

Report No.:STS2411070W03

Issued for

Shenzhen Kingbolen Electrics Technology Co.,Ltd.

B1020-1028, Yousong Technology Building, Donghuan 1st road, Longhua, Shenzhen, 518109 China

Product Name: OBDII Bluetooth Vehicle Diagnostic Tool

Brand Name: KINGBOLEN

Model Name: Soloscan

Series Model(s): N/A

FCC ID: 2A8T7EMINI

Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Page 2 of 24 Report No.: STS2411070W03

	TEST REPORT
Applicant's Name	Shenzhen Kingbolen Electrics Technology Co.,Ltd.
Address	B1020-1028, Yousong Technology Building, Donghuan 1st road, Longhua, Shenzhen, 518109 China
Manufacturer's Name	Shenzhen Kingbolen Electrics Technology Co.,Ltd.
Address:	B1020-1028, Yousong Technology Building, Donghuan 1st road, Longhua, Shenzhen, 518109 China
Product Description	
Product Name:	OBDII Bluetooth Vehicle Diagnostic Tool
Brand Name:	KINGBOLEN
Model Name:	Soloscan
Series Model(s)	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2020
under test (EUT) is in compliance sample identified in the report. The test results presented in this	been tested by STS, the test results show that the equipment with the FCC requirements. And it is applicable only to the tested as report relate only to the object tested. This report shall not be the written approval of the Shenzhen STS Test Services Co., Ltd
Date of receipt of test item:	28 June 2024
Date (s) of performance of tests:	28 June 2024 ~ 19 Nov. 2024
Date of Issue:	19 Nov. 2024
Test Result:	Pass
Testing Engineer	Hann Bu
Technical Manag	TECTING APPROVAL
	(Tony Liu)

101, Building B, Zhuoke Science Park, No. 190 Chongqing Road, Zhancheng Shequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guangdong, China

Trong Jung

(Bovey Yang)

Tel: +86-755 3688 6288 Fax: +86-755 3688 6277 Http://www.stsapp.com E-mail:sts@stsapp.com

Authorized Signatory:

Page 3 of 24 Report No.: STS2411070W03

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS	9
2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING	10
2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	12
2.7 EQUIPMENTS LIST	13
3. EMC EMISSION TEST	14
3.1 RADIATED EMISSION MEASUREMENT	14
4. ANTENNA REQUIREMENT	23
4.1 STANDARD REQUIREMENT	23
4.2 EUT ANTENNA	23
APPENDIX 2-PHOTOS OF TEST SETUP	24

Page 4 of 24

Report No.: STS2411070W03

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	04 July 2024	STS2406140W03	ALL	Initial Issue
01	26 July 2024	STS2407150W03	ALL	Update FCC ID number, applicant, manufacturer, product name, brand name and model name
00	19 Nov. 2024	STS2411070W03	ALL	Update model name and radiation spurious

Page 5 of 24 Report No.: STS2411070W03

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C							
Standard Section	Test Item	Judgment	Remark				
15.209	Radiated Spurious Emission	PASS	-				
15.203	Antenna Requirement	PASS					

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

Page 6 of 24 Report No.: STS2411070W03

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add.: 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ,

Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately $\mathbf{95}$ %.

No.	Item	Uncertainty
1	All emissions, radiated 9K-30MHz	±3.80dB
2	All emissions, radiated 30M-1GHz	±4.18dB

Page 7 of 24 Report No.: STS2411070W03

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	OBDII Bluetooth Vehicle Diagnostic Tool
Brand Name	KINGBOLEN
Model Name	Soloscan
Series Model(s)	N/A
Model Difference	N/A
Channel List	Please refer to the Note 3.
Bluetooth	Frequency:2402 – 2480 MHz Modulation: GFSK(1Mbps), π/4-DQPSK(2Mbps), 8DPSK(3Mbps)
Bluetooth Configuration	BR+EDR
Antenna Type	Internal Antenna
Antenna Gain	2.72 dBi
Rating	Input: 9-18VDC 100mA
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the Note 1.

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Page 8 of 24

Report No.: STS2411070W03

3.

