## **EMC Test Report** ## Application for Class II Permissive Change/Reassessment # Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C Model: RS9110-N-11-22 IC CERTIFICATION #: 9849A- RS9110N1122 FCC ID: ZKSRS9110N1122 APPLICANT: Safemine Ltd. Lindenstrasse 4 Baar 6340, Switzerland TEST SITE(S): National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435 IC SITE REGISTRATION #: 2845B-7 REPORT DATE: May 21, 2014 REISSUE DATE: October 7, 2014 FINAL TEST DATES: March 28 and 31 and April 3 and 15, 2014 TOTAL NUMBER OF PAGES: 66 PROGRAM MGR / TECHNICAL REVIEWER: David W. Bare Chief Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER: David Guidotti Senior Technical Writer National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full ## **REVISION HISTORY** | Rev# | Date | Comments | Modified By | |------|-------------------|--------------------------------------------------------------------------------------------|-------------| | - | May 21, 2014 | First release | - | | 1 | September 9, 2014 | Reissued to update modifications section on page 8 and update model name throughout report | David Bare | | 2 | October 7, 2014 | Reissued to add power measurements | David Bare | ## TABLE OF CONTENTS | REVISION HISTORY | 2 | |------------------------------------------------------------------------------------------------------------------------------------------|----| | TABLE OF CONTENTS | | | SCOPE | | | OBJECTIVE | | | STATEMENT OF COMPLIANCE | | | DEVIATIONS FROM THE STANDARDS | | | | | | TEST RESULTS SUMMARYDIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) | | | MEASUREMENT UNCERTAINTIES | | | | | | EQUIPMENT UNDER TEST (EUT) DETAILS | | | GENERALANTENNA SYSTEM | | | ENCLOSURE | | | MODIFICATIONS | | | SUPPORT EQUIPMENT | | | EUT INTERFACE PORTS | | | EUT OPERATION | | | PROPOSED MODIFICATION DETAILS | | | GENERAL | | | TEST SITE | | | GENERAL INFORMATION | | | CONDUCTED EMISSIONS CONSIDERATIONS | | | RADIATED EMISSIONS CONSIDERATIONS | | | MEASUREMENT INSTRUMENTATION | | | RECEIVER SYSTEM | | | INSTRUMENT CONTROL COMPUTER | | | LINE IMPEDANCE STABILIZATION NETWORK (LISN) | | | FILTERS/ATTENUATORS | | | ANTENNAS | 11 | | ANTENNA MAST AND EQUIPMENT TURNTABLE | | | INSTRUMENT CALIBRATION | 11 | | TEST PROCEDURES | 12 | | EUT AND CABLE PLACEMENT | | | CONDUCTED EMISSIONS | | | RADIATED EMISSIONS | | | CONDUCTED EMISSIONS FROM ANTENNA PORT | | | BANDWIDTH MEASUREMENTS | | | SPECIFICATION LIMITS AND SAMPLE CALCULATIONS | | | CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS | | | RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS | | | OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS | | | TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS | 18 | | SAMPLE CALCULATIONS - CONDUCTED EMISSIONS | 18 | | SAMPLE CALCULATIONS - RADIATED EMISSIONS | | | SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION | 20 | | APPENDIX A TEST EQUIPMENT CALIBRATION DATA | | | APPENDIX B TEST DATA | | | END OF REPORT | 23 | | RIVITIER KREIK! | n. | Report Date: May 21, 2014 Reissue Date: October 7, 2014 #### **SCOPE** An electromagnetic emissions test has been performed on the Safemine Ltd. model RS9110-N-11-22, pursuant to the following rules: Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures: ANSI C63.10-2009 FCC DTS Measurement Guidance KDB558074 The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards. Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization. Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance. #### **OBJECTIVE** The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements. Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements. Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured. Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.). #### STATEMENT OF COMPLIANCE The tested sample of Safemine Ltd. model RS9110-N-11-22 complied with the requirements of the following regulations: Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report. The test results recorded herein are based on a single type test of Safemine Ltd. model RS9110-N-11-22 and therefore apply only to the tested sample. The sample was selected and prepared by Lukas Herzog of Safemine Ltd. #### **DEVIATIONS FROM THE STANDARDS** No deviations were made from the published requirements listed in the scope of this report for the tests performed. #### TEST RESULTS SUMMARY ### DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) | FCC<br>Rule Part | RSS<br>Rule Part | Description | Measured Value /<br>Comments | Limit / Requirement | Result | |-----------------------|-----------------------------|------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|----------| | 15.247(a) | RSS 210<br>A8.2 | Digital Modulation | No change from original filing | System must utilize a digital transmission technology | Complies | | 15.247 (a)<br>(2) | RSS 210<br>A8.2 (1) | 6dB Bandwidth | No change from original filing | >500kHz | Complies | | 15.247 (b)<br>(3) | RSS 210<br>A8.2 (4) | Output Power (multipoint systems) | 802.11b: 9.6 dBm<br>802.11g: 14.0 dBm<br>802.11n20: 14.3 dBm | 1Watt, EIRP limited to<br>4 Watts. | Complies | | 15.247(d) | RSS 210<br>A8.2 (2) | Power Spectral Density | Not performed as power is less than original filing | 8dBm/3kHz | Complies | | 15.247(c) | RSS 210 A8.5 | Antenna Port Spurious<br>Emissions 30MHz – 25<br>GHz | Not performed as power is less than original filing | < -20dBc | Complies | | 15.247(c) /<br>15.209 | RSS 210 A8.5 | Radiated Spurious<br>Emissions<br>30MHz – 25 GHz | 53.9 dBµV/m @ 4924.0<br>MHz (-0.1 dB) | 15.207 in restricted<br>bands, all others<br>< -20dBc | Complies | | 15.203 | - | RF Connector | No change from original filing | Unique or integral antenna required | Complies | | 15.207 | RSS GEN<br>Table 4 | AC Conducted Emissions | Not performed as power is less than original filing | Refer to page 16 | Complies | | - | RSP 100<br>RSS GEN<br>4.6.1 | 99% Bandwidth | Not performed as power is less than original filing | Information only | N/A | ### **MEASUREMENT UNCERTAINTIES** ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34. | Measurement Type | Measurement Unit | Frequency Range | Expanded<br>Uncertainty | |------------------------------------|------------------|-------------------|-------------------------| | Dadiated emission (field strangth) | dBuV/m | 25 to 1000 MHz | ± 3.6 dB | | Radiated emission (field strength) | ασμν/π | 1000 to 40000 MHz | ± 6.0 dB | #### EQUIPMENT UNDER TEST (EUT) DETAILS #### **GENERAL** The Safemine Ltd. model RS9110-N-11-22 is an 802.11 compliant 2.4 GHz band Wi-Fi module. Since the EUT could be placed in any position in an end product, it was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 3.3Vdc supplied from the host. The sample was received on March 18, 2014 and tested on March 28 and 31 and April 3 and 15, 2014. The EUT consisted of the following component(s): | Company | Model | Description | Serial Number | FCC ID | |----------|----------------|--------------|---------------|----------------| | SafeMine | RS9110-N-11-22 | Wi-Fi Module | P07-2812 | ZKSRS9110N1122 | #### ANTENNA SYSTEM The EUT antenna is either a MobileMark MGW-301-3C3J2C-WHT-138-SP-253 or SMW-301-3C3J2C-WHT-8-SP-192. The MGW-301-3C3J2C-WHT-138-SP-253 is a Multi-band Surface Magnet Mt. antenna. The SMW-301-3C3J2C-WHT-8-SP-192 is a surface mount antenna. Both have a 5dBi gain in the 2.4 GHz band. These antennas are also sold as SAFEmine branded models QF037 and QF036. The antenna connects to the EUT via a non-standard u.FL antenna connector, thereby meeting the requirements of FCC 15.203. #### **ENCLOSURE** The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer. #### **MODIFICATIONS** No modifications were made to the EUT during the time the product was at NTS Silicon Valley. #### SUPPORT EQUIPMENT The following equipment was used as support equipment for testing: | Company | Model | Description | Serial Number | FCC ID | |-----------------|-----------------|-------------|---------------|--------| | Redpine Signals | RS9110-N-11-22- | Test Board | - | - | | | 02EVB | | | | The following equipment was used as remote support equipment for emissions testing: | Company | Model | Description | Serial Number | FCC ID | |----------------|----------------|----------------|---------------|--------| | MSI | U100(MS-6837D) | Laptop | - | - | | Not on Adapter | 0025A2040 | AC Adapter | A30836088724 | - | | Samsung | GB4943-2001 | USB AC Adapter | - | - | Reissue Date: October 7, 2014 Report Date: May 21, 2014 **EUT INTERFACE PORTS** ### The I/O cabling