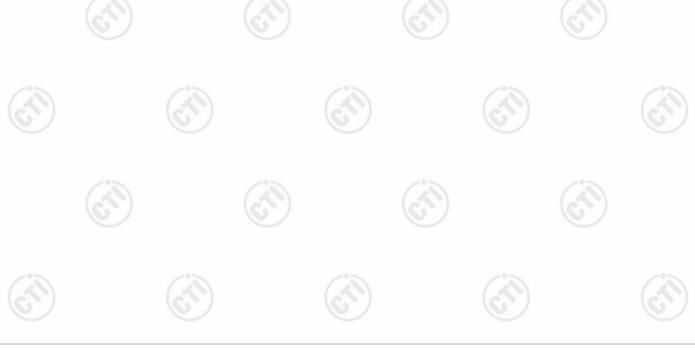


Page 1 of 48

TREPORT
: Arm-type Fully Automatic Blood Pressure Monitor
: N/A
: DBP-62F4L, DBP-62F4B, DBP-62F4B-P, DBP-62F4L-P
: N/A
: EED32R80170401
: 2AQVU0053
: Apr. 03, 2025
: 47 CFR Part 15 Subpart C
: PASS
Prepared for: EALTHCARE CO., LTD.
Hangzhou, Zhejiang Province, PEOPLE's IBLIC OF CHINA
Prepared by:
nternational Group Co., Ltd. ial Zone, Bao'an 70 District,

Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


Girazer. Lo Compiled by: Jan. Reviewed by: Leven NTERNATIC Keven Tan Frazer Li aven Ma Date: Apr. 03, 2025 Aaron Ma Check No.: 6933140225 Report Seal

Page 2 of 48

1 Content	
1 CONTENT	2
2 VERSION	
3 TEST SUMMARY	
4 GENERAL INFORMATION	5
 4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 	5
5 EQUIPMENT LIST	
6 TEST RESULTS AND MEASUREMENT DATA	12
 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS	
7 APPENDIX A	
8 PHOTOGRAPHS OF TEST SETUP	
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

2 Version

Page 3 of 48

Version No. Description Date 00 Apr. 03, 2025 Original

3 Test Summary

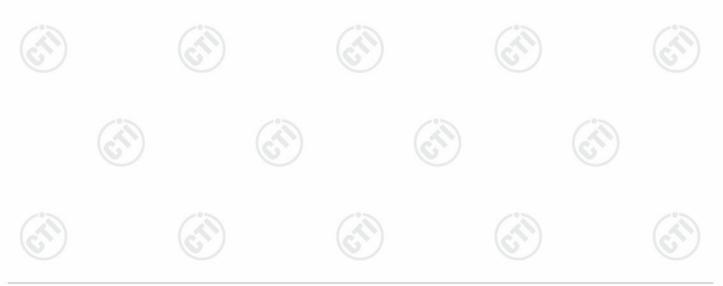
Page 4 of 48

Test Requirement	Result
47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS
47 CFR Part 15 Subpart C Section 15.207	PASS
47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS
47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS
47 CFR Part 15 Subpart C Section 15.247 (e)	PASS
47 CFR Part 15 Subpart C Section 15.247(d)	PASS
47 CFR Part 15 Subpart C Section 15.247(d)	PASS
47 CFR Part 15 Subpart C Section 15.205/15.209	PASS
	 47 CFR Part 15 Subpart C Section 15.203/15.247 (c) 47 CFR Part 15 Subpart C Section 15.207 47 CFR Part 15 Subpart C Section 15.247 (a)(2) 47 CFR Part 15 Subpart C Section 15.247 (b)(3) 47 CFR Part 15 Subpart C Section 15.247 (e) 47 CFR Part 15 Subpart C Section 15.247(d)

Remark:

Model No.: DBP-62F4L, DBP-62F4B, DBP-62F4B-P, DBP-62F4L-P

Only the model DBP-62F4L was tested, their electrical circuit design, layout, components used and internal wiring are identical, Only the battery supply is different. The DBP-62F4L and DBP-62F4L-P are powered by lithium batteries, and the DBP-62F4B, DBP-62F4B-P is powered by Alkaline dry batteries.


4 General Information

4.1 Client Information

Applicant:	JOYTECH HEALTHCARE CO., LTD.
Address of Applicant:	NO.365, Wuzhou Road, 311100 Hangzhou, Zhejiang Province, PEOPLE's REPUBLIC OF CHINA
Manufacturer:	JOYTECH HEALTHCARE CO., LTD.
Address of Manufacturer:	No.365, Wuzhou Road, Yuhang Economic Development Zone, Hangzhou City, 311100 Zhejiang, China
Factory:	JOYTECH HEALTHCARE CO., LTD.
Address of Factory:	No.365, Wuzhou Road, 311100 Hangzhou, Zhejiang Province,PEOPLE'S REPUBLIC OF CHINA

4.2 General Description of EUT

Arm-type Fully	ne: Arm-type Fully Automatic Blood Pressure Monitor	Arm-type Fully Automatic Blood Pressure Monitor					
DBP-62F4L, DE	DBP-62F4L, DBP-62F4B, DBP-62F4B-P, DBP-62F4L-P	DBP-62F4L, DBP-62F4B, DBP-62F4B-P, DBP-62F4L-P					
DBP-62F4L	No.: DBP-62F4L						
N/A	N/A G	(C)					
🗌 Mobile 🛛	e: 🗌 Mobile 🖾 Portable 🗌 Fix Location						
y: 2402MHz~2480	requency: 2402MHz~2480MHz						
GFSK	Type: GFSK						
⊠1Mbps ⊠2I	te: 🛛 1Mbps 🖾 2Mbps	⊠ 1Mbps ⊠ 2Mbps					
40	Channel: 40						
PCB Antenna	be: PCB Antenna						
-1.37dBi	in: -1.37dBi	13					
Adapter:	Iy: Model: MPSGS0501000 Input: 100-240V ~50/60Hz 0.25A Output: 5.0V, 1.0A, 5.0W	(ST)					
Battery:	Battery: DC 3.7V						
DC 3.7V	2: DC 3.7V						
ate: Feb. 21, 2025	eived Date: Feb. 21, 2025						
: Feb. 21, 2025 to	ed Date: Feb. 21, 2025 to Mar. 08, 2025						
DC 3.7V ate: Feb. 21, 2025	Battery: DC 3.7V e: DC 3.7V eived Date: Feb. 21, 2025	_					

