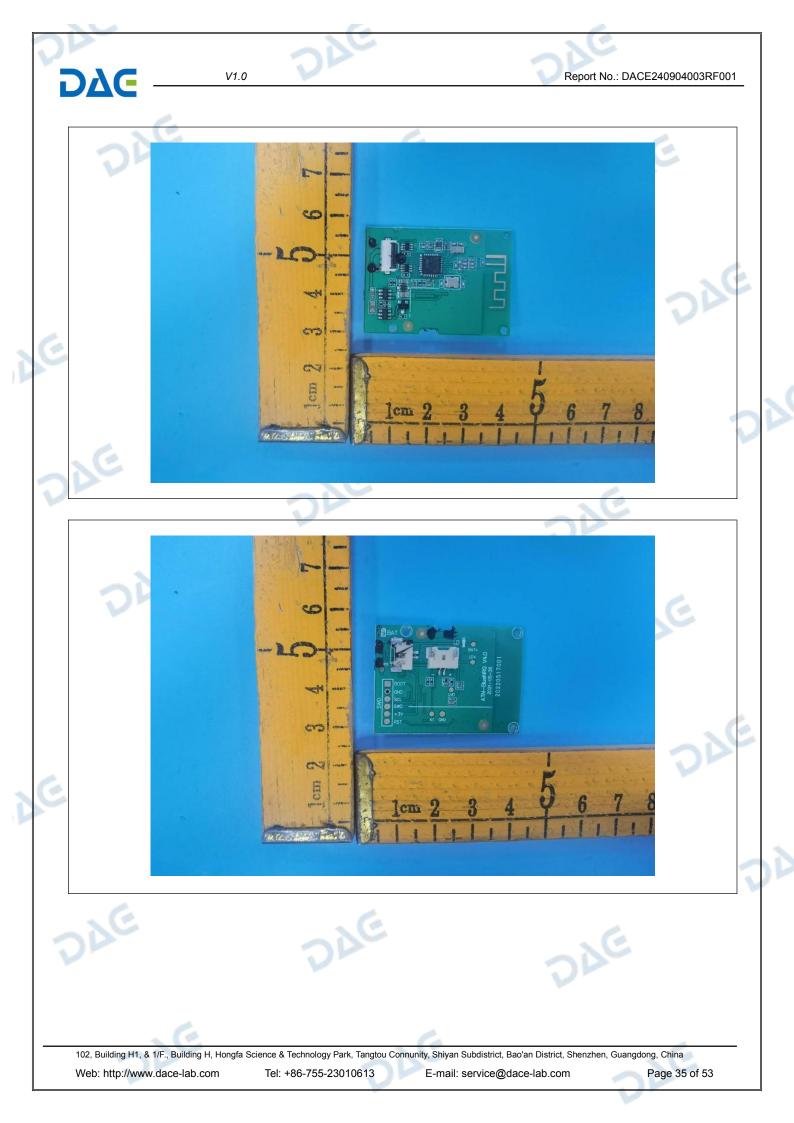
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