		Chanr	nel List		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

Page 9 of 24 Report No.: STS2411070W03

2.2 DESCRIPTION OF THE TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

1	teet eeringaratieri mede(e) mentieried (,
Worst Mode	Description	Data Rate/Modulation
Mode 1	TX CH00	1Mbps/GFSK
Mode 2	TX CH39	1Mbps/GFSK
Mode 3	TX CH78	1Mbps/GFSK
Mode 4	TX CH00	2 Mbps/π/4-DQPSK
Mode 5	TX CH39	2 Mbps/π/4-DQPSK
Mode 6	TX CH78	2 Mbps/π/4-DQPSK
Mode7	TX CH00	3 Mbps/8DPSK
Mode 8	TX CH39	3 Mbps/8DPSK
Mode 9	TX CH78	3 Mbps/8DPSK
Mode 10	Hopping	GFSK
Mode 11	Hopping	π/4-DQPSK
Mode 12	Hopping	8DPSK

Note:

- (1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.
- (2) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.
- (3) Use DC 12V the radiated and RF conducted test.

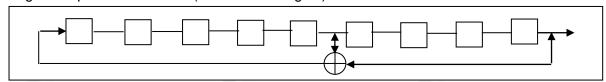
2.3 FREQUENCY HOPPING SYSTEM REQUIREMENTS

(1)Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hop sets to avoid hopping on occupied channels is


Page 10 of 24 Report No.: STS2411070W03

permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

(2)The Pseudorandom sequence may be generated in a nin-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones: i.e. the shift register is initialized with nine ones.

Numver of shift register stages:9

Length of pseudo-random sequence:29-1=511bits Longest sequence of zeros: 8(non-inverted signal)

Liner Feedback Shift Register for Generator of the PRBS sequence

An example of Pseudorandom Frequency Hoppong Sequence as follow:

0	2	4	6			78		73	75	77
									Щ	

Each frequency used equally on th average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies ini synchronization with the transmitted signals.

(3) Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule.

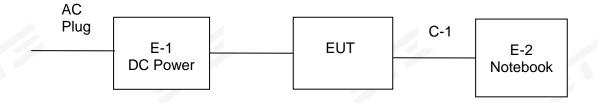
This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with a bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements FCC Part 15.247 rule.

2.4 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the


Page 11 of 24 Report No.: STS2411070W03

setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS.

	Т		
(Control software) Parameters(1/2/3Mbps)	Packet type: DH1:4:27 2DH1:20:54 3DH1:24:83	Packet type: DH3:11:183 2DH3:26:367 3DH3:27:552	Packet type: DH5:15:339 2DH5:30:679 3DH5:31:1021

RF Function	Type	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
		GFSK	2.72	0	
ВТ	BR+EDR	π/4-DQPSK	2.72	0	BT98X RF Tool V1.2
		8DPSK	2.72	0	

2.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Spurious Emission Test

Page 12 of 24 Report No.: STS2411070W03

2.6 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
	N/A	N/A	N/A	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A
C-1	USB Cable	N/A	100cm	N/A	N/A
E-1	DC Power	HONGSHENGFENG	DPS-305AF	N/A	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in [®] Length [®] column.
- (2) "YES" is means "with core"; "NO" is means "without core".

Page 13 of 24 Report No.: STS2411070W03

2.7 EQUIPMENTS LIST

	RF Radiation Test Equipment						
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until		
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14		
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22		
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2024.09.23	2025.09.22		
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2024.02.23	2025.02.22		
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27		
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23		
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09		
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A		
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22		
Switch Control Box	N/A	N/A	N/A	N/A	N/A		
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A		
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A		
Turn Table	MF	SC100_1	60531	N/A	N/A		
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A		
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2024.09.23	2025.09.22		
Test SW	EZ-EMC		Ver.STSLAB-03	A1 RE			

Page 14 of 24 Report No.: STS2411070W03

3. EMC EMISSION TEST

3.1 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205 (a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Page 15 of 24 Report No.: STS2411070W03

For Radiated Emission

Spectrum Parameter	Setting		
Attenuation	Auto		
Detector	Peak/QP/AV		
Start Frequency	9 KHz/150KHz(Peak/QP/AV)		
Stop Frequency	150KHz/30MHz(Peak/QP/AV)		
	200Hz (From 9kHz to 0.15MHz)/		
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);		
band)	200Hz (From 9kHz to 0.15MHz)/		
	9KHz (From 0.15MHz to 30MHz)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 300 KHz	
band)		