Page 6 of 48

Operation Frequency each of channel								
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	0	2402	10	2422	20	2442	30	2462
)	1	2404	11	2424	21	2444	31	2464
	2	2406	12	2426	22	2446	32	2466
	3	2408	13	2428	23	2448	33	2468
	4	2410	14	2430	24	2450	34	2470
	5	2412	15	2432	25	2452	35	2472
	6	2414	16	2434	26	2454	36	2474
	7	2416	17	2436	27	2456	37	2476
1	8	2418	18	2438	28	2458	38	2478
/	9	2420	19	2440	29	2460	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Channel		Frequency(MHz)	
	The lowest channel (CH0)		2402	
<	The middle channel (CH19)	2	2440	13
)	The highest channel (CH39))	2480	6

4.3 Test Configuration

EUT Test Software	Settings:			
Test Software:	PhyPlusKit	exe	Ú	\bigcirc
EUT Power Grade:	Default (Po selected)	ower level is built-in s	set parameters and c	annot be changed and
Use test software to transmitting of the E	set the lowest frequenc	y, the middle freque	ncy and the highest f	requency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СН0	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	СН39	2480
Mode d	GFSK	2Mbps	СН0	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

3

Page 7 of 48

4.4 Test Environment

	Operating Environment	Operating Environment:								
160	Radiated Spurious Emi	ssions:								
10	Temperature:	22~25.0 °C	()	(2)		(2)				
2	Humidity:	50~55 % RH		C		C				
	Atmospheric Pressure:	1010mbar								
	Conducted Emissions:									
	Temperature:	22~25.0 °C								
	Humidity:	50~55 % RH	$\langle G^{*} \rangle$		(\mathcal{O})					
	Atmospheric Pressure:	1010mbar								
	RF Conducted:	·								
	Temperature:	22~25.0 °C	~	(3)		13				
	Humidity:	50~55 % RH	s*)	(c^{γ})		(c^{γ})				
~	Atmospheric Pressure:	1010mbar		U		U				

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Asus	FL8700JP1065-	FCC&CE	СТІ
1		0D8GXYQ2X10		(A)

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

Ì

No.	ltem	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
		3.3dB (9kHz-30MHz)	
		4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)	
$(\stackrel{\sim}{\sim})$		3.4dB (18GHz-40GHz)	
	Quantum contrainer	3.5dB (9kHz-150kHz)	
4	Conduction emission	3.1dB (150kHz-30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

5 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-05-2024	12-104-2025
Signal Generator	Keysight	N5182B	MY53051549	11-30-2024	11-29-2025
DC Power	Keysight	E3642A	MY56376072	11-30-2024	11-29-2025
Communication test set	R&S	CMW500	169004	03-08-2024 03-03-2025	03-07-2025 03-02-2026
RF control unit(power unit)	JS Tonscend	JS0806-2	22G8060592	07-22-2024	07-21-2025
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2	2206200002	05-31-2024	05-30-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		
Spectrum Analyzer	R&S	FSV3044	101509	02-14-2025	02-13-2026

Conducted disturbance Test												
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)							
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025							
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025							
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025							
Barometer	changchun	DYM3	1188		- (2							
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		9							

CTI华测检测

Page 10 of 48

Report No. : EED32R80170401

Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025

Equipment	quipment Manufacturer Model No		Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3	201	05/22/2022	05/21/2025		
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025		
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025		
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025		
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025		
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025		
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025		
Preamplifier	Preamplifier CD		6041.6042	06/19/2024	06/18/2025		
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	- (<u> - (S</u>		
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025		
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025		
Cable line	Cable line Fulai(3M)		5216/6A	05/22/2022	05/21/2025		
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025		

Page 11 of 48

		3M full-anechoid	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Fully Anechoic Chamber	TDK FAC-3			01-09-2024	01-08-2027	
Receiver	Keysight	N9038A	MY57290136	01-04-2025	01-03-2026	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-14-2025	01-13-2026	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-14-2025	01-13-2026	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024 03-03-2025	03-07-2025 03-02-2026	
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025	
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025 01-03-2026 04-06-2025	
Communication test set	R&S	CMW500	102898	01-04-2025		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024		
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	- 0		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027	
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027	