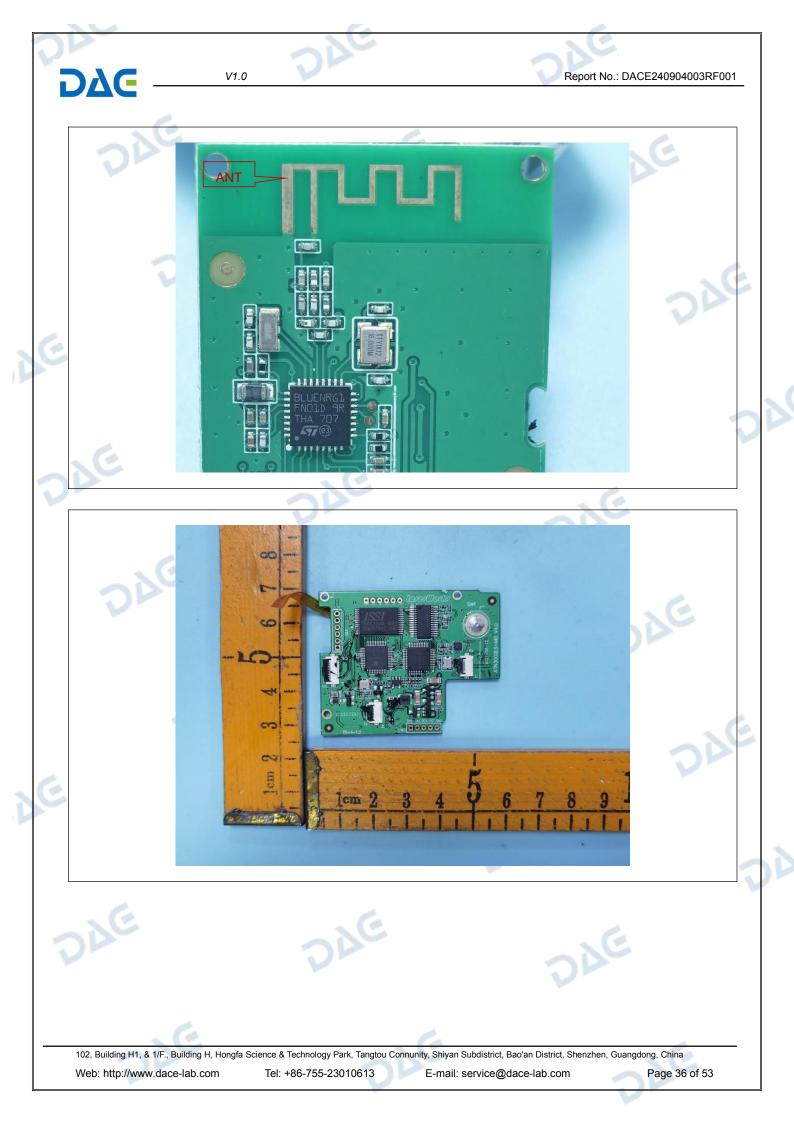


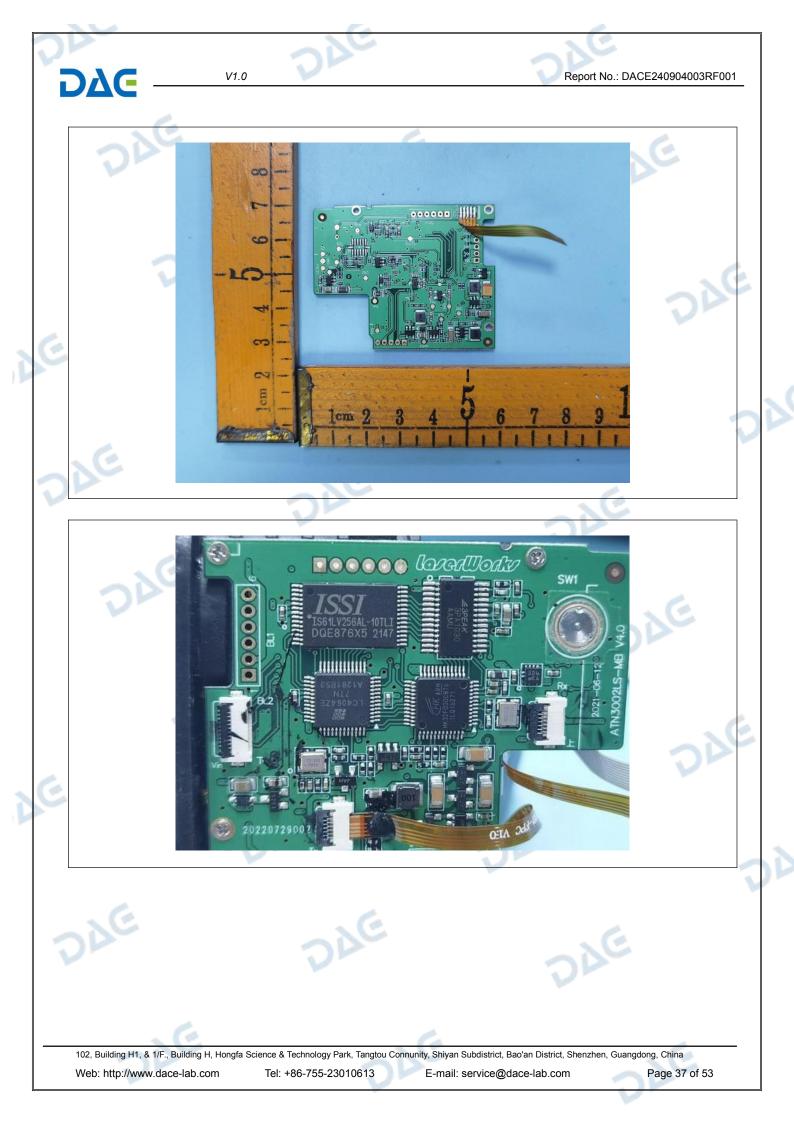
2. The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 28 of 53
