configuration during testing was as follows: | Port | Connected To | | Cable(s) | | |---------|----------------------|-------------|------------------------|-----------| | ron | Connected 10 | Description | Shielded or Unshielded | Length(m) | | RF Port | Antenna (Wifi cable) | Coaxial | Shielded | 3.5 | | Port | Connected To | Cable(s) | | | | | |---------------------|--------------------------------|----------------------------|------------------------|-----------|--|--| | 1 011 | Connected 10 | Description | Shielded or Unshielded | Length(m) | | | | Antenna (ISM cable) | 50 ohm terminator | Coaxial | Shielded | 3.5 | | | | Antenna (GPS cable) | 50 ohm terminator | Coaxial | Shielded | 3.5 | | | | Laptop USB | serial port on test board | DB25 to USB | Shielded | 1.8 | | | | USB AC Adapter | Mini USB port on Test<br>board | regular USB to<br>Mini USB | Unshielded | 1.5 | | | #### **EUT OPERATION** During testing, the EUT was set to transmit continuously at the specified power level on the selected channel. #### PROPOSED MODIFICATION DETAILS #### GENERAL This section details the modifications to the Safemine Ltd. model RS9110-N-11-22 being proposed. All performance and construction deviations from the characteristics originally reported to the FCC are addressed The Safemine Ltd. model RS9110-N-11-22 module has not been changed except to add a new antenna type. The output power was lowered in software for use with the new antenna. Report Date: May 21, 2014 Reissue Date: October 7, 2014 #### TEST SITE #### **GENERAL INFORMATION** Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada. | Site | Designation / Registration Numbers<br>FCC Canada | | Location | |-----------|--------------------------------------------------|---------|-----------------------------------------------| | Chamber 7 | US0027 | 2845B-7 | 41039 Boyce Road<br>Fremont,<br>CA 94538-2435 | ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4. #### CONDUCTED EMISSIONS CONSIDERATIONS Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord. #### RADIATED EMISSIONS CONSIDERATIONS The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4. Report Date: May 21, 2014 Reissue Date: October 7, 2014 #### **MEASUREMENT INSTRUMENTATION** #### RECEIVER SYSTEM An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements. For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased. #### INSTRUMENT CONTROL COMPUTER The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically. #### LINE IMPEDANCE STABILIZATION NETWORK (LISN) Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively. Reissue Date: October 7, 2014 #### FILTERS/ATTENUATORS External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events. #### **ANTFNNAS** A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software. #### ANTENNA MAST AND EQUIPMENT TURNTABLE The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane. ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement. #### **INSTRUMENT CALIBRATION** All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information. #### TEST PROCEDURES #### **EUT AND CABLE PLACEMENT** The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements. #### **CONDUCTED EMISSIONS** Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord. Figure 1 Typical Conducted Emissions Test Configuration #### RADIATED EMISSIONS A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT. A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT. Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters. Typical Test Configuration for Radiated Field Strength Measurements The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used. Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane. <u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views Reissue Date: October 7, 2014 #### CONDUCTED EMISSIONS FROM ANTENNA PORT Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission. Test Configuration for Antenna Port Measurements Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used. If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used. If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table. #### **BANDWIDTH MEASUREMENTS** The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN. Reissue Date: October 7, 2014 #### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications. For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows: #### CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver. | Frequency<br>(MHz) | Average<br>Limit<br>(dBuV) | Quasi Peak<br>Limit<br>(dBuV) | |--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------| | 0.150 to 0.500 | Linear decrease on<br>logarithmic frequency axis<br>between 56.0 and 46.0 | Linear decrease on<br>logarithmic frequency axis<br>between 66.0 and 56.0 | | 0.500 to 5.000 | 46.0 | 56.0 | | 5.000 to 30.000 | 50.0 | 60.0 | #### GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands<sup>1</sup> (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209. | Frequency<br>Range<br>(MHz) | Limit<br>(uV/m) | Limit<br>(dBuV/m @ 3m) | |-----------------------------|------------------------------|------------------------------------------------------| | 0.009-0.490 | 2400/F <sub>KHz</sub> @ 300m | 67.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 300m | | 0.490-1.705 | 24000/F <sub>KHz</sub> @ 30m | 87.6-20*log <sub>10</sub> (F <sub>KHz</sub> ) @ 30m | | 1.705 to 30 | 30 @ 30m | 29.5 @ 30m | | 30 to 88 | 100 @ 3m | 40 @ 3m | | 88 to 216 | 150 @ 3m | 43.5 @ 3m | | 216 to 960 | 200 @ 3m | 46.0 @ 3m | | Above 960 | 500 @ 3m | 54.0 @ 3m | #### RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109. | Frequency<br>Range<br>(MHz) | Limit<br>(uV/m @ 3m) | Limit<br>(dBuV/m @ 3m) | |-----------------------------|----------------------|------------------------| | 30 to 88 | 100 | 40 | | 88 to 216 | 150 | 43.5 | | 216 to 960 | 200 | 46.0 | | Above 960 | 500 | 54.0 | <sup>&</sup>lt;sup>1</sup> The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2 Report Date: May 21, 2014 Reissue Date: October 7, 2014 #### **OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS** The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz). | Operating Frequency (MHz) | Output Power | Power Spectral Density | |---------------------------|-----------------|------------------------| | 902 – 928 | 1 Watt (30 dBm) | 8 dBm/3kHz | | 2400 – 2483.5 | 1 Watt (30 dBm) | 8 dBm/3kHz | | 5725 – 5850 | 1 Watt (30 dBm) | 8 dBm/3kHz | The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction. #### TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method). #### SAMPLE CALCULATIONS - CONDUCTED EMISSIONS Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows: $$R_r - S = M$$ where: $R_r = Receiver Reading in dBuV$ S = Specification Limit in dBuV M = Margin to Specification in +/- dB #### SAMPLE CALCULATIONS - RADIATED EMISSIONS Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula: $$F_d = 20*LOG_{10} (D_m/D_s)$$ where: $F_d$ = Distance Factor in dB $D_m = Measurement Distance in meters$ $D_S$ = Specification Distance in meters For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula: $$F_d = 40*LOG_{10} (D_m/D_s)$$ Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. The margin of a given emission peak relative to the limit is calculated as follows: $$R_c = R_r + F_d$$ and $$M = R_c - L_s$$ where: $R_r$ = Receiver Reading in dBuV/m $F_d$ = Distance Factor in dB $R_C$ = Corrected Reading in dBuV/m $L_S$ = Specification Limit in dBuV/m M = Margin in dB Relative to Spec Report Date: May 21, 2014 Reissue Date: October 7, 2014 #### SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test: $$E = \frac{1000000 \sqrt{30 P}}{d}$$ microvolts per meter where P is the eirp (Watts) For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB. ## Appendix A Test Equipment Calibration Data | <u>Manufacturer</u><br>Radiated Emissions. 1 | <u>Description</u><br>1,000 - 6,500 MHz, 28-Mar-14 | Model | Asset # | <u>Cal Due</u> | |--------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------|--------------|--------------------------| | EMCO<br>Rohde & Schwarz | Antenna, Horn, 1-18GHz<br>EMI Test Receiver, 20 Hz-7 GHz | 3115<br>ESIB7 | 868<br>1538 | 6/19/2014<br>12/14/2014 | | Power, 28-Mar-14<br>Rohde & Schwarz<br>Rohde & Schwarz | Power Meter, Single Channel<br>Power Sensor 100 uW - 2 Watts<br>(w/ 20 dB pad, SN BJ5155) | NRVS<br>NRV-Z32 | 1290<br>1536 | 12/10/2014<br>12/19/2014 | | Radiated Emissions, 1<br>Hewlett Packard | Microwave Preamplifier, 1-<br>26.5GHz | 8449B | 785 | 10/31/2014 | | EMCO<br>Hewlett Packard | Antenna, Horn, 1-18GHz<br>Head (Inc flex cable, 1143, 2198)<br>Red | 3115<br>84125C | 868<br>1145 | 6/19/2014<br>6/26/2014 | | Hewlett Packard | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | 8564E (84125C) | 1148 | 9/14/2014 | | A. H. Systems<br>Micro-Tronics | Spare System Horn, 18-40GHz<br>Band Reject Filter, 2400-2500<br>MHz | SAS-574, p/n: 2581<br>BRM50702-02 | 2162<br>2238 | 7/24/2014<br>9/18/2014 | | | 1,000 - 12,000 MHz, 31-Mar-14 | 0.4405 | 705 | 40/04/0044 | | Hewlett Packard | Microwave Preamplifier, 1-<br>26.5GHz | 8449B | 785 | 10/31/2014 | | EMCO<br>Hewlett Packard | Antenna, Horn, 1-18GHz<br>SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | 3115<br>8564E (84125C) | 868<br>1148 | 6/19/2014<br>9/14/2014 | | Rohde & Schwarz<br>Rohde & Schwarz | Power Meter, Single Channel<br>Power Sensor 100 uW - 2 Watts<br>(w/ 20 dB pad, SN BJ5155) | NRVS<br>NRV-Z32 | 1290<br>1536 | 12/10/2014<br>12/19/2014 | | Micro-Tronics | Band Reject Filter, 2400-2500<br>MHz | BRM50702-02 | 2238 | 9/18/2014 | | | 1,000 - 18,000 MHz, 03-Apr-14 | | | | | Hewlett Packard | Microwave Preamplifier, 1-<br>26.5GHz | 8449B | 785 | 10/31/2014 | | EMCO | Antenna, Horn, 1-18 GHz (SA40-Red) | 3115 | 1142 | 8/23/2014 | | Hewlett Packard | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | 8564E (84125C) | 1148 | 9/14/2014 | | Micro-Tronics | Band Reject Filter, 2400-2500<br>MHz | BRM50702-02 | 1683 | 8/2/2014 | | - | 1000 - 25,000 MHz, 03-Apr-14 | | | | | Hewlett Packard | Microwave Preamplifier, 1-<br>26.5GHz | 8449B | 785 | 10/31/2014 | | EMCO | Antenna, Horn, 1-18 GHz (SA40-Red) | 3115 | 1142 | 8/23/2014 | | Hewlett Packard | Head (Inc flex cable, 1143, 2198)<br>Red | 84125C | 1145 | 6/26/2014 | | Hewlett Packard | SpecAn 30 Hz -40 GHz, SV<br>(SA40) Red | 8564E (84125C) | 1148 | 9/14/2014 | | Hewlett Packard<br>Micro-Tronics | High Pass filter, 8.2 GHz<br>Band Reject Filter, 2400-2500<br>MHz | P/N 84300-80039<br>BRM50702-02 | 1156<br>1683 | 6/7/2014<br>8/2/2014 | Test Report Reissue Date: October 7, 2014 | | · F | ., , . | | , | |-------------------------------|---------------------------------------------------|-----------------------------|--------------|--------------------------| | Manufacturer<br>A. H. Systems | <u>Description</u><br>Spare System Horn, 18-40GHz | Model<br>SAS-574, p/n: 2581 | Asset # 2162 | <u>Cal Due</u> 7/24/2014 | | Radiated Emissions, 3 | 80 - 1,000 MHz, 03-Apr-14 | | | | | Rohde & Schwarz | EMI Test Receiver, 20 Hz-7 GHz | ESIB7 | 1538 | 12/14/2014 | | Sunol Sciences | Biconilog, 30-3000 MHz | JB3 | 1657 | 6/4/2014 | | Radiated Emissions, 3 | 80 - 1,000 MHz, 15-Apr-14 | | | | | Rohde & Schwarz | EMI Test Receiver, 20 Hz-7 GHz | ESIB7 | 1538 | 12/14/2014 | | Sunol Sciences | Biconilog, 30-3000 MHz | JB3 | 1657 | 6/4/2014 | | Micro-Tronics | Band Reject Filter, 2400-2500<br>MHz | BRM50702-02 | 2238 | 9/18/2014 | | Com-Power | Preamplifier, 30-1000 MHz | PA-103 | 2465 | 9/13/2014 | | | | | | | Test Report Reissue Date: October 7, 2014 Report Date: May 21, 2014 ## Appendix B Test Data T94588 Pages 24 - 65 For The ## **SAFEmine Technology, Inc.** Product RS9110-N-11-22 Date of Last Test: 4/15/2014 R95099 Rev 2 Cover Page 24 | - | L ENGINEER SOCCESS | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | iviodei. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, PSD, Bandwidth and Spurious Emissions ### Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 3/28/2014 Config. Used: 1 Test Engineer: Jack Liu Config Change: None Test Location: FT Chamber 7 EUT Voltage: 120V, 60 Hz ### **General Test Configuration** The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements have been corrected to allow for the external attenuators used. #### **Ambient Conditions:** Temperature: 22 °C Rel. Humidity: 40 % ### Summary of Results | Run# | Pwr setting | Test Performed | Limit | Pass / Fail | Result / Margin | |------|-------------|----------------|-----------|-------------|--------------------------------------------| | 1 | See below | Output Power | 15.247(b) | Pass | b: 9.6 dBm<br>g: 14.0 dBm<br>n20: 14.3 dBm | #### Modifications Made During Testing No modifications were made to the EUT during testing #### Deviations From The Standard No deviations were made from the requirements of the standard. | - | L ENGINEER SOCCESS | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | iviodei. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Procedure Comments: Measurements performed in accordance with FCC KDB 558074 | Mode | Data Rate | Duty Cycle (x) | Constant DC? | T (ms) | Pwr Cor<br>Factor* | Lin Volt<br>Cor<br>Factor** | Min VBW<br>for FS (Hz) | |------|-----------|----------------|--------------|--------|--------------------|-----------------------------|------------------------| | 11b | 1 Mb/s | 100.00 | - | - | 0 | 0 | - | | 11g | 6 Mb/s | 100.00 | - | - | 0 | 0 | - | | n20 | MCS 0 | 100.00 | - | - | 0 | 0 | - | ## Sample Notes Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | iviouei. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Run #1: Output Power Mode: 11b | Power | Frequency (MHz) | Output | Power | Antenna | Dogult | EII | RP | Output | Power | |----------------------|-----------------|--------------------|-------|------------|--------|------|-------|--------------------|-------| | Setting <sup>2</sup> | | (dBm) <sup>1</sup> | mW | Gain (dBi) | Result | dBm | W | (dBm) <sup>3</sup> | mW | | 32 | 2412 | 8.0 | 6.3 | 5.0 | Pass | 13.0 | 0.020 | | | | 36 | 2437 | 9.4 | 8.7 | 5.0 | Pass | 14.4 | 0.028 | | | | 37 | 2472 | 9.6 | 9.1 | 5.0 | Pass | 14.6 | 0.029 | | | Mode: 11g | Power | Frequency (MHz) | Output | Power | Antenna | Result | Ell | RP | Output | Power | |----------------------|-----------------|--------------------|-------|------------|--------|------|-------|--------------------|-------| | Setting <sup>2</sup> | | (dBm) <sup>1</sup> | mW | Gain (dBi) | Result | dBm | W | (dBm) <sup>3</sup> | mW | | 38 | 2412 | 14.0 | 25.1 | 5.0 | Pass | 19.0 | 0.079 | | | | 38 | 2437 | 14.0 | 25.1 | 5.0 | Pass | 19.0 | 0.079 | | | | 40 | 2472 | 14.0 | 25.1 | 5.0 | Pass | 19.0 | 0.079 | | | Mode: n20 | Power | Fraguency (MH=) | Output | Power | Antenna | Dogult | Ell | RP | Output | Power | |----------------------|-----------------|--------------------|-------|------------|--------|------|-------|--------------------|-------| | Setting <sup>2</sup> | Frequency (MHz) | (dBm) <sup>1</sup> | mW | Gain (dBi) | Result | dBm | W | (dBm) <sup>3</sup> | mW | | 36 | 2412 | 14.3 | 26.9 | 5.0 | Pass | 19.3 | 0.085 | | | | 36 | 2437 | 14.2 | 26.3 | 5.0 | Pass | 19.2 | 0.083 | | | | 37 | 2472 | 14.1 | 25.7 | 5.0 | Pass | 19.1 | 0.081 | | | Note 1: Output power measured using a peak power meter, spurious limit is -20dBc. | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | NO9110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ## RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions ### Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. ### General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted. #### Ambient Conditions: Temperature: 22 °C Rel. Humidity: 40 % #### Note: Target powers are peak Summary of Results - Device Operating in the 2400-2483.5 MHz Band | Run # | Mode | Channel | Target<br>Power | Power<br>Setting | Test Performed | Limit | Result / Margin | |-------|------|---------|-----------------|------------------|----------------------|-------------------|----------------------| | | b | 1 - | 16.1 | 50 | Restricted Band Edge | FCC Part 15.209 / | 37.1 dBµV/m @ 2367.6 | | | D | 2412MHz | 10.1 | 50 | (2390 MHz) | 15.247( c) | MHz (-16.9 dB) | | 1 | b | 11 - | 15.9 | 50 | Restricted Band Edge | FCC Part 15.209 / | 35.3 dBµV/m @ 2483.5 | | ı ı | D | 2462MHz | 15.5 | 30 | (2483.5 MHz) | 15.247( c) | MHz (-18.7 dB) | | | b | 13 - | 15.9 | 51 | Restricted Band Edge | FCC Part 15.209 / | 52.5 dBµV/m @ 2483.5 | | | D | 2472MHz | 15.5 | 51 | (2483.5 MHz) | 15.247( c) | MHz (-1.5 dB) | | | g | 1 - | 14.0 | 38 | Restricted Band Edge | FCC Part 15.209 / | 36.5 dBµV/m @ 2390.0 | | | | 2412MHz | 14.0 | 30 | (2390 MHz) | 15.247( c) | MHz (-17.5 dB) | | 2 | g | 11 - | 13.9 | 38 | Restricted Band Edge | FCC Part 15.209 / | 35.0 dBµV/m @ 2483.5 | | | | 2462MHz | 15.5 | 30 | (2483.5 MHz) | 15.247( c) | MHz (-19.0 dB) | | | g | 13 - | 14.0 | 40 | Restricted Band Edge | FCC Part 15.209 / | 48.8 dBµV/m @ 2483.8 | | | | 2472MHz | 14.0 | 40 | (2483.5 MHz) | 15.247( c) | MHz (-5.2 dB) | | | n20 | 1 - | 14.3 | 36 | Restricted Band Edge | FCC Part 15.209 / | 38.0 dBµV/m @ 2390.0 | | | 1120 | 2412MHz | 14.5 | 30 | (2390 MHz) | 15.247( c) | MHz (-16.0 dB) | | | n20 | 11 - | 14.1 | 37 | Restricted Band Edge | FCC Part 15.209 / | 36.7 dBµV/m @ 2483.6 | | 3 | 1120 | 2462MHz | 14.1 | 31 | (2483.5 MHz) | 15.247( c) | MHz (-17.3 dB) | | 3 | n20 | 12 - | 14.1 | 37 | Restricted Band Edge | FCC Part 15.209 / | 43.1 dBµV/m @ 2483.5 | | | 1120 | 2467MHz | 14.1 | 31 | (2483.5 MHz) | 15.247( c) | MHz (-10.9 dB) | | | n20 | 13 - | 14.1 | 37 | Restricted Band Edge | FCC Part 15.209 / | 50.6 dBµV/m @ 2483.5 | | | 1120 | 2472MHz | 14.1 | JI | (2483.5 MHz) | 15.247( c) | MHz (-3.4 dB) | | | E ENGINEER GOODEGG | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Modifications Made During Testing No modifications were made to the EUT during testing ### Deviations From The Standard No deviations were made from the requirements of the standard. ### Sample Notes Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F #### Driver: - Antenna: QF-037 (NTS 2014-4945) #### Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold. | Mode | Data Rate | Duty Cycle<br>(x) | Constant DC? | T (ms) | Pwr Cor<br>Factor* | Lin Volt<br>Cor<br>Factor** | Min VBW<br>for FS (Hz) | |------|-----------|-------------------|--------------|--------|--------------------|-----------------------------|------------------------| | 11b | 1 Mb/s | 100.00 | - | - | 0 | 0 | - | | 11g | 6 Mb/s | 100.00 | - | - | 0 | 0 | - | | n20 | MCS 0 | 100.00 | - | - | 0 | 0 | - | ### Measurement Specific Notes: | Note 1: | Emission in non-restricted band, but limit of 15.209 used. | |---------|-----------------------------------------------------------------------------------------------------------------------------| | Note 2: | Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz. | | Note 2: | Emission has duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto | | Note 2. | sweep, trace average 100 traces | | Note 3: | Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, | | Note 3. | linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor | | Note 4: | Emission has duty cycle < 98% and is NOT constant, average measurement performed: RBW=1MHz, VBW> 1/T, peak | | NOLE 4. | detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces | | Note 5: | Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power | | Note 3. | averaging, auto sweep, trace average 100 traces, measurement corrected by Pwr correction factor | | Note 6: | Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final | | Note 0. | measurements. | | | | | 2000 | | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Run #1: Radiated Bandedge Measurements Date of Test: 3/28/14 , 4/3/14 Test Engineer: Jack Liu Test Location: FT Chamber7 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz Channel: 1 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2367.560 | 37.1 | V | 54.0 | -16.9 | AVG | 86 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2369.320 | 47.1 | V | 74.0 | -26.9 | PK | 86 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2390.000 | 34.8 | Η | 54.0 | -19.2 | AVG | 149 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | 2376.210 | 45.3 | Н | 74.0 | -28.7 | PK | 149 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 11 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Dana Lage | Signal Fictor | Juchgui | Direct meas | arcinent or | ncia su crigi | | | | |-----------|---------------|---------|-------------|-------------|---------------|---------|--------|--------------------------| | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.500 | 35.3 | V | 54.0 | -18.7 | AVG | 100 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2486.180 | 46.7 | V | 74.0 | -27.3 | PK | 100 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2483.500 | 33.2 | Η | 54.0 | -20.8 | AVG | 151 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | 2492.760 | 45.2 | Н | 74.0 | -28.8 | PK | 151 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | N39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 13 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Dand Eage Signar Field Strength Direct measurement of field strength | | | | | | | | | |----------------------------------------------------------------------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.500 | 52.5 | Н | 54.0 | -1.5 | AVG | 106 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | 2483.500 | 59.4 | Н | 74.0 | -14.6 | PK | 106 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | 2483.500 | 47.5 | Н | 54.0 | -6.5 | AVG | 160 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | 2483.600 | 55.0 | Н | 74.0 | -19.0 | PK | 160 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | 2000 | | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Madalı | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz ### Run #2: Radiated Bandedge Measurements Date of Test: 3/28/14 , 4/3/14 Test Engineer: Rafael Varelas / Jack Liu Test Location: FT Chamber7 Channel: 1 Mode: g Tx Chain: 1x1 Data Rate: 6 Mb/s | | | <u> </u> | | | <u> </u> | | | | |-----------|--------|----------|--------|----------|-----------|---------|--------|--------------------------| | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2390.000 | 36.5 | V | 54.0 | -17.5 | AVG | 202 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2388.960 | 49.0 | V | 74.0 | -25.0 | PK | 202 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2390.000 | 31.5 | Н | 54.0 | -22.5 | AVG | 140 | 1.3 | POS; RB 1 MHz; VB: 10 Hz | | 2389.840 | 44.6 | Н | 74.0 | -29.4 | PK | 140 | 1.3 | POS; RB 1 MHz; VB: 3 MHz | | | The state of s | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | NO5 10-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 11 Mode: g Tx Chain: 1x1 Data Rate: 6 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.500 | 35.0 | V | 54.0 | -19.0 | AVG | 100 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2484.230 | 46.6 | V | 74.0 | -27.4 | PK | 100 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2483.500 | 31.4 | Н | 54.0 | -22.6 | AVG | 210 | 1.9 | POS; RB 1 MHz; VB: 10 Hz | | 2487.900 | 42.1 | Н | 74.0 | -31.9 | PK | 210 | 1.9 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 13 Mode: g Tx Chain: 1x1 Data Rate: 6 Mb/s | Dulla Lage | Build Edge Signal Field Strength Birect medsarement of held strength | | | | | | | | | | |------------|----------------------------------------------------------------------|-----|--------|----------|-----------|---------|--------|--------------------------|--|--| | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | | 2483.830 | 48.8 | ٧ | 54.0 | -5.2 | AVG | 107 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | | | 2483.570 | 63.8 | ٧ | 74.0 | -10.2 | PK | 107 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | | | 2483.830 | 44.4 | Н | 54.0 | -9.6 | AVG | 160 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | | | 2484.030 | 59.4 | Н | 74.0 | -14.6 | PK | 160 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Madal | RS9110-N-11-22 | T-Log Number: | T94588 | | iviodei: | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz ### Run #3: Radiated Bandedge Measurements Date of Test: 3/28/14 , 4/3/14 Test Engineer: Rafael Varelas / Jack Liu Test Location: FT Chamber7 Channel: 1 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2390.000 | 38.0 | V | 54.0 | -16.0 | AVG | 198 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2389.120 | 51.0 | V | 74.0 | -23.0 | PK | 198 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2390.000 | 35.6 | Н | 54.0 | -18.4 | AVG | 147 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | 2389.840 | 47.4 | Н | 74.0 | -26.6 | PK | 147 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 11 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 Band Edge Signal Field Strength - Direct measurement of field strength | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.570 | 36.7 | V | 54.0 | -17.3 | AVG | 98 | 1.0 | POS; RB 1 MHz; VB: 10 Hz | | 2483.630 | 54.3 | V | 74.0 | -19.7 | PK | 98 | 1.0 | POS; RB 1 MHz; VB: 3 MHz | | 2483.570 | 32.6 | Η | 54.0 | -21.4 | AVG | 206 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | 2484.490 | 44.6 | Η | 74.0 | -29.4 | PK | 206 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 12 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 Band Edge Signal Field Strength - Direct measurement of field strength | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.530 | 43.1 | V | 54.0 | -10.9 | AVG | 104 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | 2484.790 | 58.8 | V | 74.0 | -15.2 | PK | 104 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | 2483.500 | 38.6 | Η | 54.0 | -15.4 | AVG | 161 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | 2486.150 | 53.4 | Н | 74.0 | -20.6 | PK | 161 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Channel: 13 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 Band Edge Signal Field Strength - Direct measurement of field strength | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 2483.500 | 50.6 | V | 54.0 | -3.4 | AVG | 108 | 1.2 | POS; RB 1 MHz; VB: 10 Hz | | 2483.860 | 64.0 | V | 74.0 | -10.0 | PK | 108 | 1.2 | POS; RB 1 MHz; VB: 3 MHz | | 2483.500 | 45.9 | Η | 54.0 | -8.1 | AVG | 160 | 1.1 | POS; RB 1 MHz; VB: 10 Hz | | 2483.800 | 59.5 | Н | 74.0 | -14.5 | PK | 160 | 1.1 | POS; RB 1 MHz; VB: 3 MHz | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | | |-----------|---------------------------|----------------------|-------------------|--|--|--|--|--|--| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | | | Standard: | FCC Part 15.247 | Class: | N/A | | | | | | | ### RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions ### Test Specific Details Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. ### General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted. #### Ambient Conditions: Temperature: Rel. Humidity: 22 °C 40 % Note: Target powers are peak Summary of Results - Device Operating in the 2400-2483.5 MHz Band | | | | | <u> </u> | | | | |-------------|---------------|---------------|-----------------|------------------|---------------------|-------------------|----------------------| | Run# | Mode | Channel | Target<br>Power | Power<br>Setting | Test Performed | Limit | Result / Margin | | | b | 1 - | 8.0 | 32 | Radiated Emissions, | FCC Part 15.209 / | 53.5 dBµV/m @ 4824.0 | | | D | 2412MHz | 0.0 | JZ | 1 - 25 GHz | 15.247( c) | MHz (-0.5 dB) | | | b | 6 - | 9.4 | 36 | Radiated Emissions, | FCC Part 15.209 / | 53.3 dBµV/m @ 4874.1 | | 1 | D | 2437MHz | 9.4 | 30 | 1 - 25 GHz | 15.247( c) | MHz (-0.7 dB) | | ' | h | 11 - | 9.5 | 37 | Radiated Emissions, | FCC Part 15.209 / | 53.9 dBµV/m @ 4924.0 | | | b | 2462MHz | 9.0 | 31 | 1 - 25 GHz | 15.247( c) | MHz (-0.1 dB) | | | b | 13 - | 9.6 | 37 | Radiated Emissions, | FCC Part 15.209 / | 50.2 dBµV/m @ 4944.1 | | | | 2472 MHz | 9.0 | 31 | 1 - 25 GHz | 15.247( c) | MHz (-3.8 dB) | | Scans on ce | enter channe | l in all OFDM | modes to de | etermine the | worst case mode. | | | | | g | 6 - | 14 | 38 | Radiated Emissions, | FCC Part 15.209 / | 44.4 dBµV/m @ 4874.1 | | 2 | | 2437MHz | 14 | 30 | 1 - 25 GHz | 15.247( c) | MHz (-9.6 dB) | | | n20 | 6 - | 14.2 | 36 | Radiated Emissions, | FCC Part 15.209 / | 53.6 dBµV/m @ 4874.1 | | | 1120 | 2437MHz | 14.2 | 30 | 1 - 25 GHz | 15.247( c) | MHz (-0.4 dB) | | Measureme | nts on low ar | nd high chani | nels in worst | -case OFDM | mode. | | | | | n20 | 1 - | 14.1 | 36 | Radiated Emissions, | FCC Part 15.209 / | 44.5 dBµV/m @ 4824.0 | | 3 | 1120 | 2412MHz | 14.1 | 30 | 1 - 25 GHz | 15.247( c) | MHz (-9.5 dB) | | | n20 | 13 - | 14.2 | 37 | Radiated Emissions, | FCC Part 15.209 / | 45.7 dBµV/m @ 4944.0 | | | 1120 | 2472MHz | 14.2 | 31 | 1 - 25 GHz | 15.247( c) | MHz (-8.3 dB) | | | | | | | <u> </u> | • | · | | | 2 210111221 300023 | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | #### Modifications Made During Testing Initial peak scans of 802.11b mode performed at higher power setting than for final measurments. #### Deviations From The Standard No deviations were made from the requirements of the standard. #### Sample Notes Sample S/N: P07-2812 (NTS 2014-4946) MAC: 00:23:A7:25:38:0F Driver: - Antenna: QF-037 (NTS 2014-4945) #### Procedure Comments: Measurements performed in accordance with FCC KDB 558074 Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold. 2.4GHz band reject filter used | Mode | Data Rate | Duty Cycle (x) | Constant DC? | T (ms) | Pwr Cor<br>Factor* | Lin Volt<br>Cor<br>Factor** | Min VBW<br>for FS (Hz) | |------|-----------|----------------|--------------|--------|--------------------|-----------------------------|------------------------| | 11b | 1 Mb/s | 100.00 | - | - | 0 | 0 | - | | 11g | 6 Mb/s | 100.00 | - | - | 0 | 0 | - | | n20 | MCS 0 | 100.00 | - | - | 0 | 0 | - | ### Measurement Specific Notes: | Note 1: | Emission in non-restricted band, but limit of 15.209 used. | |---------|-----------------------------------------------------------------------------------------------------------------------------| | Note 2: | Emission in non-restricted band, the limit was set 30dB below the level of the fundamental and measured in 100kHz. | | Note 2: | Emission has duty cycle ≥ 98%, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power averaging, auto | | NOIE Z. | sweep, trace average 100 traces | | Note 3: | Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=10Hz, peak detector, | | NOIE J. | linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear Voltage correction factor | | Note 4: | Emission has duty cycle < 98% and is NOT constant, average measurement performed: RBW=1MHz, VBW> 1/T, peak | | NOIE 4. | detector, linear average mode, sweep time auto, max hold. Max hold for 50*(1/DC) traces | | Note 5: | Emission has duty cycle < 98%, but constant, average measurement performed: RBW=1MHz, VBW=3MHz, RMS, Power | | NOIE J. | averaging, auto sweep, trace average 100 traces, measurement corrected by Pwr correction factor | | Note 6: | Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final | | Note 6. | measurements. | | I | | | | The state of s | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|--|--| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | | NO5 10-N-11-22 | Project Manager: | Christine Krebill | | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | | Standard: | FCC Part 15.247 | Class: | N/A | | | | | | Run #1: Radiated Spurious Emissions, 1,000 - 25000 MHz. Operating Mode: 802.11b Date of Test: 3/28/2014 0:00 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber7 EUT Voltage: 120V/60Hz Run #1a: Low Channel Channel: 1 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 9648.000 | 47.2 | Н | 54.0 | -6.8 | AVG | 350 | 1.4 | RB 1 MHz;VB 10 Hz;Peak, Note 1 | | 9647.790 | 55.0 | Н | 74.0 | -19.0 | PK | 350 | 1.4 | RB 1 MHz;VB 3 MHz;Peak, Note 1 | | 1497.300 | 43.3 | V | 54.0 | -10.7 | AVG | 196 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1497.540 | 51.2 | V | 74.0 | -22.8 | PK | 196 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1602.300 | 38.4 | V | 54.0 | -15.6 | AVG | 191 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1603.750 | 56.6 | V | 74.0 | -17.4 | PK | 191 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 3914.610 | 40.5 | V | 54.0 | -13.5 | AVG | 149 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 3914.560 | 47.9 | ٧ | 74.0 | -26.1 | PK | 149 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 4824.040 | 53.5 | V | 54.0 | -0.5 | AVG | 249 | 1.5 | RB 1 MHz;VB 10 Hz;Peak | | 4824.140 | 56.0 | V | 74.0 | -18.0 | PK | 249 | 1.5 | RB 1 MHz;VB 3 MHz;Peak | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Madal | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Run #1b: Center Channel Channel: 6 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|--------------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 9747.950 | 47.5 | Н | 54.0 | -6.5 | AVG | 340 | 1.6 | RB 1 MHz;VB 10 Hz;Peak, Note 1 | | 9748.210 | 55.5 | Н | 74.0 | -18.5 | PK | 340 | 1.6 | RB 1 MHz;VB 3 MHz;Peak, Note 1 | | 1600.050 | 40.5 | V | 54.0 | -13.5 | AVG | 201 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1600.740 | 57.7 | V | 74.0 | -16.3 | PK | 201 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1497.350 | 43.0 | V | 54.0 | -11.0 | AVG | 194 | 1.1 | RB 1 MHz;VB 10 Hz;Peak | | 1496.980 | 49.0 | V | 74.0 | -25.0 | PK | 194 | 1.1 | RB 1 MHz;VB 3 MHz;Peak | | 4874.050 | 53.3 | V | 54.0 | -0.7 | AVG | 236 | 1.2 | RB 1 MHz;VB 10 Hz;Peak | | 4873.950 | 55.5 | V | 74.0 | -18.5 | PK | 236 | 1.2 | RB 1 MHz;VB 3 MHz;Peak | Note: Scans made between 18 - 25 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range | 2000 | | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Run #1c: High Channel Channel: 11 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 9848.010 | 47.9 | Н | 54.0 | -6.1 | AVG | 348 | 1.5 | Note 1 | | 9848.040 | 55.8 | Н | 74.0 | -18.2 | PK | 348 | 1.5 | Note 1 | | 1497.310 | 43.7 | V | 54.0 | -10.3 | AVG | 198 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1497.320 | 49.1 | V | 74.0 | -24.9 | PK | 198 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1598.400 | 40.8 | V | 54.0 | -13.2 | AVG | 192 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1598.570 | 58.2 | V | 74.0 | -15.8 | PK | 192 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 4924.030 | 53.9 | V | 54.0 | -0.1 | AVG | 231 | 1.2 | RB 1 MHz;VB 10 Hz;Peak | | 4924.070 | 56.0 | V | 74.0 | -18.0 | PK | 231 | 1.2 | RB 1 MHz;VB 3 MHz;Peak | | | Section and standard from the control of contro | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | iviodei. | NO5 10-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Run #1d: High Channel Channel: 13 Mode: b Tx Chain: 1x1 Data Rate: 1 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 4944.050 | 50.2 | V | 54.0 | -3.8 | AVG | 97 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 4944.050 | 53.8 | V | 74.0 | -20.2 | PK | 97 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1598.130 | 38.1 | V | 54.0 | -15.9 | AVG | 189 | 1.3 | RB 1 MHz;VB 10 Hz;Peak | | 1596.270 | 56.7 | V | 74.0 | -17.3 | PK | 189 | 1.3 | RB 1 MHz;VB 3 MHz;Peak | | 1497.390 | 41.9 | V | 54.0 | -12.1 | AVG | 205 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1497.570 | 47.9 | V | 74.0 | -26.1 | PK | 205 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 3908.600 | 42.4 | V | 54.0 | -11.6 | AVG | 192 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 3908.550 | 49.1 | V | 74.0 | -24.9 | PK | 192 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | NO5 10-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Run #2: Radiated Spurious Emissions, 1,000 - 25000 MHz. Operating Mode: OFDM Run #2a: Center Channel Date of Test: 4/3/2014 0:00 Config. Used: 1 Test Engineer: Jack Liu Config Change: None Test Location: FT Chamber7 EUT Voltage: 120V/60Hz Channel: 6 Mode: g Tx Chain: 1x1 Data Rate: 6 Mb/s | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 4874.050 | 44.4 | V | 54.0 | -9.6 | AVG | 158 | 1.2 | RB 1 MHz;VB 10 Hz;Peak | | 4874.530 | 51.4 | V | 74.0 | -22.6 | PK | 158 | 1.2 | RB 1 MHz;VB 3 MHz;Peak | | 1497.370 | 41.9 | V | 54.0 | -12.1 | AVG | 192 | 1.1 | RB 1 MHz;VB 10 Hz;Peak | | 1497.520 | 48.6 | V | 74.0 | -25.4 | PK | 192 | 1.1 | RB 1 MHz;VB 3 MHz;Peak | | 1599.600 | 37.0 | V | 54.0 | -17.0 | AVG | 173 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1602.140 | 56.9 | V | 74.0 | -17.1 | PK | 173 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 3908.810 | 42.9 | V | 54.0 | -11.1 | AVG | 140 | 1.6 | RB 1 MHz;VB 10 Hz;Peak | | 3908.870 | 49.4 | V | 74.0 | -24.6 | PK | 140 | 1.6 | RB 1 MHz;VB 3 MHz;Peak | Note: Scans made between 18 - 25 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model | DC0440 N 44 99 | T-Log Number: | T94588 | | Model: | RS9110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Run #2b: Center Channel Date of Test: 3/31/2014 0:00 Config. Used: 1 Test Engineer: Jack Liu Config Change: None Test Location: FT Chamber7 EUT Voltage: 120V/60Hz Channel: 6 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 4874.070 | 53.6 | V | 54.0 | -0.4 | AVG | 185 | 1.3 | RB 1 MHz;VB 10 Hz;Peak | | 4874.120 | 56.7 | V | 74.0 | -17.3 | PK | 185 | 1.3 | RB 1 MHz;VB 3 MHz;Peak | | 3908.780 | 44.2 | V | 54.0 | -9.8 | AVG | 148 | 1.3 | RB 1 MHz;VB 10 Hz;Peak | | 3908.880 | 50.5 | V | 74.0 | -23.5 | PK | 148 | 1.3 | RB 1 MHz;VB 3 MHz;Peak | | 1600.090 | 38.9 | V | 54.0 | -15.1 | AVG | 207 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1597.640 | 58.2 | V | 74.0 | -15.8 | PK | 207 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1497.420 | 44.0 | V | 54.0 | -10.0 | AVG | 203 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1497.200 | 51.5 | V | 74.0 | -22.5 | PK | 203 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1066.210 | 33.1 | V | 54.0 | -20.9 | AVG | 161 | 1.3 | RB 1 MHz;VB 10 Hz;Peak | | 1069.360 | 48.3 | V | 74.0 | -25.7 | PK | 161 | 1.3 | RB 1 MHz;VB 3 MHz;Peak | Note: Scans made between 18 - 25 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model | DC0440 N 44 99 | T-Log Number: | T94588 | | Model: | RS9110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | Run #3: Radiated Spurious Emissions, 1,000 - 25000 MHz. Operating Mode: Worse case from Run #2 Date of Test: 4/3/2014 0:00 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber7 EUT Voltage: 120V/60Hz Run #3a: Low Channel Channel: 1 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 | Frequency | Level | Pol | 15.209 | 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|--------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 4824.020 | 44.5 | V | 54.0 | -9.5 | AVG | 152 | 1.3 | RB 1 MHz;VB 10 Hz;Peak | | 4823.940 | 50.8 | V | 74.0 | -23.2 | PK | 152 | 1.3 | RB 1 MHz;VB 3 MHz;Peak | | 1601.290 | 38.5 | V | 54.0 | -15.5 | AVG | 194 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1600.960 | 56.4 | V | 74.0 | -17.6 | PK | 194 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1497.250 | 41.3 | V | 54.0 | -12.7 | AVG | 199 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1497.590 | 47.2 | V | 74.0 | -26.8 | PK | 199 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | | E ENGINEER GOODEGG | | | |-----------|---------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | N/A | ### Run #3b: High Channel Channel: 13 Mode: n20 Tx Chain: 1x1 Data Rate: MCS 0 | Frequency | Level | Pol | 15.209 | / 15.247 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|--------|----------|-----------|---------|--------|------------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 4943.960 | 45.7 | V | 54.0 | -8.3 | AVG | 154 | 1.1 | RB 1 MHz;VB 10 Hz;Peak | | 4944.120 | 50.5 | V | 74.0 | -23.5 | PK | 154 | 1.1 | RB 1 MHz;VB 3 MHz;Peak | | 1602.720 | 38.0 | V | 54.0 | -16.0 | AVG | 198 | 1.0 | RB 1 MHz;VB 10 Hz;Peak | | 1602.280 | 55.2 | V | 74.0 | -18.8 | PK | 198 | 1.0 | RB 1 MHz;VB 3 MHz;Peak | | 1497.280 | 41.6 | V | 54.0 | -12.4 | AVG | 195 | 1.2 | RB 1 MHz;VB 10 Hz;Peak | | 1497.560 | 48.7 | V | 74.0 | -25.3 | PK | 195 | 1.2 | RB 1 MHz;VB 3 MHz;Peak | | 11.00 | April 1913 - April 1914 191 | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|--| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | R39110-N-11-22 | Project Manager: | Christine Krebill | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | Standard: | FCC Part 15.247 | Class: | - | | | | | #### **Radiated Emissions** (Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber) #### **Test Specific Details** Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 4/3 & 4/15//2014 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Chamber #7 EUT Voltage: 120V/60Hz #### **General Test Configuration** The EUT and any local support equipment were located on the turntable for radiated emissions testing. The test distance and extrapolation factor (if applicable) are detailed under each run description. Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables. **Ambient Conditions**: 4/3/2014 4/15/2014 Temperature: 20.8 °C 21.6 °C Rel. Humidity: 42 % 40 % #### Summary of Results (ANSI C63.4:2009) | Run # | Test Performed | Limit | Result | Margin | |-------|--------------------------------------------------|---------|--------|--------------------------------------| | 1 | Radiated Emissions<br>30 - 1000 MHz, Preliminary | Class B | Pass | Refer to individual runs | | 2 | Radiated Emissions<br>30 - 1000 MHz, Maximized | Class B | Pass | 34.9 dBµV/m @ 36.88 MHz<br>(-5.1 dB) | #### Modifications Made During Testing No modifications were made to the EUT during testing #### Deviations From The Standard No deviations were made from the requirements of the standard. | | AND THE CONTRACT THE PROPERTY OF | | | | | | | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|--| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | R59110-N-11-22 | Project Manager: | Christine Krebill | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | Standard: | FCC Part 15.247 | Class: | - | | | | | Run #1a: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11b 2412 MHz Power setting = 32 | Test Parameters for Preliminary Scan(s) | | | | | | | | | |----------------------------------------------------------------------|----------|----------|-----------------------|--|--|--|--|--| | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | 30 - 1000 | 3 | 3 | 0.0 | | | | | | | | April 1991 April 1990 | | | | | | | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|--| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | R39110-N-11-22 | Project Manager: | Christine Krebill | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | Standard: | FCC Part 15.247 | Class: | - | | | | | Preliminary peak readings captured during pre-scan | | pour rouem | 9 | | | | | | | |-----------|------------|-----|-------|--------|-----------|---------|--------|----------| | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 30.730 | 55.4 | Н | 100.0 | -44.6 | Peak | 126 | 1.5 | | | 33.312 | 51.7 | V | 100.0 | -48.3 | Peak | 275 | 2.0 | | | 37.782 | 43.5 | Н | 40.0 | 3.5 | Peak | 294 | 1.0 | | | 45.435 | 45.9 | Н | 100.0 | -54.1 | Peak | 345 | 1.5 | | | 73.737 | 45.5 | Н | 40.0 | 5.5 | Peak | 136 | 1.5 | | | 128.365 | 32.4 | Н | 43.5 | -11.1 | Peak | 209 | 1.0 | | | 172.026 | 36.1 | V | 43.5 | -7.4 | Peak | 131 | 2.0 | | | 912.029 | 44.8 | V | 100.0 | -55.2 | Peak | 353 | 1.5 | | Preliminary quasi-peak readings (no manipulation of EUT interface cables) | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|------------------|--------|-----------|---------|--------|--------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 30.730 | 27.1 | Н | 40.0 | -12.9 | QP | 126 | 1.0 | QP (1.00s), Note 1 | | 172.026 | 19.4 | V | 43.5 | -24.1 | QP | 131 | 2.0 | QP (1.00s) | | 73.737 | 28.5 | Н | 40.0 | -11.5 | QP | 136 | 1.4 | QP (1.00s) | | 128.365 | 29.3 | Н | 43.5 | -14.2 | QP | 209 | 1.0 | QP (1.00s) | | 33.312 | 25.1 | V | 40.0 | -14.9 | QP | 275 | 1.0 | QP (1.00s), Note 1 | | 37.782 | 23.7 | Н | 40.0 | -16.3 | QP | 294 | 1.0 | QP (1.00s) | | 45.435 | 16.7 | Н | 40.0 | -23.3 | QP | 345 | 1.3 | QP (1.00s) | | 912.029 | 32.2 | V | 46.0 | -13.8 | QP | 334 | 1.0 | QP (1.00s), Note 1 | | | | | | | | | | | | | The state of s | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #1b: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11n20 2472 MHz Power setting = 37 | Test Parameters for Preliminary Scan(s) | | | | | | | | | |-----------------------------------------|------------------|----------------|-----------------------|--|--|--|--|--| | Frequency Range | Prescan Distance | Limit Distance | Extrapolation Factor | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | 30 - 1000 | 3 | 3 | 0.0 | | | | | | | | SE SECTION OF THE CONTRACT | | | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Preliminary peak readings captured during pre-scan | | f frame grant gran | | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------|-----------|---------|--------|----------|--| | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | 33.301 | 57.3 | Н | 100.0 | -42.7 | Peak | 300 | 1.0 | | | | 36.875 | 49.1 | Н | 40.0 | 9.1 | Peak | 300 | 1.0 | | | | 72.009 | 51.2 | Н | 100.0 | -48.8 | Peak | 136 | 1.0 | | | | 73.738 | 36.3 | Н | 40.0 | -3.7 | Peak | 96 | 3.0 | | | | 128.740 | 32.2 | Н | 43.5 | -11.3 | Peak | 246 | 1.0 | | | | 163.355 | 39.7 | Н | 43.5 | -3.8 | Peak | 141 | 1.0 | | | | 242.727 | 33.7 | Н | 46.0 | -12.3 | Peak | 131 | 1.0 | | | | 158.435 | 46.0 | Н | 100.0 | -54.0 | Peak | 131 | 1.0 | | | Preliminary quasi-peak readings (no manipulation of EUT interface cables) | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|-------|--------|-----------|---------|--------|--------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 36.875 | 34.9 | Н | 40.0 | -5.1 | QP | 300 | 2.0 | QP (1.00s), Note 1 | | 33.301 | 27.0 | Н | 40.0 | -13.0 | QP | 300 | 1.0 | QP (1.00s), Note 1 | | 128.740 | 29.0 | Н | 43.5 | -14.5 | QP | 246 | 1.0 | QP (1.00s) | | 163.355 | 19.4 | Н | 43.5 | -24.1 | QP | 141 | 1.0 | QP (1.00s) | | 72.009 | 27.3 | Н | 40.0 | -12.7 | QP | 136 | 1.3 | QP (1.00s), Note 1 | | 158.435 | 19.6 | Н | 43.5 | -23.9 | QP | 131 | 1.3 | QP (1.00s), Note 1 | | 242.727 | 21.5 | Н | 46.0 | -24.5 | QP | 131 | 1.0 | QP (1.00s) | | 73.738 | 27.3 | Н | 40.0 | -12.7 | QP | 96 | 1.4 | QP (1.00s) | | | | | | | | | | | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #1c: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11b 2437 MHz Power setting = 36 | Test Parameters for Preliminary Scan(s) | | | | | | | | | | |----------------------------------------------------------------------|----------|----------|-----------------------|--|--|--|--|--|--| | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | | 30 - 1000 | | | | | | | | | | | | all and the complete the property of the complete and | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Madali | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Preliminary peak readings captured during pre-scan | | boant roadings subtained danning pro soun | | | | | | | | | |-----------|-------------------------------------------|-----|------------------|--------|-----------|---------|--------|----------|--| | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | 34.058 | 50.2 | V | 100.0 | -49.8 | Peak | 353 | 1.0 | | | | 37.674 | 42.1 | V | 40.0 | 2.1 | Peak | 318 | 1.0 | | | | 73.743 | 33.9 | V | 40.0 | -6.1 | Peak | 151 | 1.5 | | | | 117.047 | 36.8 | Н | 43.5 | -6.7 | Peak | 264 | 4.0 | | | | 255.078 | 35.7 | Н | 46.0 | -10.3 | Peak | 212 | 1.5 | | | | 540.031 | 36.2 | V | 100.0 | -63.8 | Peak | 326 | 2.5 | | | | | • | • | | | | | | | | Preliminary quasi-peak readings (no manipulation of EUT interface cables) | | J James promite and grant control of the | | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------|-----------|---------|--------|--------------------|--| | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | 73.743 | 30.6 | V | 40.0 | -9.4 | QP | 151 | 1.0 | QP (1.00s) | | | 255.078 | 22.5 | Н | 46.0 | -23.5 | QP | 227 | 1.0 | QP (1.00s) | | | 117.047 | 15.5 | Н | 43.5 | -28.0 | QP | 266 | 2.5 | QP (1.00s) | | | 37.674 | 22.4 | V | 40.0 | -17.6 | QP | 318 | 1.0 | QP (1.00s) | | | 540.031 | 22.1 | V | 46.0 | -23.9 | QP | 313 | 1.0 | QP (1.00s), Note 1 | | | 34.058 | 30.9 | V | 40.0 | -9.1 | QP | 354 | 1.0 | QP (1.00s), Note 1 | | | | | | | | | | | | | | | Application of the Control Co | | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--|--|--|--|--|--| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | | | | | | | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | | | | | | | R59110-N-11-22 | Project Manager: | Christine Krebill | | | | | | | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | | | | | | | Standard: | FCC Part 15.247 | Class: | - | | | | | | | Run #1d: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11b 2472 MHz Power setting = 37 | Test Parameters for Preliminary Scan(s) | | | | | | | | | | |----------------------------------------------------------------------|----------|----------|-----------------------|--|--|--|--|--|--| | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | | 30 - 1000 | | | | | | | | | | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | N35110-11-122 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | #### Preliminary peak readings captured during pre-scan | | pour rounning oup turing pro cour | | | | | | | | | | |-----------|-----------------------------------|-----|------------------|--------|-----------|---------|--------|----------|--|--| | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | | | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | | | 34.164 | 48.9 | V | 100.0 | -51.1 | Peak | 88 | 1.0 | | | | | 37.810 | 38.6 | V | 40.0 | -1.4 | Peak | 203 | 1.0 | | | | | 73.736 | 33.6 | V | 40.0 | -6.4 | Peak | 148 | 1.0 | | | | | 117.017 | 36.1 | Н | 43.5 | -7.4 | Peak | 187 | 4.0 | | | | | 132.015 | 38.9 | V | 43.5 | -4.6 | Peak | 208 | 1.0 | | | | | 254.399 | 31.9 | V | 46.0 | -14.1 | Peak | 354 | 1.0 | | | | | 540.020 | 39.4 | V | 100.0 | -60.6 | Peak | 2 | 2.5 | | | | | | | • | | | | • | | | | | ### Preliminary quasi-peak readings (no manipulation of EUT interface cables) | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|-------|--------|-----------|---------|--------|--------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 254.399 | 23.4 | V | 46.0 | -22.6 | QP | 346 | 1.2 | QP (1.00s) | | 132.015 | 25.8 | V | 43.5 | -17.7 | QP | 222 | 1.0 | QP (1.00s) | | 37.810 | 18.1 | V | 40.0 | -21.9 | QP | 203 | 1.0 | QP (1.00s) | | 117.017 | 13.7 | Н | 43.5 | -29.8 | QP | 187 | 2.5 | QP (1.00s) | | 73.736 | 32.2 | V | 40.0 | -7.8 | QP | 158 | 1.0 | QP (1.00s) | | 34.164 | 26.5 | V | 40.0 | -13.5 | QP | 88 | 1.0 | QP (1.00s), Note 1 | | 540.020 | 22.4 | V | 46.0 | -23.6 | QP | 0 | 1.1 | QP (1.00s), Note 1 | | | | | | | | | | | | | SE SECTION OF THE CONTRACT | | | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Madali | RS9110-N-11-22 | T-Log Number: | T94588 | | woder. | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #1e: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11g 2472 MHz Power setting = 37 | Test Parameters for Preliminary Scan(s) | | | | | | | | | | |-----------------------------------------|----------------------------------------------------------------------|----------|-----------------------|--|--|--|--|--|--| | Frequency