Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D750V3-1087_Feb22 ## CALIBRATION CERTIFICATE Object D750V3 - SN:1087 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: February 24, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | Millery | | Approved by | NII - Isaas | 200450200000 | XIII | | Approved by: | Niels Kuster | Quality Manager | 1/8 | Issued: March 2, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Appendix C Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Report No.: FA4N1331 Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1087_Feb22 Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ## Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.4 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.58 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.65 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1087_Feb22 Appendix C Report No. : FA4N1331 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.6 Ω - 2.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.1 dB | | ### General Antenna Parameters and Design | TO SECURE A CONTRACT OF THE SECURE SE | Sc. Principle by a min | |--|------------------------| | Electrical Delay (one direction) | 1.034 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No:
D750V3-1087_Feb22 Page 4 of 6 #### DASY5 Validation Report for Head TSL Date: 24.02.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1087 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.64 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.22 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 17 mm Ratio of SAR at M2 to SAR at M1 = 66.5% Maximum value of SAR (measured) = 2.83 W/kg ## Impedance Measurement Plot for Head TSL ## D750V3, Serial No. 1087 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D750V3 – serial no. 1087 | | | | | | | |--------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | 750 Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2022.2.24 | -29.078 | | 52.625 | | -2.4779 | | | 2023.2.23 | -25.021 | -13.95 | 49.974 | 2.651 | -5.5764 | 3.0985 | | 2024.2.23 | -27.142 | -6.66 | 53.849 | -1.224 | -1.9335 | -0.5444 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D750V3, serial no. 1087 #### 750MHz - Head-2023.2.23 #### 750MHz - Head-2024.2.23 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D835V2-4d162_Dec24 #### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d162 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date December 13, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 28-Oct-24 (No. DAE4ip-1836 Oct24) | Oct-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: December 13, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d162 Dec24 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** DASY System Handbook #### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - · SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d162_Dec24 Page 2 of 6 D835V2 - SN: 4d162 December 13, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 6mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 835MHz ±1MHz | | ## Head TSL parameters at 835 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.900 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 41.5 ±6% | 0.900 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 835 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.08 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 1.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.85 W/kg ±16.5% (k = 2) | Certificate No: D835V2-4d162_Dec24 Page 3 of 6 D835V2 - SN: 4d162 December 13, 2024 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 835 MHz | Impedance | 50.2 Ω – 8.5 jΩ | | | |-------------|-----------------|--|--| | Return Loss | -21.4 dB | | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.44 ns | |----------------------------------|---------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The
antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |--|---| | 32 C 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (| 900 - 000 - | Certificate No: D835V2-4d162_Dec24 Page 4 of 6 Page: 12/103 D835V2 - SN: 4d162 December 13, 2024 #### System Performance Check Report #### Summary | Dipole | Frequency [MHz] | TSL | Power (dBm) | | |------------------|-----------------|-----|-------------|--| | D835V2 - SN4d162 | 835 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 15 | | CW, 0 | 835, 0 | 9.61 | 0.90 | 41.5 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |---------------|--------------------|-----------------------------|---------------------------|--| | Flat V4.9 mod | HSL, 2024-12-13 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-10-28 | | #### Scans Setup | cans setup | | |---------------------|-----------------| | | Zoom Scan | | Grid Extents (mm) | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 × 6.0 × 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | | | | #### Measurement Results | leasurement Results | | |---------------------|---------------------| | | Zoom Scan | | Date | 2024-12-13 | | psSAR1g [W/Kg] | 2.28 | | psSAR10g [W/Kg] | 1.47 | | Power Drift [dB] | -0.01 | | Power Scaling | Disabled | | Scaling Factor [dB] | | | TSL Correction | Positive / Negative | 0 dB = 3.60 W/Kg Certificate No: D835V2-4d162_Dec24 Page 5 of 6 D835V2 - SN: 4d162 December 13, 2024 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d162_Dec24 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Shenzhen Certificate No. D1750V2-1137_Oct24 #### **CALIBRATION CERTIFICATE** Object D1750V2 - SN: 1137 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date October 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 22-Jul-24 (No. 4030A315008547) | Jul-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 24-Sep-24 (No. OCP-DAK12-1016_Sep24) | Sep-25 | | OCP DAK-3.5 | SN: 1249 | 23-Sep-24 (No. OCP-DAK3.5-1249_Sep24) | Sep-25 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 675-CAL16-S4588-240528) | May-25 | | Mismatch: SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch SMA-240522) | May-25 | Name Function Signature Calibrated by Paulo Pina Laboratory Technician Approved by Sven Kühn Technical Manager ; A. A. M. Issued: October 15, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528,"Measurement Procedure For The Assessment Of Specific Absorption Rate Of
Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** DASY System Handbook #### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. D1750V2 - SN: 1137 October 15, 2024 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|--------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, dy = 6mm, dz = 1.5mm | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 1750MHz ±1MHz | | ## Head TSL parameters at 1750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 40.6 ±6% | 1.33 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 1750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 9.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.8 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 4.93 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.6 W/kg ±16.5% (k = 2) | Certificate No: D1750V2-1137_Oct24 D1750V2 - SN: 1137 October 15, 2024 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 1750 MHz | Impedence | 49.2 Ω – 1.6 jΩ | |-------------|-------------------| | Impedance | 49.2 17 - 1.0 jt2 | | Return Loss | -34.9 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.222 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | ٨ | Manufactured by | SPEAG | |---|-----------------|-------| | | | | Certificate No: D1750V2-1137_Oct24 Page 4 of 6 Page: 18/103 D1750V2 - SN: 1137 October 15, 2024 #### System Performance Check Report | Su | | | |----|--|--| | | | | | | | | | Dipole | Frequency [MHz] | TSL | Power [dBm] | | |------------------|-----------------|-----|-------------|--| | D1750V2 - SN1137 | 1750 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance [mm] | Band | Group, UID | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity [S/m] | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 10 | | CW, 0 | 1750, 0 | 7.96 | 1.33 | 40.6 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |----------------|--------------------|-----------------------------|---------------------------|--| | MFP V8.0 Right | HSL, 2024-10-15 | EX3DV4 - SN7349, 2024-06-03 | DAE4ip Sn1836, 2024-01-10 | | #### Scans Setup | | Zoom Scan | |---------------------|-----------------| | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 6.0 x 6.0 x 1.5 | | Sensor Surface [mm] | 1.4 | | Graded Grid | Yes | | Grading Ratio | 1.5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | #### Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-10-15 | | psSAR1g [W/Kg] | 9.24 | | psSAR10g [W/Kg] | 4.93 | | Power Drift [d8] | 0.01 | | Power Scaling | Disabled | | Scaling Factor (dB) | | | TSL Correction | Positive / Negative | 0 dB = 16.0 W/Kg Certificate No: D1750V2-1137_Oct24 D1750V2 - SN: 1137 October 15, 2024 ## Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1137_Oct24 Page 6 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D1900V2-5d118 Mar22 ## **CALIBRATION CERTIFICATE** Object D1900V2 - SN:5d118 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 30, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-21 (No. EX3-7349_Dec21) | Dec-22 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | diffellestoj | | Approved by: | Sven Kühn | Deputy Manager | C + | Issued: March 31, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human
Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d118_Mar22 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.40 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d118_Mar22 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.6 \Omega + 6.