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)	
band)	1 MHz/1/T MHz(AVG)	

For Restricted band

Spectrum Parameter	Setting		
Detector	Peak/AV		
Start/Stan Fraguency	Lower Band Edge: 2310 to 2410 MHz		
Start/Stop Frequency	Upper Band Edge: 2476 to 2500 MHz		
DD ()/D	1 MHz / 3 MHz(Peak)		
RB / VB	1 MHz/1/T MHz(AVG)		

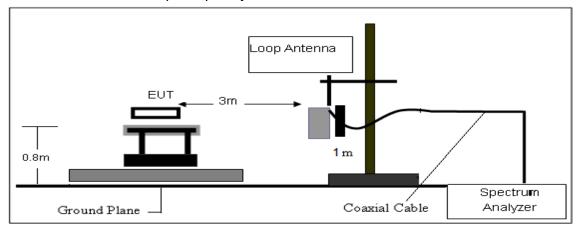
Page 16 of 24 Report No.: STS2411070W03

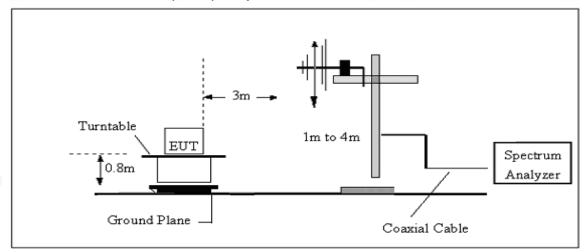
Receiver Parameter	Setting		
Attenuation	Auto		
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP		
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV		
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP		
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP		

3.2.2 TEST PROCEDURE

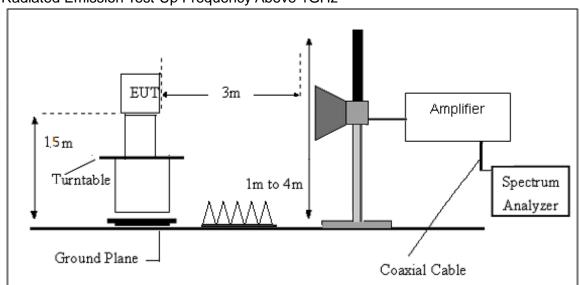
- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


3.2.3 DEVIATION FROM TEST STANDARD No deviation.


Page 17 of 24 Report No.: STS2411070W03

3.2.4 TESTSETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

Please refer to section 3.1.4 of this report.

Page 18 of 24 Report No.: STS2411070W03

3.2.6 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

3.2.7 TEST RESULTS

(9KHz-30MHz)

Temperature:	23.1℃	Relative Humidity:	60%RH
Test Voltage:	DC 12V From Battery	Test Mode:	TX Mode

Freq.	Reading	Limit	Margin	State	Test Result
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	rest Result
					PASS
					PASS

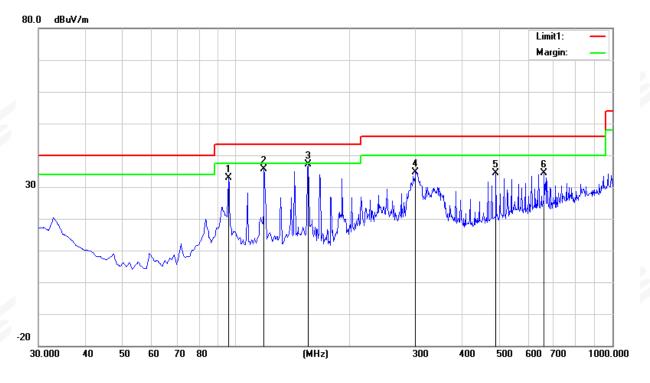
Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

Page 19 of 24 Report No.: STS2411070W03

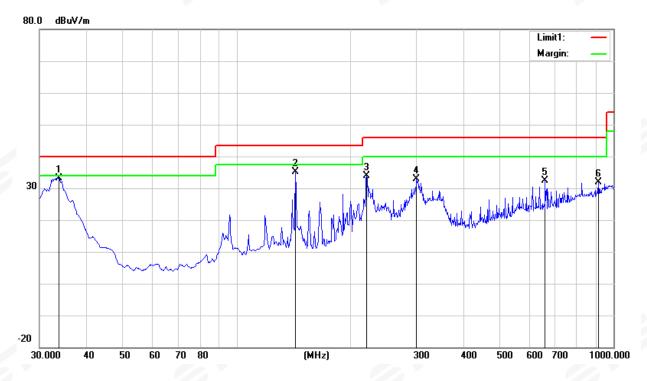

(30MHz-1000MHz)