6 Test results and Measurement Data

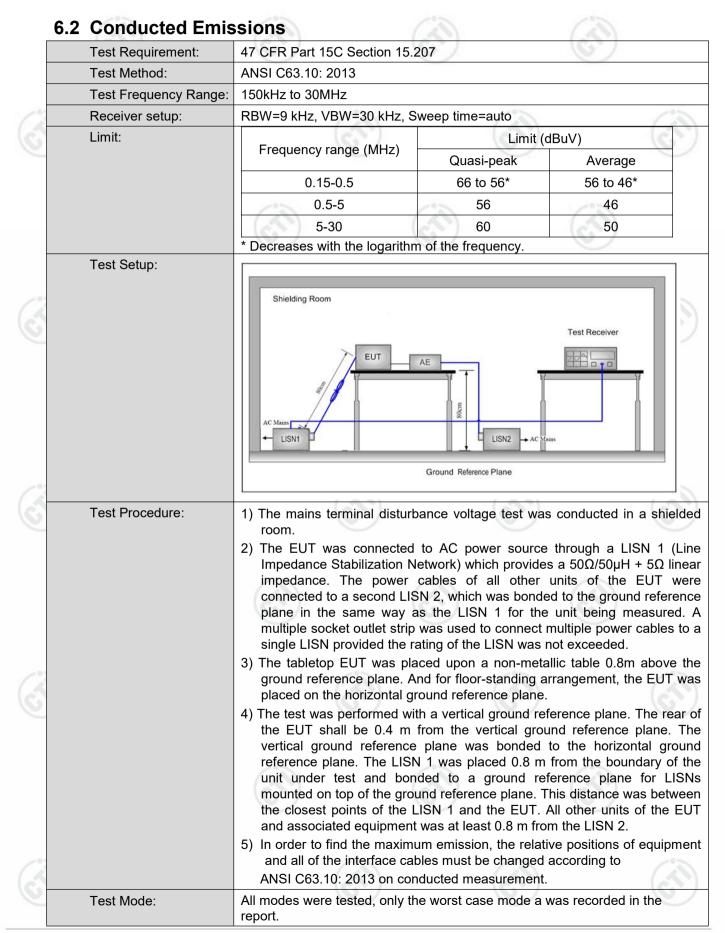
6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

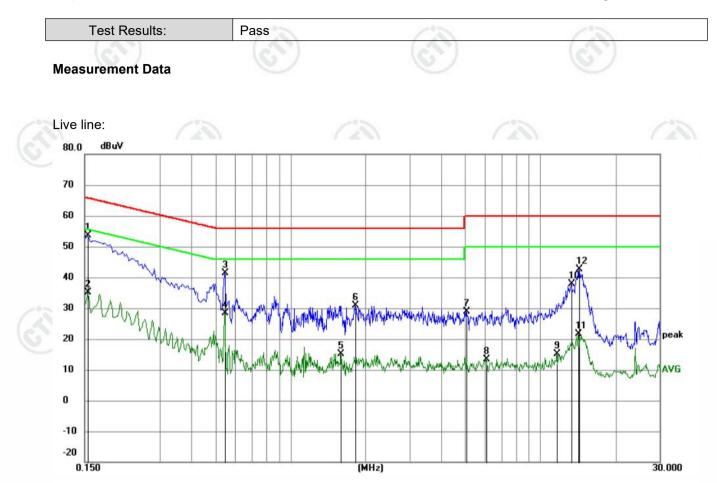
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:


The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The antenna is PCB antenna	a. The best case gain of the antenna is -1 37dBi