DAG

DAG

V1.0

# Appendix


### 1. -6dB Bandwidth

1

DΔG

DAG

Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	691.44	500	Pass
NVNT 🔰	ANT1	1Mbps	2440.00	692.25	500	Pass
NVNT	ANT1	1Mbps	2480.00	686.17	500	Pass



102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.comPage 39 of 53

)AC



Report No.: DACE240904003RF001

#### 2. 99% Occupied Bandwidth

DAC

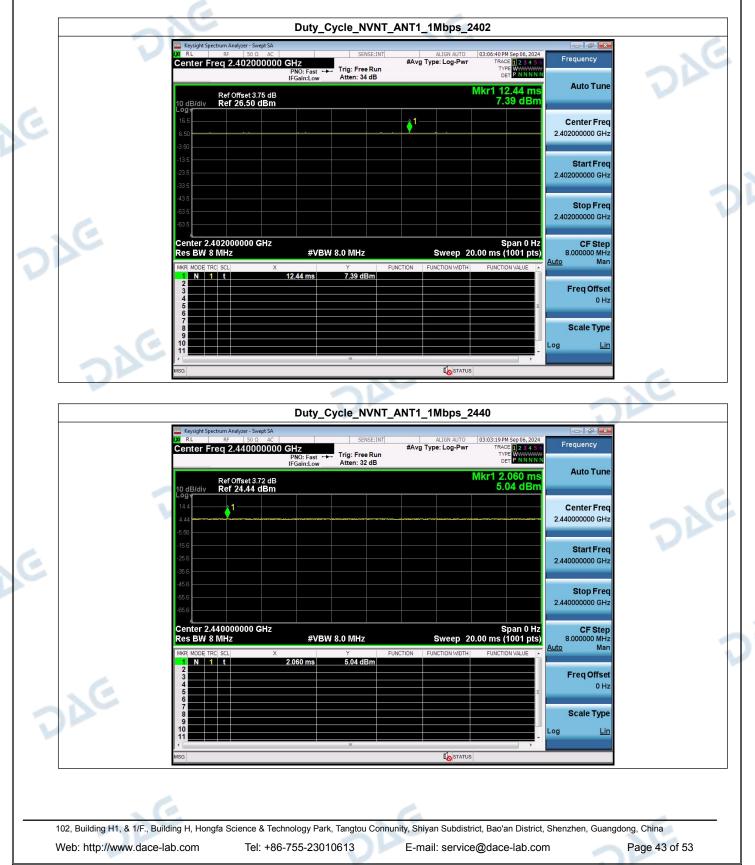
Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.041
NVNT	ANT1	1Mbps	2440.00	1.039
NVNT	ANT1	1Mbps	2480.00	1.037