Range | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | | 30 - 1000 | 3 | 3 | 0.0 | | | | | | | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Madali | RS9110-N-11-22 | T-Log Number: | T94588 | | woder. | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Preliminary peak readings captured during pre-scan | i reminary | peak readii | igo captai | ca aariing p | 10 30011 | | | | | |------------|-------------|------------|--------------|----------|-----------|---------|--------|----------| | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 33.377 | 49.4 | V | 100.0 | -50.6 | Peak | 322 | 1.0 | | | 37.727 | 41.1 | V | 40.0 | 1.1 | Peak | 353 | 1.0 | | | 73.736 | 34.1 | V | 40.0 | -5.9 | Peak | 162 | 1.5 | | | 117.199 | 33.7 | Н | 43.5 | -9.8 | Peak | 248 | 1.0 | | | 132.007 | 39.1 | V | 43.5 | -4.4 | Peak | 238 | 1.0 | | | 254.005 | 38.1 | V | 46.0 | -7.9 | Peak | 302 | 1.0 | | | 540.696 | 38.6 | Н | 100.0 | -61.4 | Peak | 333 | 1.0 | | | | | | | | | | | | Preliminary guasi-peak readings (no manipulation of EUT interface cables) | i reminiary | quusi pour | readings | (no mampa | ation of Lo | i iiitoriace e | abics | | | |-------------|------------|----------|-----------|-------------|----------------|---------|--------|--------------------| | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 73.736 | 32.3 | V | 40.0 | -7.7 | QP | 162 | 1.0 | QP (1.00s) | | 132.007 | 27.0 | V | 43.5 | -16.5 | QP | 247 | 1.0 | QP (1.00s) | | 117.199 | 14.9 | Н | 43.5 | -28.6 | QP | 248 | 2.5 | QP (1.00s) | | 254.005 | 19.1 | V | 46.0 | -26.9 | QP | 320 | 1.5 | QP (1.00s) | | 33.377 | 25.3 | V | 40.0 | -14.7 | QP | 322 | 1.0 | QP (1.00s), Note 1 | | 540.696 | 16.5 | Н | 46.0 | -29.5 | QP | 358 | 1.0 | QP (1.00s), Note 1 | | 37.727 | 14.1 | V | 40.0 | -25.9 | QP | 354 | 1.0 | QP (1.00s) | | | Section of the Control Contro | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Madal | RS9110-N-11-22 | T-Log Number: | T94588 | | Model. | R59110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #1f: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11n20 2412 MHz Power setting = 36 | Test Parameters for Preliminary Scan(s) | | | | | | | | | | |-----------------------------------------|----------------------------------------------------------------------|----------|-----------------------|--|--|--|--|--|--| | Frequency Range | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | | 30 - 1000 | 3 | 3 | 0.0 | | | | | | | | | SE SECTION OF THE CONTRACT | | | |-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------| | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | | Madali | RS9110-N-11-22 | T-Log Number: | T94588 | | Wodel. | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | #### Preliminary peak readings captured during pre-scan | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|-------|--------|-----------|---------|--------|----------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 33.309 | 48.4 | V | 100.0 | -51.6 | Peak | 97 | 2.0 | | | 37.803 | 40.0 | V | 40.0 | 0.0 | Peak | 97 | 1.0 | | | 73.736 | 34.3 | V | 40.0 | -5.7 | Peak | 172 | 1.0 | | | 117.411 | 33.4 | Н | 43.5 | -10.1 | Peak | 62 | 2.5 | | | 135.163 | 33.9 | Н | 43.5 | -9.6 | Peak | 177 | 1.5 | | | 253.437 | 30.6 | V | 46.0 | -15.4 | Peak | 117 | 1.0 | | | 492.037 | 36.1 | V | 100.0 | -63.9 | Peak | 337 | 1.0 | | | | | | | | | | | | #### Preliminary quasi-peak readings (no manipulation of EUT interface cables) | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|------------------|--------|-----------|---------|--------|--------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 117.411 | 12.8 | Н | 43.5 | -30.7 | QP | 62 | 2.4 | QP (1.00s) | | 33.309 | 24.6 | V | 40.0 | -15.4 | QP | 97 | 1.0 | QP (1.00s), Note 1 | | 37.803 | 13.5 | V | 40.0 | -26.5 | QP | 97 | 1.0 | QP (1.00s) | | 253.437 | 27.2 | V | 46.0 | -18.8 | QP | 135 | 1.0 | QP (1.00s) | | 73.736 | 32.3 | V | 40.0 | -7.7 | QP | 172 | 1.0 | QP (1.00s) | | 135.163 | 19.0 | Н | 43.5 | -24.5 | QP | 193 | 2.2 | QP (1.00s) | | 492.037 | 22.2 | V | 46.0 | -23.8 | QP | 316 | 1.0 | QP (1.00s), Note 1 | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Madalı | RS9110-N-11-22 | T-Log Number: | T94588 | | Wodel. | R39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #1g: Preliminary Radiated Emissions, 30 - 1000 MHz, 802.11n20 2437 MHz Power setting = 36 | Test Parameters for Preliminary Scan(s) | | | | | | | | | |-----------------------------------------|----------------------------------------------------------------------|----------|-----------------------|--|--|--|--|--| | Frequency Range | Frequency Range Prescan Distance Limit Distance Extrapolation Factor | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | | 30 - 1000 | 3 | 3 | 0.0 | | | | | | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | N35110-11-122 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | #### Preliminary peak readings captured during pre-scan | j | The state of s | | | | | | | | |-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|--------|-----------|---------|--------|----------| | Frequency | Level | Pol | FCC <sup>2</sup> | 15.209 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 33.377 | 49.4 | V | 100.0 | -50.6 | Peak | 318 | 1.0 | | | 37.696 | 39.2 | ٧ | 40.0 | -0.8 | Peak | 32 | 1.0 | | | 73.743 | 35.1 | V | 40.0 | -4.9 | Peak | 192 | 1.5 | | | 118.115 | 31.2 | Н | 43.5 | -12.3 | Peak | 267 | 3.0 | | | 134.103 | 34.8 | Н | 43.5 | -8.7 | Peak | 193 | 2.5 | | | 255.230 | 29.5 | Н | 46.0 | -16.5 | Peak | 323 | 1.5 | | | 540.051 | 36.5 | V | 100.0 | -63.5 | Peak | 22 | 1.0 | | | | | | | | | | | | ### Preliminary quasi-peak readings (no manipulation of EUT interface cables) | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | |-----------|--------|-----|-------|--------|-----------|---------|--------|--------------------| | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 255.230 | 21.9 | Н | 46.0 | -24.1 | QP | 315 | 1.3 | QP (1.00s) | | 33.377 | 25.2 | V | 40.0 | -14.8 | QP | 318 | 1.0 | QP (1.00s), Note 1 | | 118.115 | 13.8 | Н | 43.5 | -29.7 | QP | 267 | 2.4 | QP (1.00s) | | 134.103 | 18.5 | Н | 43.5 | -25.0 | QP | 200 | 2.1 | QP (1.00s) | | 73.743 | 32.0 | V | 40.0 | -8.0 | QP | 192 | 1.0 | QP (1.00s) | | 37.696 | 13.9 | V | 40.0 | -26.1 | QP | 32 | 1.0 | QP (1.00s) | | 540.051 | 23.5 | V | 46.0 | -22.5 | QP | 58 | 1.0 | QP (1.00s), Note 1 | | Client: | SAFEmine Technology, Inc. | Job Number: | J94480 | |-----------|---------------------------|----------------------|-------------------| | Model: | RS9110-N-11-22 | T-Log Number: | T94588 | | | K39110-N-11-22 | Project Manager: | Christine Krebill | | Contact: | Lukas Herzog | Project Coordinator: | Irene Rademacher | | Standard: | FCC Part 15.247 | Class: | - | Run #2: Maximized Worst Case Mode Emissons From Run #1 802.11n20, 2472MHz Power setting = 37 | Test Parameters for Maximized Reading(s) | | | | | | | | |-------------------------------------------------------------------|----------|----------|-----------------------|--|--|--|--| | Frequency Range Test Distance Limit Distance Extrapolation Factor | | | | | | | | | (MHz) | (meters) | (meters) | (dB, applied to data) | | | | | | 30 - 1000 3 3 0.0 | | | | | | | | Maximized quasi-peak readings (includes manipulation of EUT interface cables) | maximizea | quasi pouit | roadings , | (III coluace IIII | inpalation t | <u> </u> | add dabidd) | | | |-----------|-------------|------------|-------------------|--------------|-----------|-------------|--------|--------------------| | Frequency | Level | Pol | FCC 1 | 15.209 | Detector | Azimuth | Height | Comments | | MHz | dBμV/m | v/h | Limit | Margin | Pk/QP/Avg | degrees | meters | | | 36.875 | 34.9 | Н | 40.0 | -5.1 | QP | 300 | 2.0 | QP (1.00s), Note 1 | | 33.301 | 27.0 | Н | 40.0 | -13.0 | QP | 300 | 1.0 | QP (1.00s), Note 1 | | 128.740 | 29.0 | Н | 43.5 | -14.5 | QP | 246 | 1.0 | QP (1.00s) | | 163.355 | 19.4 | Н | 43.5 | -24.1 | QP | 141 | 1.0 | QP (1.00s) | | 72.009 | 27.3 | Н | 40.0 | -12.7 | QP | 136 | 1.3 | QP (1.00s), Note 1 | | 158.435 | 19.6 | Н | 43.5 | -23.9 | QP | 131 | 1.3 | QP (1.00s), Note 1 | | 242.727 | 21.5 | Н | 46.0 | -24.5 | QP | 131 | 1.0 | QP (1.00s) | | 73.738 | 27.3 | Н | 40.0 | -12.7 | QP | 96 | 1.4 | QP (1.00s) | | | | | | | | | | | Test Report Reissue Date: October 7, 2014 Report Date: May 21, 2014 ### **End of Report** This page is intentionally blank and marks the last page of this test report. File: R95099 Rev 2 Page 66