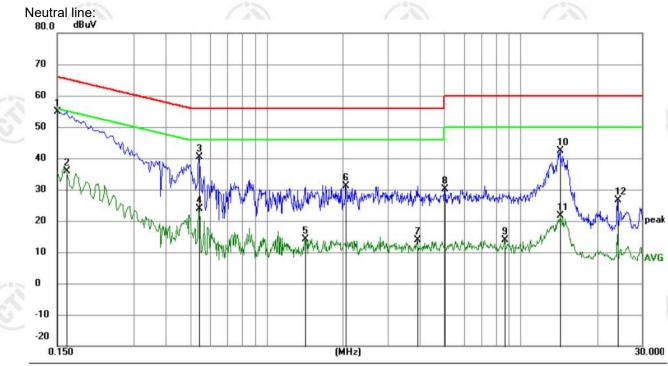
Page 13 of 48



6

Page 14 of 48

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1545	43.27	10.28	53.55	65.75	-12.20	QP	
2		0.1545	24.91	10.28	35.19	55.75	-20.56	AVG	
3		0.5460	31.18	10.09	41.27	56.00	-14.73	QP	
4		0.5460	18.39	10.09	28.48	46.00	-17.52	AVG	
5		1.5855	4.98	10.17	15.15	46.00	-30.85	AVG	
6		1.8150	20.78	10.17	30.95	56.00	-25.05	QP	
7		5.0550	18.78	10.06	28.84	60.00	-31.16	QP	
8		6.0630	3.46	10.04	13.50	50.00	-36.50	AVG	
9		11.6610	5.09	9.92	15.01	50.00	-34.99	AVG	
10		13.2900	27.95	9.89	37.84	60.00	-22.16	QP	
11		14.1720	11.67	9.87	21.54	50.00	-28.46	AVG	
12		14.2575	32.78	9.87	42.65	60.00	-17.35	QP	
	1 2 3 4 5 6 7 8 8 9 9 10 11	1 * 2 3 4 5 6 7 8 9 10 11	MHz 1 * 0.1545 2 0.1545 3 0.5460 4 0.5460 5 1.5855 6 1.8150 7 5.0550 8 6.0630 9 11.6610 10 13.2900 11 14.1720	MHz dBuV 1 * 0.1545 43.27 2 0.1545 24.91 3 0.5460 31.18 4 0.5460 18.39 5 1.5855 4.98 6 1.8150 20.78 7 5.0550 18.78 8 6.0630 3.46 9 11.6610 5.09 10 13.2900 27.95 11 14.1720 11.67	MHz dBuV dB 1 * 0.1545 43.27 10.28 2 0.1545 24.91 10.28 3 0.5460 31.18 10.09 4 0.5460 18.39 10.09 5 1.5855 4.98 10.17 6 1.8150 20.78 10.17 7 5.0550 18.78 10.06 8 6.0630 3.46 10.04 9 11.6610 5.09 9.92 10 13.2900 27.95 9.89 11 14.1720 11.67 9.87	MHz dBuV dB dBuV 1 * 0.1545 43.27 10.28 53.55 2 0.1545 24.91 10.28 35.19 3 0.5460 31.18 10.09 41.27 4 0.5460 18.39 10.09 28.48 5 1.5855 4.98 10.17 15.15 6 1.8150 20.78 10.17 30.95 7 5.0550 18.78 10.06 28.84 8 6.0630 3.46 10.04 13.50 9 11.6610 5.09 9.92 15.01 10 13.2900 27.95 9.89 37.84 11 14.1720 11.67 9.87 21.54	MHz dBuV dB dBuV dBuV 1 * 0.1545 43.27 10.28 53.55 65.75 2 0.1545 24.91 10.28 35.19 55.75 3 0.5460 31.18 10.09 41.27 56.00 4 0.5460 18.39 10.09 28.48 46.00 5 1.5855 4.98 10.17 15.15 46.00 6 1.8150 20.78 10.17 30.95 56.00 7 5.0550 18.78 10.06 28.84 60.00 8 6.0630 3.46 10.04 13.50 50.00 9 11.6610 5.09 9.92 15.01 50.00 10 13.2900 27.95 9.89 37.84 60.00 11 14.1720 11.67 9.87 21.54 50.00	MHz dBuV dB dBuV dB dBuV dB 1 * 0.1545 43.27 10.28 53.55 65.75 -12.20 2 0.1545 24.91 10.28 35.19 55.75 -20.56 3 0.5460 31.18 10.09 41.27 56.00 -14.73 4 0.5460 18.39 10.09 28.48 46.00 -30.85 5 1.5855 4.98 10.17 15.15 46.00 -30.85 6 1.8150 20.78 10.17 30.95 56.00 -25.05 7 5.0550 18.78 10.06 28.84 60.00 -31.16 8 6.0630 3.46 10.04 13.50 50.00 -36.50 9 11.6610 5.09 9.92 15.01 50.00 -34.99 10 13.2900 27.95 9.89 37.84 60.00 -22.16 11 14.1720 11.67	MHz dBuV dB dBuV dB dBuV dB Detector 1 * 0.1545 43.27 10.28 53.55 65.75 -12.20 QP 2 0.1545 24.91 10.28 35.19 55.75 -20.56 AVG 3 0.5460 31.18 10.09 41.27 56.00 -14.73 QP 4 0.5460 18.39 10.09 28.48 46.00 -17.52 AVG 5 1.5855 4.98 10.17 15.15 46.00 -30.85 AVG 6 1.8150 20.78 10.17 30.95 56.00 -25.05 QP 7 5.0550 18.78 10.06 28.84 60.00 -31.16 QP 8 6.0630 3.46 10.04 13.50 50.00 -36.50 AVG 9 11.6610 5.09 9.92 15.01 50.00 -34.99 AVG 10 13.2900<

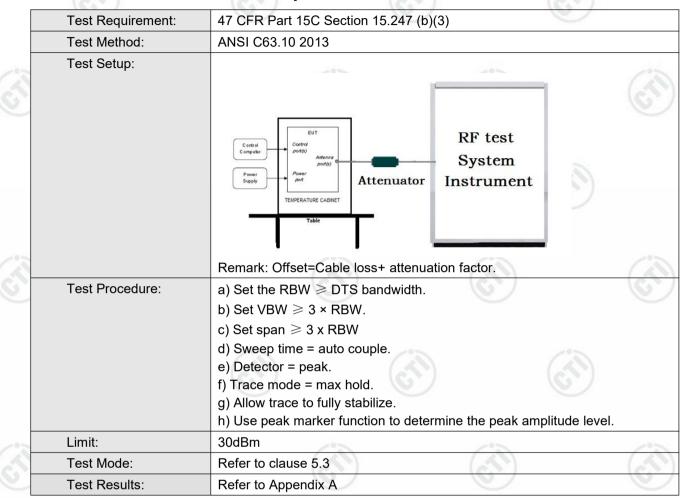

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 48

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	44.63	10.28	54.91	66.00	-11.09	QP	
2		0.1635	25.67	10.26	35.93	55.28	-19.35	AVG	
3		0.5415	30.41	10.09	40.50	56.00	-15.50	QP	
4		0.5415	13.86	10.09	23.95	46.00	-22.05	AVG	
5		1.4144	4.05	10.18	14.23	46.00	-31.77	AVG	
6		2.0490	21.04	10.17	31.21	56.00	-24.79	QP	
7		3.9075	3.74	10.10	13.84	46.00	-32.16	AVG	
8		5.0235	20.09	10.06	30.15	60.00	-29.85	QP	
9		8.6459	3.91	9.99	13.90	50.00	-36.10	AVG	
10		14.3475	32.62	9.87	42.49	60.00	-17.51	QP	
11		14.3475	11.84	9.87	21.71	50.00	-28.29	AVG	
12		24.0315	16.86	9.81	26.67	60.00	-33.33	QP	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 48

6.3 Maximum Conducted Output Power

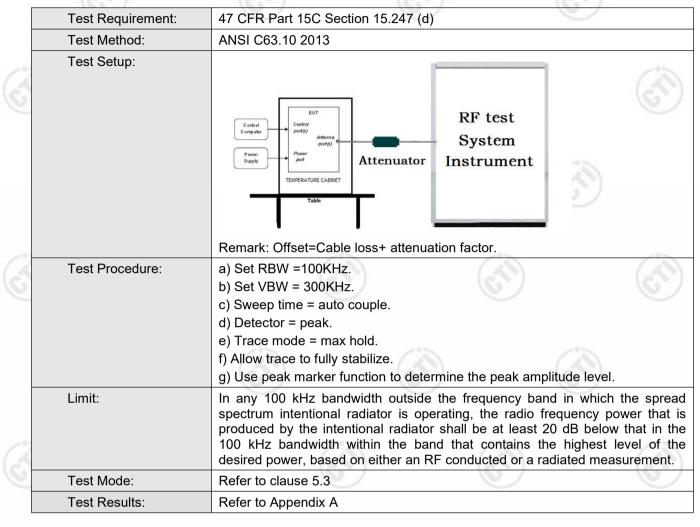
6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Control Computer Power Supply Power TEMPERATURE CABINET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix A