C



Web: http://www.dace-lab.com

E-mail: service@dace-lab.com


	V1.0	
DVC —	V1.0	Report No.: DACE240904003RF001
24	99%_Occupied_Bandwidth_NVNT_ANT1_1Mbps	_2480
	Keysight Spectrum Analyzer - Occupied BW           W         RL         RF         50.0         AC         SENSE:INT         ALIGN AUTO         02:52:51           Center Freq: 2.480000000 GHz         Center Freq: 2.480000000 GHz         Radio St	PM Sep 06, 2024 d' None Frequency
	Trig: Free Run Avg Hold: 10/10	evice: BTS
	Ref Offset 3.85 dB 10 dB/div Ref 12.70 dBm Log	
	270	2.48000000 GHz
V	17.3	
6. I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	-67.3 -67.3	
2	-773 Center 2.48 GHz S	pan 3 MHz
	#Res BW 30 kHz #VBW 100 kHz Swe	ep 3.2 ms Auto Man
	Occupied Bandwidth Total Power 10.1 dBm 1.0369 MHz	Freq Offset
	Transmit Freq Error       -5.800 kHz       % of OBW Power       99.00 %         x dB Bandwidth       1.281 MHz       x dB       -26.00 dB	0 Hz
xe		
	an disamu	
DAC		
	e.	

Report No.: DACE240904003RF001

## 3. Duty Cycle

DΔC

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480.00	100	0.00



DAG -	V1.0	R	eport No.: DACE240904003RF00
- De		/NT_ANT1_1Mbps_2480	.E
	Center Freq 2.480000000 GHz IFGain:Low Trig: Free IFGain:Low No: Fast → Trig: Free		Frequency Auto Tune
	Ref Offset 3.85 dB 10 dB/div Ref 22.70 dBm Log	Mkr1 15.06 ms 3.62 dBm	Center Freq
2	2.70 -7.30 -7.31 -7.3		2.48000000 GHz Start Freq 2.480000000 GHz
	-373 -473 -573		2.48000000 GHz Stop Freq 2.48000000 GHz
-	67.3 Center 2.480000000 GHz Res BW 8 MHz #VBW 8.0 MHz	Span 0 Hz Sweep 20.00 ms (1001 pts)	CF Step 8.00000 MHz
	MKR         MODE         TRCI         SCL         X         Y           1         N         1         t         15.06 ms         3.62 dB           2         3         4         4         4         4	FUNCTION FUNCTION WIDTH FUNCTION VALUE	uto Man Freq Offset 0 Hz
LE.	5 6 7 8 9 9		Scale Type
DAG	11	Lostatus	og <u>Lin</u>
		.C.	

D

Report No.: DACE240904003RF001

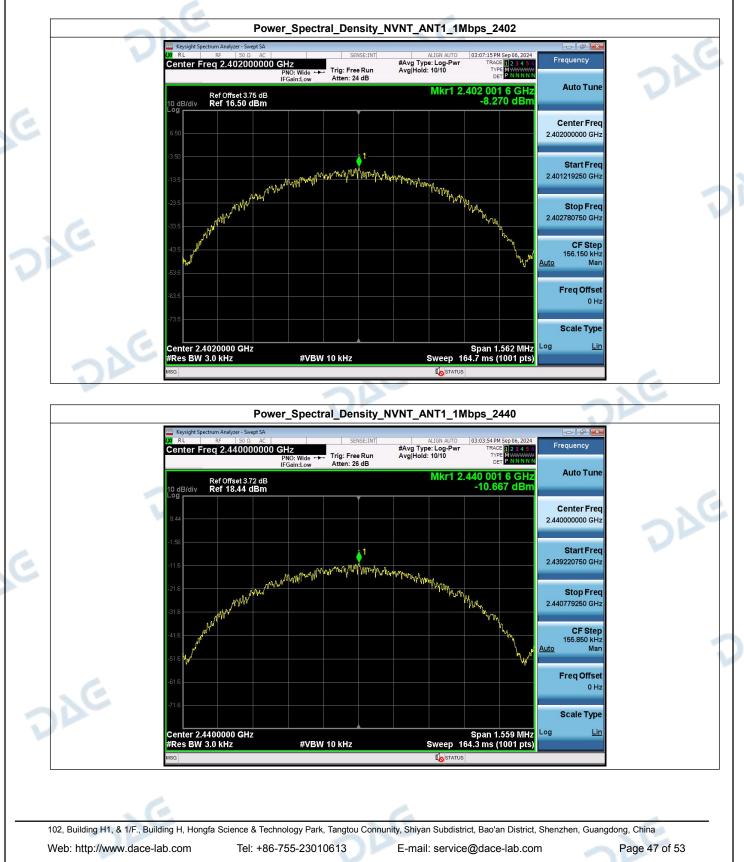
#### 4. Peak Output Power

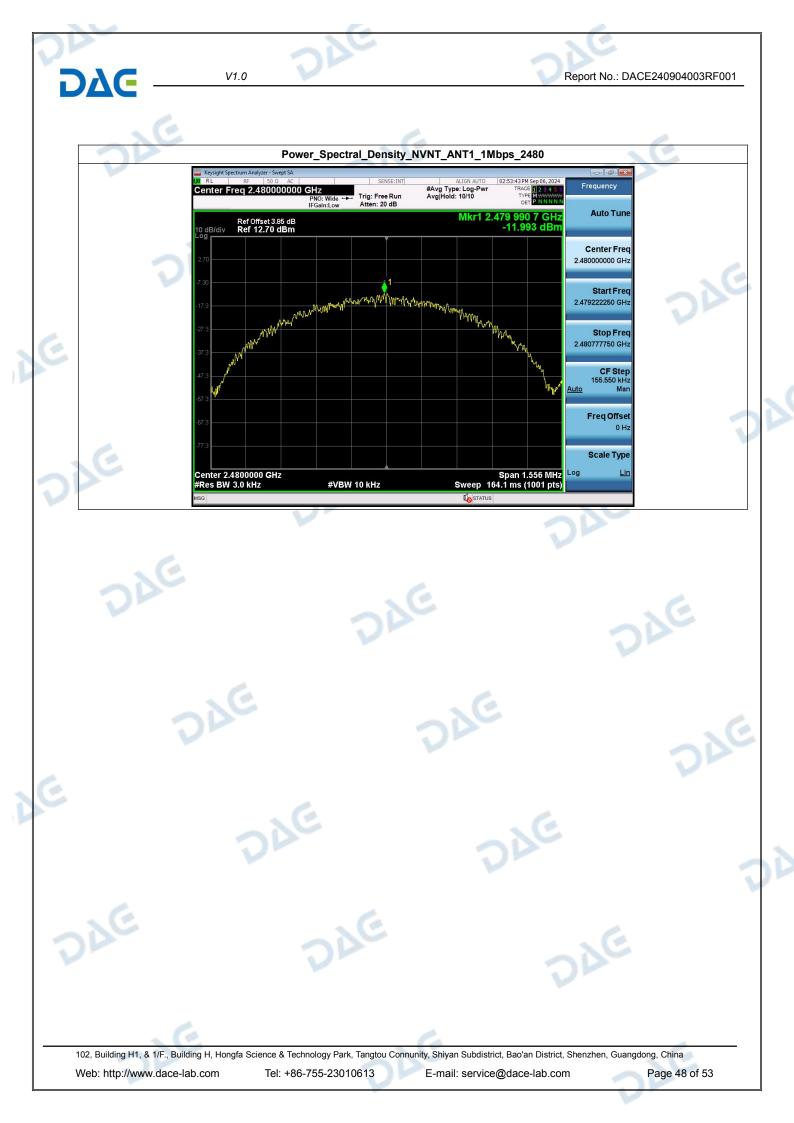
DAC

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	7.35	5.44	1000	Pass
NVNT	ANT1	1Mbps	2440.00	5.03	3.18	1000	Pass
NVNT	ANT1	1Mbps	2480.00	3.60	2.29	1000	Pass



<b>D</b> ΔC —	Peak_Output_Power_N	NT ANT1 1Mbps 2480	
LXI.	Keysight Spectrum Analyzer - Swept SA           RL         RF         50 Ω         AC         SENSE:INT           enter Freq 2.480000000 GHz	ALIGN AUTO 02:53:29 PM Sep 06, 2024	- 9 X
	PN0: Fast ++ Trig: Free Run IFGain:Low Atten: 30 dB Ref Offset 3.85 dB	Avg Hold: 10/10 TYPE WWWWW DEF WNNNN Mkr1 2.479 802 GHz 3.602 dBm	Auto Tune
L	2 dB/div Ref 22.70 dBm		enter Freq
2	.70		
	73	2.47	Start Freq Stop Freq
6	7.3	2.48	Stop Freq 0000000 GHz
	7.3	Auto	CF Step 600.000 kHz Man
	73		Freq Offset
-6	73		Scale Type
	enter 2.480000 GHz Res BW 3.0 MHz #VBW 8.0 MHz	Span 6.000 MHz Sweep 1.000 ms (1001 pts)	Lin
	20-		<u>e</u>
	<i>C</i> .		
			1


Report No.: DACE240904003RF001


### 5. Power Spectral Density

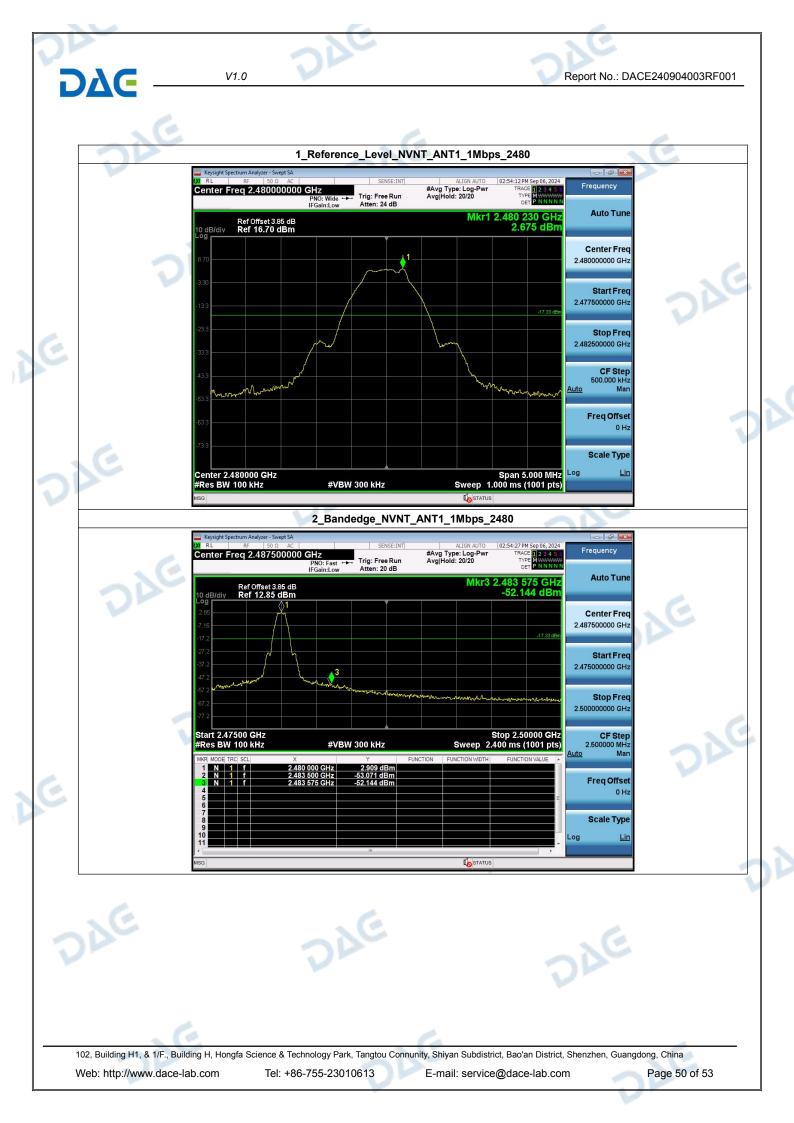
DAG

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-8.27	8	Pass
NVNT	ANT1	1Mbps	2440.00	-10.67	8	Pass
NVNT	ANT1	1Mbps	2480.00	-11.99	8	Pass

C






Report No.: DACE240904003RF001

#### 6. Bandedge

DΔC

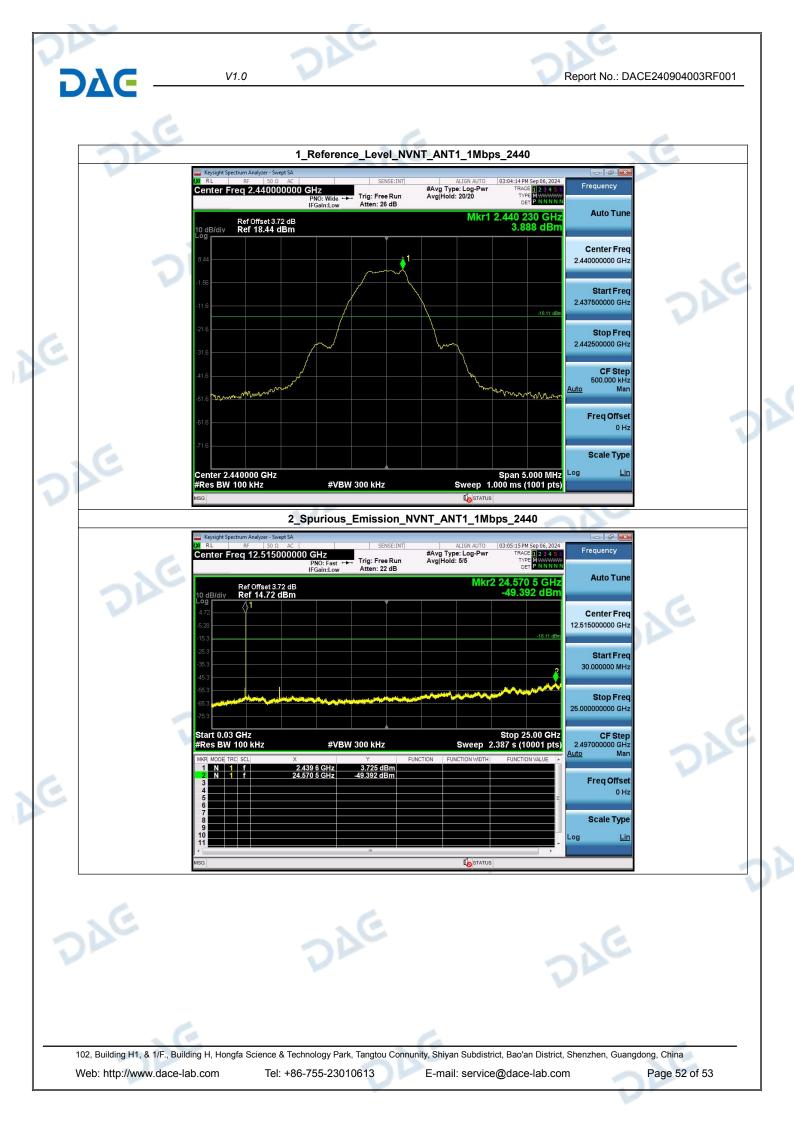
		-		A 19			
Condition	Antenna	Rate	TX_Frequency (MHz)	Max. Mark Frequency (MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.965	-46.851	-13.732	Pass
NVNT	ANT1	1Mbps	2480.00	2483.575	-52.144	-17.325	Pass