Temperature:	23.1℃	Relative Humidity:	60%RH
Test Voltage:	DC 12V From Battery	Phase:	Horizontal
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode	e 8 worst mode)	

No.	Frequency	Reading Correct		Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	95.9600	53.47	-20.67	32.80	43.50	-10.70	peak
2	119.2400	53.91	-18.38	35.53	43.50	-7.97	peak
3	156.1000	55.89	-18.66	37.23	43.50	-6.27	peak
4	300.6300	49.51	-14.79	34.72	46.00	-11.28	peak
5	491.7200	42.62	-8.18	34.44	46.00	-11.56	peak
6	660.5000	39.26	-4.80	34.46	46.00	-11.54	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.


Page 20 of 24 Report No.: STS2411070W03

Temperature:	23.1℃	Relative Humidity:	60%RH
Test Voltage:	DC 12V From Battery	Phase:	Vertical
Test Mode:	Mode 1/2/3/4/5/6/7/8/9 (Mode	8 worst mode)	

No.	Frequency	Reading	eading Correct Result		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	33.8800	47.85	-14.80	33.05	40.00	-6.95	peak
2	143.4900	53.34	-18.23	35.11	43.50	-8.39	peak
3	222.0600	53.38	-19.48	33.90	46.00	-12.10	peak
4	300.6300	47.78	-14.79	32.99	46.00	-13.01	peak
5	660.5000	37.25	-4.80	32.45	46.00	-13.55	peak
6	915.6100	31.90	-0.09	31.81	46.00	-14.19	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain

Page 21 of 24 Report No.: STS2411070W03

(1000MHz-25GHz) Spurious emission Requirements

8DPSK

Above 100	0 MHz									
	Meter			Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Commen
				Low Cl	hannel (8DPSK	/2402 MHz)				
3264.77	61.56	44.70	6.70	28.20	-9.80	51.76	74.00	-22.24	PK	Vertical
3264.77	50.33	44.70	6.70	28.20	-9.80	40.53	54.00	-13.47	AV	Vertical
3264.84	61.34	44.70	6.70	28.20	-9.80	51.54	74.00	-22.46	PK	Horizontal
3264.84	50.16	44.70	6.70	28.20	-9.80	40.36	54.00	-13.64	AV	Horizontal
4804.52	59.20	44.20	9.04	31.60	-3.56	55.64	74.00	-18.36	PK	Vertical
4804.52	49.37	44.20	9.04	31.60	-3.56	45.81	54.00	-8.19	AV	Vertical
4804.57	58.83	44.20	9.04	31.60	-3.56	55.27	74.00	-18.73	PK	Horizontal
4804.57	50.47	44.20	9.04	31.60	-3.56	46.91	54.00	-7.09	AV	Horizontal
5359.87	48.03	44.20	9.86	32.00	-2.34	45.68	74.00	-28.32	PK	Vertical
5359.87	39.22	44.20	9.86	32.00	-2.34	36.88	54.00	-17.12	AV	Vertical
5359.64	47.21	44.20	9.86	32.00	-2.34	44.87	74.00	-29.13	PK	Horizontal
5359.64	38.11	44.20	9.86	32.00	-2.34	35.77	54.00	-18.23	AV	Horizontal
7205.82	54.67	43.50	11.40	35.50	3.40	58.07	74.00	-15.93	PK	Vertical
7205.82	43.72	43.50	11.40	35.50	3.40	47.12	54.00	-6.88	AV	Vertical
7205.90	53.61	43.50	11.40	35.50	3.40	57.01	74.00	-16.99	PK	Horizontal
7205.90	44.03	43.50	11.40	35.50	3.40	47.43	54.00	-6.57	AV	Horizontal
	•	•		Middle (Channel (8DPSI	K/2441 MHz)		•		1
3264.86	61.96	44.70	6.70	28.20	-9.80	52.16	74.00	-21.84	PK	Vertical
3264.86	50.55	44.70	6.70	28.20	-9.80	40.75	54.00	-13.25	AV	Vertical
3264.84	62.23	44.70	6.70	28.20	-9.80	52.43	74.00	-21.57	PK	Horizontal
3264.84	51.06	44.70	6.70	28.20	-9.80	41.26	54.00	-12.74	AV	Horizontal
4882.51	58.71	44.20	9.04	31.60	-3.56	55.15	74.00	-18.85	PK	Vertical
4882.51	50.23	44.20	9.04	31.60	-3.56	46.67	54.00	-7.33	AV	Vertical
4882.37	59.40	44.20	9.04	31.60	-3.56	55.84	74.00	-18.16	PK	Horizontal
4882.37	50.04	44.20	9.04	31.60	-3.56	46.48	54.00	-7.52	AV	Horizontal
5359.68	48.17	44.20	9.86	32.00	-2.34	45.82	74.00	-28.18	PK	Vertical
5359.68	39.58	44.20	9.86	32.00	-2.34	37.24	54.00	-16.76	AV	Vertical
5359.69	47.55	44.20	9.86	32.00	-2.34	45.20	74.00	-28.80	PK	Horizontal
5359.69	38.10	44.20	9.86	32.00	-2.34	35.76	54.00	-18.24	AV	Horizontal
7323.76	53.69	43.50	11.40	35.50	3.40	57.09	74.00	-16.91	PK	Vertical