Page 18 of 48

6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)					
	Test Method:	ANSI C63.10 2013					
3	Test Setup:						
		Central Central Central Power Supply TEMPERATURE CABNET Table					
<u>_</u>	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set analyzer center frequency to DTS channel center frequency.					
	Test Flocedule.	 a) Set analyzer center frequency to DTS channer center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude le within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no le than 3 kHz) and repeat. 					
	Limit:	≤8.00dBm/3kHz					
	Test Mode:	Refer to clause 5.3					
	Test Results:	Refer to Appendix A					

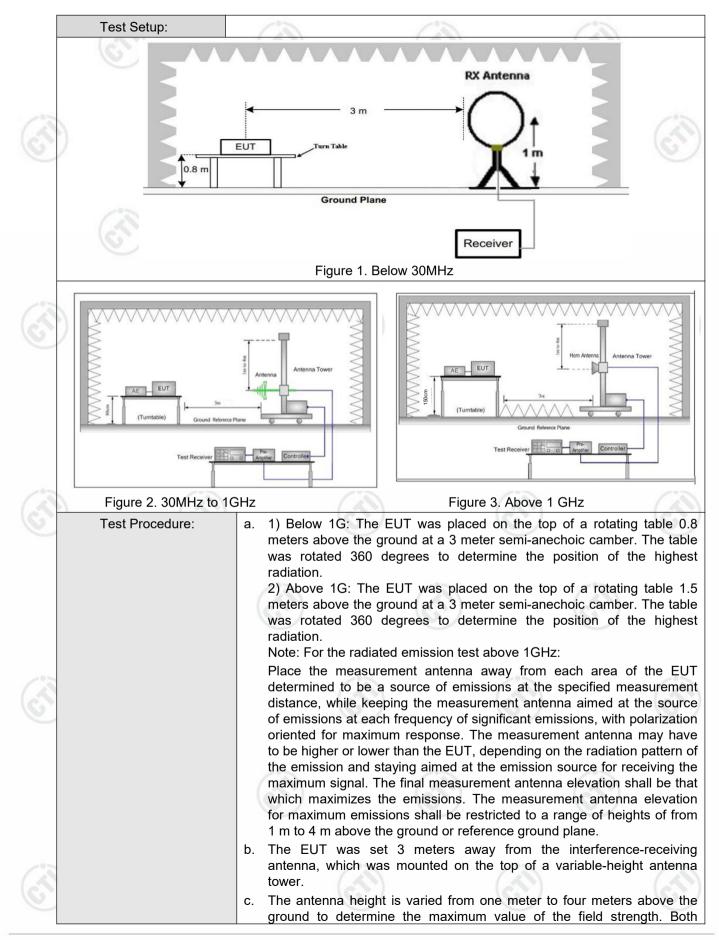


Page 19 of 48

6.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 48

6.7 Radiated Spurious Emission & Restricted bands

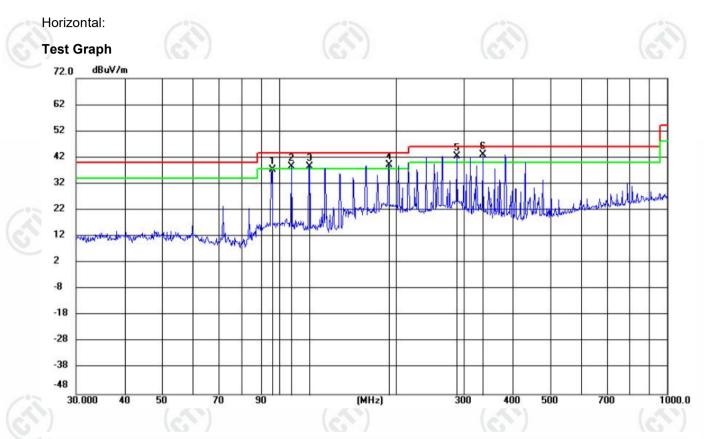

	Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205		C	/			
	Test Method:	ANSI C63.10 2013									
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
	Receiver Setup:	Frequency	0	Detector	RBW	1	VBW	Remark			
S.		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak			
13				Peak	1MHz		3MHz	Peak			
6		Above 1GHz		Peak	1MHz		10kHz	Average			
	Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	F	Remark	Measuremer distance (m			
		0.009MHz-0.490MHz	24	100/F(kHz)	-		- / >	300			
		0.490MHz-1.705MHz	24	000/F(kHz)	-			30			
		1.705MHz-30MHz		30	-			30			
		30MHz-88MHz		100	40.0	Qu	iasi-peak	3			
		88MHz-216MHz		150	43.5	Qu	iasi-peak	3			
		216MHz-960MHz	9	200	46.0	Qu	iasi-peak	3			
S.		960MHz-1GHz	1	500	54.0	Qu	iasi-peak	3			
		Above 1GHz		500	54.0	A	verage	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20d quip	B above the ment under t	maximum est. This p	perr	mitted ave	erage emission			

Page 21 of 48

CTI华测检测

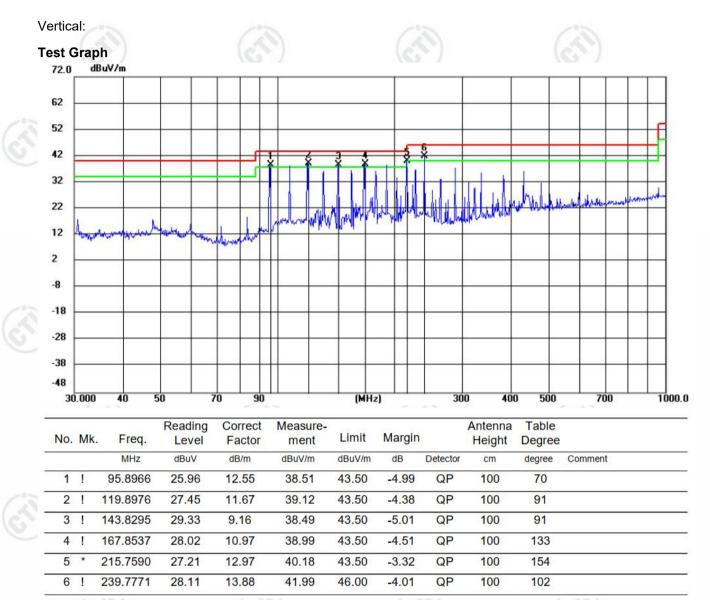
Report No. : EED32R80170401

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak of average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specifier Bandwidth with Maximum Hold Mode.
	 d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights meter) and the rotatable table was turned from 0 degrees to 36 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



Page 23 of 48

Radiated Spurious Emission below 1GHz:


During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

No. N	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		95.8 <mark>9</mark> 66	24.91	12.55	37.46	43.50	-6.04	QP	100	163	
2	!	107.8688	25.59	12.97	38.56	43.50	-4.94	QP	100	7	
3	!	119.8135	26.95	11.68	38.63	43.50	-4.87	QP	100	194	
4	!	191.7786	27.06	12.02	39.08	43.50	-4.42	QP	100	7	
5	!	287.9400	26.90	15.70	42.60	46.00	-3.40	QP	100	28	
6	*	335.5641	26.12	16.82	42.94	46.00	-3.06	QP	100	39	

Page 24 of 48

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

M	Mode:			Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	2
N	0	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1144.4096	10.22	37.87	48.09	74.00	25.91	Pass	Н	PK
2	2	1417.0945	10.63	38.21	48.84	74.00	25.16	Pass	Н	PK
3	3	3434.2289	-12.89	53.12	40.23	74.00	33.77	Pass	Н	PK
4	4	4803.8703	-10.45	54.38	43.93	74.00	30.07	Pass	Н	PK
5	5	7737.5158	-3.64	47.45	43.81	74.00	30.19	Pass	Н	PK
6	6	11266.6011	4.88	44.91	49.79	74.00	24.21	Pass	Н	PK
7	7	1146.8098	10.31	37.64	47.95	74.00	26.05	Pass	V	PK
8	3	1699.78	12.92	37.00	49.92	74.00	24.08	Pass	V	PK
9	9	3792.4028	-12.07	53.16	41.09	74.00	32.91	Pass	V	PK
1	0	4803.8703	-10.45	53.97	43.52	74.00	30.48	Pass	V	PK
1	1	7967.6312	-3.22	46.97	43.75	74.00	30.25	Pass	V	PK
1	2	11245.7997	5.75	44.68	50.43	74.00	23.57	Pass	V	PK

	Mode	Mode:		Bluetooth LE	GFSK Transmi	tting	Channel:		2440 MHz	2
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1155.7437	10.22	37.44	47.66	74.00	26.34	Pass	н	PK
	2	1375.225	10.38	37.57	47.95	74.00	26.05	Pass	Н	PK
	3	3804.7536	-12.14	52.28	40.14	74.00	33.86	Pass	Н	PK
	4	6103.3069	-5.80	46.95	41.15	74.00	32.85	Pass	Н	PK
	5	7756.3671	-3.15	46.65	43.50	74.00	30.50	Pass	Н	PK
	6	11749.5833	4.04	45.25	49.29	74.00	24.71	Pass	Н	PK
	7	1154.4103	10.26	37.44	47.70	74.00	26.30	Pass	V	PK
	8	1437.0958	10.63	37.15	47.78	74.00	26.22	Pass	V	PK
3	9	3355.5737	-12.65	52.71	40.06	74.00	33.94	Pass	V	PK
	10	6371.7748	-6.44	48.43	41.99	74.00	32.01	Pass	V	PK
-	11	7939.6793	-1.77	46.28	44.51	74.00	29.49	Pass	V	PK
	12	11229.5486	5.29	44.65	49.94	74.00	24.06	Pass	V	PK

Page 26 of 48

	20-						22			
	Mode	:		Bluetooth LE (GFSK Transmi	itting	Channel:		2480 MHz	Z
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
-	1	1151.3434	10.36	37.28	47.64	74.00	26.36	Pass	н	PK
	2	1643.1095	11.96	37.16	49.12	74.00	24.88	Pass	Н	PK
	3	3738.4492	-13.16	56.07	42.91	74.00	31.09	Pass	Н	PK
	4	4959.2306	-13.22	55.84	42.62	74.00	31.38	Pass	Н	PK
	5	7749.8667	-3.09	47.16	44.07	74.00	29.93	Pass	Н	PK
	6	11247.0998	5.79	44.32	50.11	74.00	23.89	Pass	Н	PK
	7	1161.2107	10.04	36.83	46.87	74.00	27.13	Pass	V	PK
	8	1738.1825	13.02	36.43	49.45	74.00	24.55	Pass	V	PK
	9	3800.8534	-11.89	54.12	42.23	74.00	31.77	Pass	V	PK
	10	4960.5307	-13.18	55.63	42.45	74.00	31.55	Pass	V	PK
3	11	7931.8788	-1.94	44.92	42.98	74.00	31.02	Pass	V	PK
	12	11966.0477	5.87	44.14	50.01	74.00	23.99	Pass	V	PK
	/					li in the second se				

Remark:

Hotline:400-6788-333

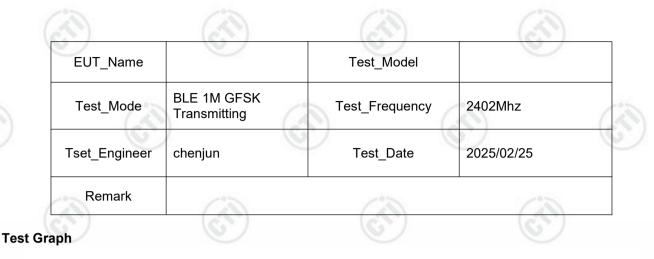
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

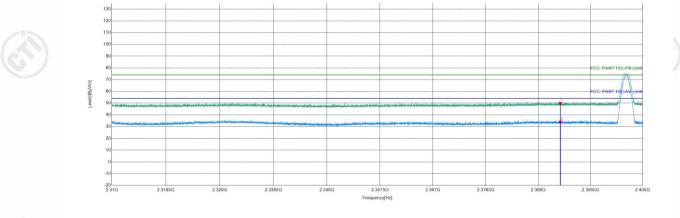
www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

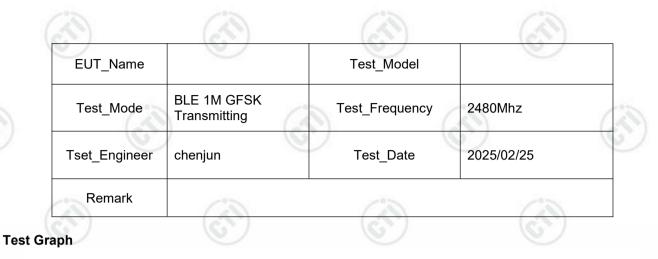
Page 27 of 48

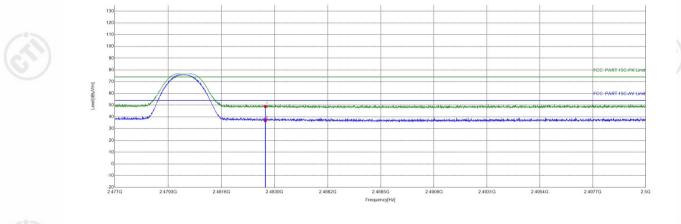
Restricted bands:

Test plot as follows:

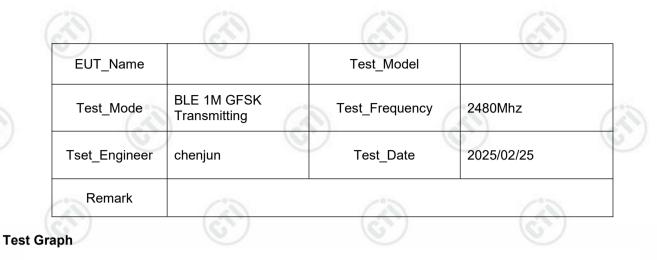

	Tes	t_Mode	BLE 1M G		Test_Freque	ncv 24	02Mhz	
	(in)		Transmittir	ng			(2)	Š.
	Tset_	Engineer	chenjun		Test_Date	. 20	25/02/25)
	Re	emark		~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Test G	raph	6	•)	6)	(S))	6
	130	Ĩ		1	Ĩ Î	Ĩ		
	120							
	100 90							
	80							FCC-PART 15C-PK-Limit
	[W//fBp] 60 50 50						an an air an an air an air an an air an an an air an an an air an	FCC PART 190 AV Limit
	40				وسالو مدر المراجع المراجع المراجع المراجع ومراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		2	
	20							
	-10							
	-20 2.31G	2.3195G	2.329G 2.3	385G 2.348G	2.3575G 2.367G Frequency[Hz]	2.3765G	2.386G 2.31	955G 2.4050

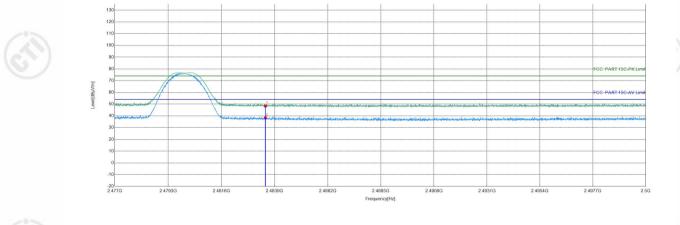

	Suspecie									
13	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
6	1	2390	15.31	32.90	48.21	74.00	25.79	PASS	Horizontal	PK
C	2	2390	15.31	18.97	34.28	54.00	19.72	PASS	Horizontal	AV


PK Limit AV Limit Vertical PK Vertical AV
 PK Detector AV Detector

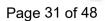

Suspected List Factor Reading Level Limit Margin Freq. NO [dB] Result Polarity Remark [dBµV] [dBµV/m] [dBµV/m] [dB] [MHz] 2390 15.31 49.93 74.00 24.07 PASS Vertical ΡK 1 34.62 2 2390 15.31 18.61 33.92 54.00 20.08 PASS Vertical AV

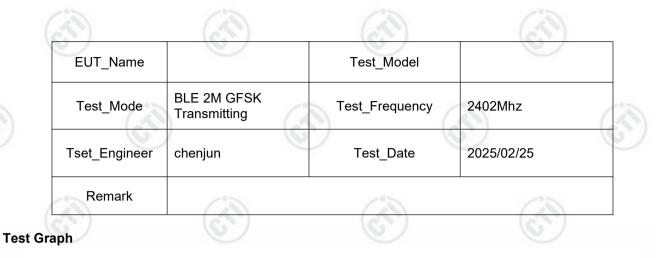
Page 29 of 48

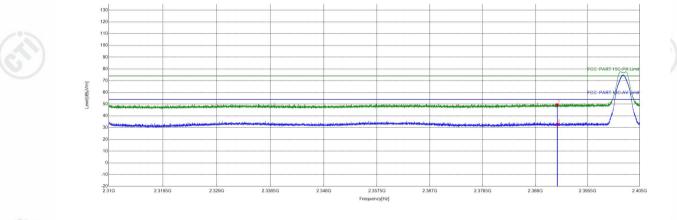

PK Limit AV Limit Horizontal PK Horizontal AV
 AV Detector

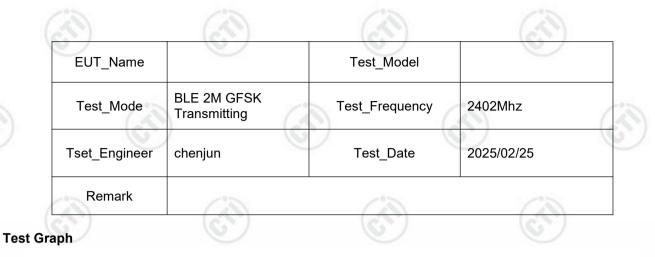

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	33.73	48.89	74.00	25.11	PASS	Horizontal	PK
2	2483.5	15.16	21.76	36.92	54.00	17.08	PASS	Horizontal	AV

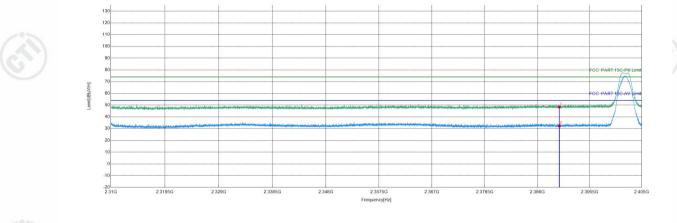
Page 30 of 48




PK Limit AV Detector	- AV Limit	Vertical PK	

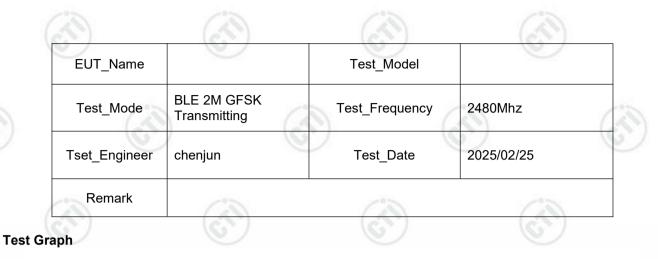

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	33.29	48.45	74.00	25.55	PASS	Vertical	PK
2	2483.5	15.16	23.14	38.30	54.00	15.70	PASS	Vertical	AV

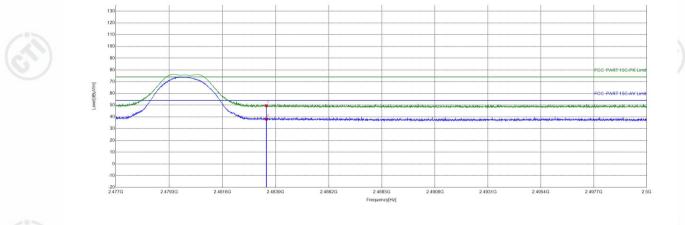

PK Limit AV Limit Horizontal PK Horizontal AV
 PK Detector AV Detector


Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2390	15.31	34.16	49.47	74.00	24.53	PASS	Horizontal	PK		
2	2390	15.31	17.44	32.75	54.00	21.25	PASS	Horizontal	AV		

Page 32 of 48

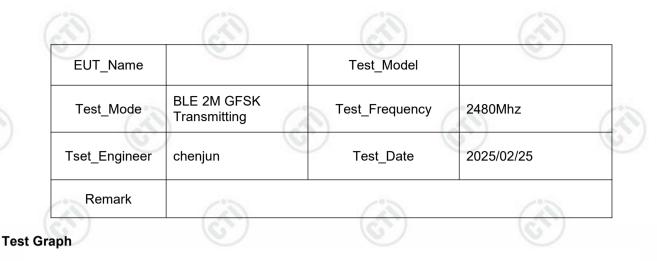
PK Limit AV Limit Vertical PK Vertical AV
 PK Detector
 AV Detector

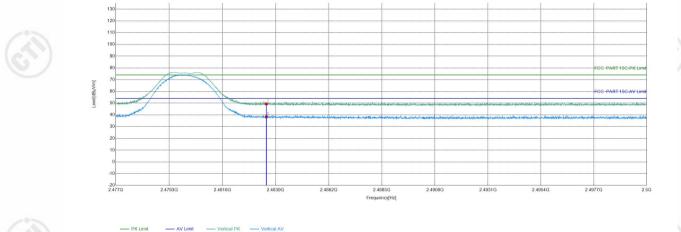

•			
Suspecte	d List		
		Factor	


NO	Freq. [MHz]	[dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.31	33.20	48.51	74.00	25.49	PASS	Vertical	PK	
2	2390	15.31	17.06	32.37	54.00	21.63	PASS	Vertical	AV	

Page 33 of 48

PR Limit — AV Limit — Horizontal PK — Horizontal AV
 AV Detector


Suspected List


NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	34.36	49.52	74.00	24.48	PASS	Horizontal	PK
2	2483.5	15.16	22.92	38.08	54.00	15.92	PASS	Horizontal	AV

Page 34 of 48

AV Detec

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	15.16	34.23	49.39	74.00	24.61	PASS	Vertical	PK
2	2483.5	15.16	23.11	38.27	54.00	15.73	PASS	Vertical	AV

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:


Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Statement

1. This report is considered invalid without approved signature, special seal and the seal on the perforation;

2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;

3. The result(s) shown in this report refer(s) only to the sample(s) tested;

4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;

5. Without written approval of CTI, this report can't be reproduced except in full;

** End of Report ***