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 23.4 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ## **Additional EUT Data** | [28-27] (1 084 7) Wes | | |-----------------------|--------| | Manufactured by | SPEAG | | 3 | or LAG | Certificate No: D1900V2-5d118_Mar22 Page 4 of 6 Page: 24/103 ## **DASY5 Validation Report for Head TSL** Date: 30.03.2022 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d118 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.40 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1900 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.2 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.4 W/kg ## SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.11 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.4% Maximum value of SAR (measured) = 15.4 W/kg 0 dB = 15.4 W/kg = 11.88 dBW/kg ## Impedance Measurement Plot for Head TSL ## D1900V2, Serial No. 5d118 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of priorcalibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary anothe calibration interval can be extended. | D1900V2 – serial no. 5d118 | | | | | | | |----------------------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | | 1900 Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 2022.3.30 | -23.393 | | 52.598 | | 6.4525 | | | 2023.3.29 | -25.861 | 10.55 | 50.443 | 2.155 | 4.8447 | 1.6078 | | 2024.3.29 | -23.315 | -0.33 | 52.154 | 0.444 | 4.5235 | 1.929 | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### Dipole Verification Data> D1900V2, serial no. 5d118 #### 1900MHz - Head - 2023-3-29 1900MHz - Head - 2024-3-29 Appendix C 中国认可国际互认校准 CALIBRATION CNAS L0570 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client Sporton **Certificate No:** 23J02Z80115 #### CALIBRATION CERTIFICATE Object D2450V2 - SN: 924 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: November 3, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|---|---|-----------------------| | Power Meter NRP2 | 106276 | 15-May-23 (CTTL, No.J23X04183) | May-24 | | Power sensor NRP6A | er sensor NRP6A 101369 15-May-23 (CTTL, No.J23X04183) | | May-24 | | Reference Probe EX3DV4 | SN 7464 | 19-Jan-23(CTTL-SPEAG,No.Z22-60565) | Jan-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | Name | Function | Signature | | Calibrated by: | Zhao ling | SAR Test Engineer | 4. 1 | Calibrated by Zhao Jing SAR Test Engineer 4 1L Reviewed by: Lin Hao SAR Test Engineer MIN D Approved by: Qi Dianyuan SAR Project Leader Issued: November 7, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 23J02Z80115 Page 1 of 6 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body
axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: 23J02Z80115 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.8 ± 6 % | 1.83 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 18.7 % (k=2) | Certificate No: 23J02Z80115 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.2Ω+ 7.23jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.9dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.061 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### Additional EUT Data | Ma | anufactured by | SPEAG | |----|----------------|-------| | | | | Certificate No: 23J02Z80115 Date: 2023-11-03 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.827 \text{ S/m}$; $\varepsilon_r = 38.76$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: Probe: EX3DV4 - SN7464; ConvF(7.67, 7.67, 7.67) @ 2450 MHz; Calibrated: 2023-01-19 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.5 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.3 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.17 W/kg Smallest distance from peaks to all points 3 dB below = 8.9 mm Ratio of SAR at M2 to SAR at M1 = 49.1% Maximum value of SAR (measured) = 22.2 W/kg 0 dB = 22.2 W/kg = 13.46 dBW/kg Certificate No: 23J02Z80115 Page 5 of 6 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### Impedance Measurement Plot for Head TSL ## D2450V2, Serial No. 924 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | . , | | | | | | | | |--------------------------|-------------|-------|----------------|-------|---------------------|-------|--| | D2450V2 – serial no. 924 | | | | | | | | | | 2450 Head | | | | | | | | Date of | Return-Loss | Delta | Real Impedance | Delta | Imaginary Impedance | Delta | | | Measurement | (dB) | (%) | (ohm) | (ohm) | (ohm) | (ohm) | | | 2023.11.3 | -22.9 | | 50.2 | | 7.2 | | | | 2024.11.2 | -23.2 | 1.5% | 51.6 | -1.4 | 6.3 | 0.9 | | | | | | | | | | | #### <Justification of the extended calibration> The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. Page: 34/103 Report No.: FA4N1331 ## Dipole Verification Data> 2450V2, serial no. 924 ### 2450MHz - Head----2024.11.2 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. D2600V2-1008_Aug24 ### **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1008 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz Calibration date August 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Cal | |--|------------|---------------------------------------|---------------| | Power Sensor R&S NRP-33T | SN: 100967 | 28-Mar-24 (No. 217-04038) | Mar-25 | | Power Sensor R&S NRP18A | SN: 101859 | 21-Mar-24 (No. 4030A315007801) | Mar-25 | | Spectrum Analyzer R&S FSV40 | SN: 101832 | 25-Jan-24 (No. 4030-315007551) | Jan-25 | | Mismatch; Short [S4188] Attenuator [S4423] | SN: 1152 | 28-Mar-24 (No. 217-04050) | Mar-25 | | OCP DAK-12 | SN: 1016 | 05-Oct-23 (No. OCP-DAK12-1016_Oct23) | Oct-24 | | OCP DAK-3.5 | SN: 1249 | 05-Oct-23 (No. OCP-DAK3.5-1249_Oct23) | Oct-24 | | Reference Probe EX3DV4 | SN: 7349 | 03-Jun-24 (No. EX3-7349_Jun24) | Jun-25 | | DAE4ip | SN: 1836 | 10-Jan-24 (No. DAE4ip-1836_Jan24) | Jan-25 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |------------------------------|------------|--|-----------------| | ACAD Source Box | SN: 1000 | 28-May-24 (No. 675-ACAD_Source_Box-240528) | May-25 | | Signal Generator R&S SMB100A | SN: 182081 | 28-May-24 (No. 0001-300719404) | May-25 | | Mismatch; SMA | SN: 1102 | 22-May-24 (No. 675-Mismatch_SMA-240522) | May-25 | Name Function Calibrated by Krešimir Franjić Laboratory Technician Approved by Sven Kühn Technical Manager Issued: August 16, 2024 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1008_Aug24 Page 1 of 6 #### Appendix C ilac-MRA Report No.: FA4N1331 Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x.y.z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards - IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And
Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation** · DASY System Handbook #### Methods Applied and Interpretation of Parameters - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - · SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters. The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 6 Report No. : FA4N1331 August 15, 2024 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module SAR | 16.4.0 | |------------------------------|-------------------------------|-------------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with spacer | | Zoom Scan Resolution | dx, $dy = 5mm$, $dz = 1.5mm$ | Graded Ratio = 1.5 mm (Z direction) | | Frequency | 2600MHz ±1MHz | | ## Head TSL parameters at 2600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|---------------|--------------|----------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ±0.2)°C | 37.3 ±6% | 2.00 mho/m ±6% | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 2600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 14.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.7 W/kg ±17.0% (k = 2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR for nominal Head TSL parameters | 24 dBm input power | 6.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ±16.5% (k = 2) | Certificate No: D2600V2-1008_Aug24 Page 3 of 6 D2600V2 - SN: 1008 Report No. : FA4N1331 August 15, 2024 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 2600 MHz | Impedance | 49.0 Ω – 3.7 jΩ | |-------------|-----------------| | Return Loss | -28.2 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.153 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | | POTENTIAL PROPERTY AND ADDRESS OF THE O | |--------------------|--| | Manufactured by | SPEAG | | Wilding Colored by | | Certificate No: D2600V2-1008_Aug24 Page 4 of 6 Page: 39/103 #### System Performance Check Report | วน | 11 | ш | n | a | П | ۲. | |----|----|---|---|---|---|----| | - | _ | - | ÷ | - | _ | - | | Dipale | Frequency (MHz] | TSL | Power (dBm) | | |-------------------|-----------------|-----|-------------|--| | D2600V2 - \$N1008 | 2600 | HSL | 24 | | #### **Exposure Conditions** | Phantom Section, TSL | Test Distance (mm) | Band | Group, UIO | Frequency [MHz], Channel Number | Conversion Factor | TSL Conductivity (S/m) | TSL Permittivity | |----------------------|--------------------|------|------------|---------------------------------|-------------------|------------------------|------------------| | Flat | 10 | | CW, 0 | 2600.0 | 7.29 | 2.00 | 37,3 | #### Hardware Setup | Phantom | TSL, Measured Date | Probe, Calibration Date | DAE, Calibration Date | | |-----------------|--------------------|-----------------------------|---------------------------|--| | MFP V8.0 Center | HSL, 2024-08-15 | EX30V4 - SN7349, 2024-06-03 | DAE4(p Sn1836, 2024-01-10 | | #### Scans Setup | rearra secup | | |---------------------|-----------------| | | Zoom Scan | | Grid Extents [mm] | 30 x 30 x 30 | | Grid Steps [mm] | 5.0 × 5.0 × 1.5 | | Sensor Surface (mm) | 1.4 | | Graded Grid | Yes | | Griding Ratio | Ti5 | | MAIA | N/A | | Surface Detection | VMS + 6p | | Scan Method | Measured | | | | ## Measurement Results | | Zoom Scan | |---------------------|---------------------| | Date | 2024-08-15 | | psSAR1g [W/Kg] | 14.0 | | psSARlog (W/Kg) | 6.35 | | Power Drift (d6) | 0.00 | | Power Scaling | Disabled | | Scaling Factor [d8] | | | TSL Correction | Positive / Negative | 0 d8 = 30.2 W/Kg ## Impedance Measurement Plot for Head TSL 中国认可国际互认 校准 CALIBRATION CNAS L0570 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Client Sporton Certificate No: Z22-60145 ## CALIBRATION CERTIFICATE Object D3500V2 - SN: 1076 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: May 9, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | rimary Standards ID # Cal Date (Calibrated by, Certificate No.) | | Scheduled Calibration | |-------------------------|---|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 |
14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | | | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Qi Dianyuan SAR Project Leader Issued: May 13, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60145 Approved by: Page 1 of 6 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60145 Page 2 of 6 # In Collaboration with S P B B G CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | 5.00 | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.1 ± 6 % | 2.92 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.62 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.55 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.5 W/kg ± 24.2 % (k=2) | Certificate No: Z22-60145 Page 3 of 6