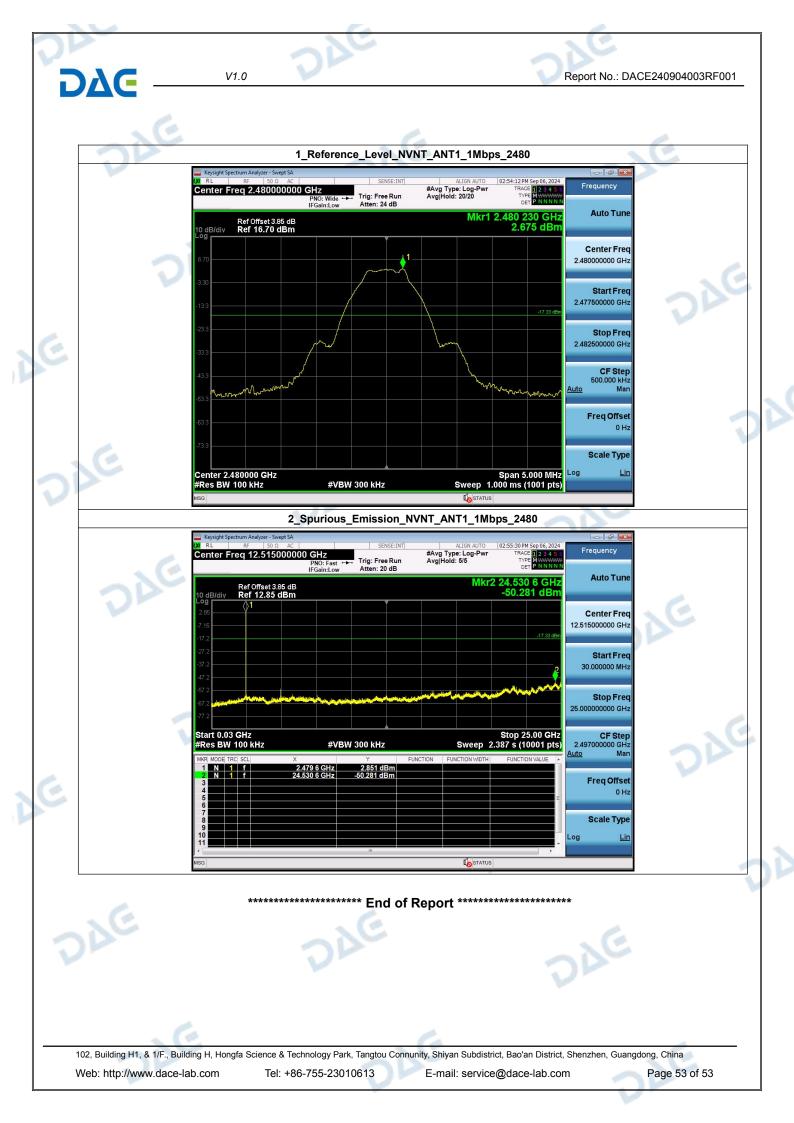




Report No.: DACE240904003RF001

#### 7. **Spurious Emission**


DΔC


Condition	Antenna	Rate	TX_Frequency(MHz)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1Mbps	2402.00	-47.239	-13.732	Pass
NVNT	ANT1	1Mbps	2440.00	-49.392	-16.112	Pass
NVNT	ANT1	1Mbps	2480.00	-50.281	-17.325	Pass

C



Page 51 of 53