Page 22 of 24 Report No.: STS2411070W03

7323.76	43.74	43.50	11.40	35.50	3.40	47.14	54.00	-6.86	AV	Vertical
7323.92	53.61	43.50	11.40	35.50	3.40	57.01	74.00	-16.99	PK	Horizontal
7323.92	44.50	43.50	11.40	35.50	3.40	47.90	54.00	-6.10	AV	Horizontal
				High C	hannel (8DPSK	(/2480 MHz)				
3264.78	60.87	44.70	6.70	28.20	-9.80	51.07	74.00	-22.93	PK	Vertical
3264.78	50.21	44.70	6.70	28.20	-9.80	40.41	54.00	-13.59	AV	Vertical
3264.83	62.16	44.70	6.70	28.20	-9.80	52.36	74.00	-21.64	PK	Horizontal
3264.83	51.04	44.70	6.70	28.20	-9.80	41.24	54.00	-12.76	AV	Horizontal
4960.38	58.68	44.20	9.04	31.60	-3.56	55.12	74.00	-18.88	PK	Vertical
4960.38	49.73	44.20	9.04	31.60	-3.56	46.17	54.00	-7.83	AV	Vertical
4960.33	58.90	44.20	9.04	31.60	-3.56	55.34	74.00	-18.66	PK	Horizontal
4960.33	50.00	44.20	9.04	31.60	-3.56	46.44	54.00	-7.56	AV	Horizontal
5359.69	48.59	44.20	9.86	32.00	-2.34	46.25	74.00	-27.75	PK	Vertical
5359.69	39.55	44.20	9.86	32.00	-2.34	37.21	54.00	-16.79	AV	Vertical
5359.63	47.22	44.20	9.86	32.00	-2.34	44.88	74.00	-29.12	PK	Horizontal
5359.63	38.36	44.20	9.86	32.00	-2.34	36.01	54.00	-17.99	AV	Horizontal
7439.94	53.59	43.50	11.40	35.50	3.40	56.99	74.00	-17.01	PK	Vertical
7439.94	44.85	43.50	11.40	35.50	3.40	48.25	54.00	-5.75	AV	Vertical
7439.90	54.62	43.50	11.40	35.50	3.40	58.02	74.00	-15.98	PK	Horizontal
7439.90	44.25	43.50	11.40	35.50	3.40	47.65	54.00	-6.35	AV	Horizontal

Remark:

- 1. Factor = Antenna Factor + Cable Loss Pre-amplifier.
- Scan with all modes the worst case is 8DPSK.
 Emission Level = Reading + Factor
 Margin = Emission Level-Limit
- 3. The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Page 23 of 24 Report No.: STS2411070W03

4. ANTENNA REQUIREMENT

4.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

4.2 EUT ANTENNA

The EUT antenna is Internal Antenna. It comply with the standard requirement.

Page 24 of 24 Report No.: STS2411070W03

APPENDIX 2-PHOTOS OF TEST SETUP

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *