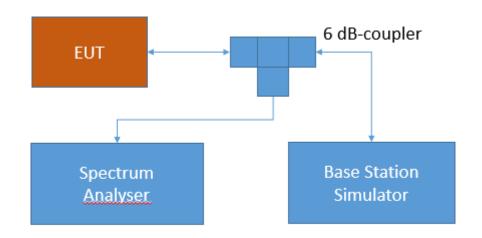


5.20 BAND EDGE COMPLIANCE


Standard FCC PART 27 Subpart C

The test was performed according to: ANSI C63.26: 2015; 5.7.3

5.20.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2. 1051 and RSS-GEN 6.13. The limit comes from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:

Test Setup FCC Part 22/24/27/90 Cellular; Band edge compliance

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

5.20.2 TEST REQUIREMENTS / LIMITS

FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

FCC Part 27; Miscellaneous Wireless Communication Services

Subpart C – Technical standards

§27.53 - Emission limits

Band 13

(c) For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

RSS-130; 4.7.1 General unwanted emissions limits

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

RSS-130; 4.7.2 Additional unwanted emissions limits

In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- a. the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - i. 76 + 10 $\log_{10} p$ (watts), dB, for base and fixed equipment and
 - ii. $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment
- b. the e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

Band 12:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

RSS-130; 4.7.1 General unwanted emissions limits

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

RSS-130; 4.7.2 Additional unwanted emissions limits

In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- a. the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - i. 76 + 10 log_{10} p (watts), dB, for base and fixed equipment and
 - ii. $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment
- b. the e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

Band 4/10/66:

(h) *AWS emission limits*— (1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log_{10}$ (P) dB.

RSS-139; 6.6 Transmitter Unwanted Emissions

Equipment shall comply with the limits in (i) and (ii) below.

- i. In the first 1.0 MHz bands immediately outside and adjacent to the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power per any 1% of the emission bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.
- ii. After the first 1.0 MHz outside the equipment's smallest operating frequency block, which can contain the equipment's occupied bandwidth, the emission power in any 1 MHz bandwidth shall be attenuated below the transmitter output power P (in dBW) by at least 43 + 10 log₁₀ p (watts) dB.

Band 7:

(m) For BRS and EBS stations, the power of any emissions outside the licensee's frequency bands of operation shall be attenuated below the transmitter power (P) measured in watts in accordance with the standards below. If a licensee has multiple contiguous channels, out-of-band emissions shall be measured from the upper and lower edges of the contiguous channels.

(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

RSS-199; 4.5 Transmitter unwanted emissions

In the 1 MHz band immediately outside and adjacent to the channel edge, the unwanted emission power shall be measured with a resolution bandwidth of at least 1% of the occupied bandwidth for base station and fixed subscriber equipment, and 2% for mobile subscriber equipment. Beyond the 1 MHz band, a resolution bandwidth of 1 MHz shall be used. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full required measurement bandwidth of 1 MHz, or 1% or 2% of the occupied bandwidth, as applicable.

Equipment shall comply with the following unwanted emission limits:

b. for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:

- $40 + 10 \log_{10} p$ from the channel edges to 5 MHz away
- $43 + 10 \log_{10} p$ between 5 MHz and X MHz from the channel edges, and
- $55 + 10 \log_{10} p$ at X MHz and beyond from the channel edges

In addition, the attenuation shall not be less than $43 + 10 \log_{10} p$ on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 $\log_{10} p$ at or below 2490.5 MHz.

In (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

Band 17:

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

RSS-130; 4.7.1 General unwanted emissions limits

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least $43 + 10 \log_{10} p$ (watts), dB. However, in the 100 kHz band immediately outside of the equipment's frequency block range, a resolution bandwidth of 30 kHz may be employed.

RSS-130; 4.7.2 Additional unwanted emissions limits

In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

- a. the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:
 - i. 76 + 10 $\log_{10} p$ (watts), dB, for base and fixed equipment and
 - ii. $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment
- b. the e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW/MHz for wideband signal and -80 dBW for discrete emission with bandwidth less than 700 Hz.

5.20.3 TEST PROTOCOL

Ambient temperature: 20 - 28 °C

Relative hum	nidity: 30 - 40	%					
Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	RMS [dBm]	Limit /dBm	Margin to Limit /dB
CAT-M1	eFDD 4 QPSK	low	6	1.4	-26.8	-13	13.8
CAT-M1	eFDD 4 QPSK	high	6	1.4	-27.0	-13	14.0
CAT-M1	eFDD 4 16QAM	low	5	1.4	-26.0	-13	13.0
CAT-M1	eFDD 4 16QAM	high	5	1.4	-29.7	-13	16.7
CAT-M1	eFDD 12 QPSK	low	6	1.4	-26.7	-13	13.7
CAT-M1	eFDD 12 QPSK	high	6	1.4	-26.9	-13	13.9
CAT-M1	eFDD 12 16QAM	low	5	1.4	-25.4	-13	12.4
CAT-M1	eFDD 12 16QAM	high	5	1.4	-31.1	-13	18.1
CAT-M1	eFDD 13 QPSK	low	6	1.4	-48.8	-13	35.8
CAT-M1	eFDD 13 QPSK	high	6	1.4	-50.2	-13	37.2
CAT-M1	eFDD 13 16QAM	low	5	1.4	-52.2	-13	39.2
CAT-M1	eFDD 13 16QAM	high	5	1.4	-51.4	-13	38.4
CAT-M1	eFDD 66 QPSK	low	6	1.4	-27.1	-13	14.1
CAT-M1	eFDD 66 QPSK	high	6	1.4	-27.1	-13	14.1
CAT-M1	eFDD 66 16QAM	low	5	1.4	-25.4	-13	12.4
CAT-M1	eFDD 66 16QAM	high	5	1.4	-29.6	-13	16.6
CAT-M1	eFDD 71 QPSK	low	6	1.4	-24.8	-13	11.8
CAT-M1	eFDD 71 QPSK	high	6	1.4	-26.0	-13	13.0
CAT-M1	eFDD 71 16QAM	low	5	1.4	-23.8	-13	10.8
CAT-M1	eFDD 71 16QAM	high	5	1.4	-29.0	-13	16.0
CAT-M1	eFDD 85 QPSK	low	6	1.4	-26.6	-13	13.6
CAT-M1	eFDD 85 QPSK	high	6	1.4	-32.5	-13	19.5
CAT-M1	eFDD 85 16QAM	low	5	1.4	-25.2	-13	12.2
CAT-M1	eFDD 85 16QAM	high	5	1.4	-35.0	-13	22.0

Remark: Please see next sub-clause for the measurement plot.

5.20.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Technology = CAT-M1, Radio Technology = eFDD 4 16QAM, Operating Frequency = low channel (S01_AF01)

MultiView	Spectrum								
		et 26.50 dB 🖷 R	BW 20 KHZ						SGL
 Att 				Iode Auto Swee					Count 3/3
1 Frequency Sv		20004	Dir tookine in	ioue nace entre					●1Rm View
Limit Chec			PA	SS				M1[1]	-26.04 dBm
Line BEC			PA	SS					10 000 00 GHz
37									
20 dBm					4				
10 dBm		-			8				
0 dBm				1		F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-10 dBm			0		5/			+	
BEC									
-20 dBm				N	5				
-20 dBm-			N	1				"The	
			,	¥.				7	how
-30 dBm		2		-	2				ma
40 d0m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	minin							
-40 dBm	/								
mon									
-50 dBm						-			
₩60 dBm			V	2					
100 C									
1.709 GHz			500 pts		2	50.0 kHz/			1.7115 GHz
							Ready		2024-10-23 11:47:48

11:47:48 AM 10/23/2024

Technology = CAT-M1, Radio Technology = eFDD 12 16QAM, Operating Frequency = low channel (S01_AF01)

MultiView	Spectrum								
			DRM SOLU						
Att			RBW 30 kHz VBW 100 kHz M	Anda Auto Swoo					SGL Count 3/3
1 Frequency Sv		203	100 KHZ I	Node Auto Swee	9				●1Rm View
Limit Chec _{30 dBm} Line BEC			PA PA	SS SS				M1[1]	-25.35 dBm
00 00									
20 dBm									
10 dBm					·				
0 dBm		~							
-10 dBm									
BEC		\square							
-20 dBm		M1		<u> </u>	<u> </u>				
-30 dBm	~~~~				- Charles				
-40 dBm	man				www				
							month		
-50 dBm								mun	how we have the second
√£0 dBm		V2							
698.0 MHz			500 pts		4:	50.0 kHz/			702.5 MHz
							Ready		2024-10-23 08:56:34

08:56:35 AM 10/23/2024

Technology = CAT-M1, Radio Technology = eFDD 13 QPSK, Operating Frequency = low channel (S01_AF01)

Spectrum										
Ref Level	36.10 dBm	Off	fset 26.10	i dB 😑	RBW 30 kł	Ηz				
🖷 Att	20 dB	6 👄 SW			VBW 30 kł		Auto Sweep)		
_SGL Count 3	3/3									
●1Rm View										
Limit ¢ł				PAS	IS	M	1[1]			48.84 dBm
30 dBine BE	C			PAS	i S					00000 MHz
20 dBm										
10 dBm										
10 0.0111										
0 dBm							0.000	10.4		
									·· · (
							1			
-10 dBm										
BEC										{ _
-20 dBm							J			
							Ψ.			Y.
-30 dBm							J [#]			
						M. N. N.				Werd
-40 dBm					mathiam	Per Prover				
		M1	him	mun	Ja •·• •					
-50 dBm	do with other	Mum	www.w			and when the second				
-50 dBm	v v v v v v v v v v v v v v v v v v v	F2								
FljdBm										
Start 776.0	MHz				500	pts			Stop 7	'80.5 MHz
	Υ						eady 1			8.10.2024
									REF	

Date: 28.OCT.2024 14:59:59

Technology = CAT-M1, Radio Technology = eFDD 66 16QAM, Operating Frequency = low channel (S01_AF01)

MultiView	Spectrum								-
Ref Level 36	.50 dBm Offset	t 26 50 dB 🖷 B	RW 20 kHz						SGL
 Att 				Node Auto Swee	`				Count 3/3
1 Frequency S	The start we want								●1Rm View
Limit Che			PA	SS	2			M1[1]	-25.42 dBm
30 dBm			PA	SS	2			1.7	10 000 00 GHz
20 dBm	-								
10 dBm									
0 dBm			÷		<u></u>		······		
-10 dBm									
BEC									
				1					
-20 dBm			N	م مر ا ¹				- Mar	
				an an				~	~
-30 dBm									wh
									Nh~
		m	~~~						
-40 dBm	man								
mmm									
-50 dBm				-					
00 0011									
				2					
V-60 dBm					1				
1.709 GHz			500 pts		25	50.0 kHz/	1	1	1.7115 GHz
	-					~	Ready		2024-10-23 12:11:47

12:11:47 PM 10/23/2024

Technology = CAT-M1, Radio Technology = eFDD 71 16QAM, Operating Frequency = low channel (S01_AF01)

MultiView	-								•
		t 26.00 dB 🖷 RI							SGL
Att 1 Frequency Sw		20 s 🖶 Vi	3W 100 kHz N	Node Auto Swee	2				Count 3/3 ●1Rm View
Limit Check	<		PA	ss	ov			M1[1]	-23.82 dBm
30 dBm			PA	SS					63.000 00 MHz-
20 dBm									
20 000					¢.				
10 dBm					2	2			
0 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			m	
				/					
-10 dBm									
BEC								4	
-20 dBm				<i></i>				M.	
-20 dBm			N	1				m	Ma
									man
-30 dBm				-		-			
	~~~~	~~~~~							
-40 dBm	m				1				
-50 dBm									
100 March 100			~	2					
v∲O dBm									
662.0 MHz			500 pts		25	50.0 kHz/			664.5 MHz
							Ready		2024-10-23 12:35:52

12:35:53 PM 10/23/2024



#### Technology = CAT-M1, Radio Technology = eFDD 85 16QAM, Operating Frequency = low channel (S01_AF01)

Spectrum			
	: 26.00 dB 🔵 <b>RBW</b> 30 k		<u> </u>
● Att 20 dB ● SWT SGL Count 3/3	5 s 👄 <b>VBW</b> 30 k	Hz Mode Auto Sweep	
●1Rm View			······
Limit ¢heck	PASS	M1[1]	-25.21 dBm
30 dBine BEC	PASS	1	698.00000 MHz
20 dBm			
10 dBm			
0 dBm		mandrender	
-10 dBm			
BEC			
-20 dBm	M1,2		m mu
-30 dBm			- The second sec
-40 dBm			
-50 dBm			
FljdBm	F2		
Start 697.0 MHz	500	pts	Stop 700.0 MHz
		Ready	29.10.2024

Date: 29.OCT.2024 14:12:52

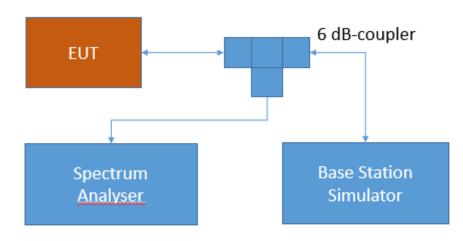
## 5.20.5 TEST EQUIPMENT USED

- Radio Lab



## 5.21 PEAK TO AVERAGE RATIO

#### Standard FCC PART 27 Subpart C


#### The test was performed according to:

ANSI C63.26: 2015; 5.2.3.4 (broadband noise-like signal using CCDF [LTE, CAT-M1, NB-IoT]) 5.2.6 (alternative procedure for PAPR [GSM, EDGE, WCDMA, HSDPA, HSUPA])

#### 5.21.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance of the EUT to the peak-to-average limits and requirements of the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; Peak-average ratio

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams. The internal CCDF (complementary cumulative distribution function) of the spectrum analyser is used for this measurement

## 5.21.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 27; Miscellaneous Wireless Communication Services

#### Subpart C – Technical standards



#### § 27.50 - Power limits and duty cycle

#### Band 13:

No applicable PAPR limit.

#### RSS-130; 4.6.1 General

The transmitter output power shall be measured in terms of average power. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

#### Band 12:

No applicable PAPR limit.

#### RSS-130; 4.6.1 General

The transmitter output power shall be measured in terms of average power. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

#### Band 4/10/66:

d) The following power and antenna height requirements apply to stations transmitting in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz and 2180-2200 MHz bands:

(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this section may be made either in accordance with a Commission-approved average power technique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.



#### RSS-139; 6.5 Transmitter Output Power

In addition, the peak to average power ratio (PAPR) of the equipment shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

#### Band 17:

No applicable PAPR limit.

#### RSS-130; 4.6.1 General

The transmitter output power shall be measured in terms of average power. In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

#### Band 7:

No applicable PAPR limit.

#### RSS-199; 4.4 Transmitter output power and equivalent isotropicall power (e.i.r.p.)

In addition, the peak-to-average power ratio (PAPR) of the transmitter shall not exceed 13 dB for more than 0.1% of the time and shall use a signal corresponding to the highest PAPR during periods of continuous transmission.

For equipment with multiple antennas, the transmitter output power and e.i.r.p shall be measured according to ANSI C63.26-2015.

#### 5.21.3 TEST PROTOCOL

Ambient	20 - 28 °C
temperature:	
Relative	30 - 40 %
humidity:	

Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	Peak to Average Ratio	Limit (IC) [dB]
CAT-M1	eFDD 4 QPSK	low	6	1.4	9.8	13
CAT-M1	eFDD 4 QPSK	mid	6	1.4	9.8	13
CAT-M1	eFDD 4 QPSK	high	6	1.4	9.8	13
CAT-M1	eFDD 4 16QAM	low	5	1.4	10.2	13
CAT-M1	eFDD 4 16QAM	mid	5	1.4	10.2	13



				1	1	
CAT-M1	eFDD 4 16QAM	high	5	1.4	10.2	13
CAT-M1	eFDD 12 QPSK	low	6	1.4	10.1	13
CAT-M1	eFDD 12 QPSK	mid	6	1.4	10.0	13
CAT-M1	eFDD 12 QPSK	high	6	1.4	9.9	13
CAT-M1	eFDD 12 16QAM	low	5	1.4	10.6	13
CAT-M1	eFDD 12 16QAM	mid	5	1.4	10.8	13
CAT-M1	eFDD 12 16QAM	high	5	1.4	10.4	13
CAT-M1	eFDD 13 QPSK	low	6	1.4	9.9	13
CAT-M1	eFDD 13 QPSK	mid	6	1.4	9.9	13
CAT-M1	eFDD 13 QPSK	high	6	1.4	9.8	13
CAT-M1	eFDD 13 16QAM	low	5	1.4	10.2	13
CAT-M1	eFDD 13 16QAM	mid	5	1.4	11.9	13
CAT-M1	eFDD 13 16QAM	high	5	1.4	12.4	13
CAT-M1	eFDD 66 QPSK	low	6	1.4	9.8	13
CAT-M1	eFDD 66 QPSK	mid	6	1.4	9.8	13
CAT-M1	eFDD 66 QPSK	high	6	1.4	9.8	13
CAT-M1	eFDD 66 16QAM	low	5	1.4	10.3	13
CAT-M1	eFDD 66 16QAM	mid	5	1.4	10.3	13
CAT-M1	eFDD 66 16QAM	high	5	1.4	10.6	13
CAT-M1	eFDD 71 QPSK	low	6	1.4	10.4	13
CAT-M1	eFDD 71 QPSK	mid	6	1.4	10.4	13
CAT-M1	eFDD 71 QPSK	high	6	1.4	10.2	13
CAT-M1	eFDD 71 16QAM	low	5	1.4	10.8	13
CAT-M1	eFDD 71 16QAM	mid	5	1.4	10.8	13
CAT-M1	eFDD 71 16QAM	high	5	1.4	10.7	13
CAT-M1	eFDD 85 QPSK	low	6	1.4	10.1	13
CAT-M1	eFDD 85 QPSK	mid	6	1.4	10.0	13
CAT-M1	eFDD 85 QPSK	high	6	1.4	10.0	13
CAT-M1	eFDD 85 16QAM	low	5	1.4	10.6	13
CAT-M1	eFDD 85 16QAM	mid	5	1.4	10.6	13
CAT-M1	eFDD 85 16QAM	high	5	1.4	10.4	13

Remark: Please see next sub-clause for the measurement plot.



## 5.21.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Ref Level 36.60 dBm         Offset 26.60 dB           Att         30 dB         AQT         117.2 ms         RBW 2 MHz           TRG:IFP         Diffeet 26.60 dB         Image: Controlled by EMC32         15a View           0.1         Image: Controlled by EMC32         15a View         Image: Controlled by EMC32         15a View           0.1         Image: Controlled by EMC32						(0			/							
Att         30 dB         AQT         117.2 ms         RBW 2 MHz           TRG:IFP         Image: Start	Spectrun	n )														E
Att         30 dB         AQT         117.2 ms         RBW 2 MHz           TRG:IFP         Image: Start	Ref Leve	I 36.60 dBm	Offset	26.60 d	В											<u> </u>
TRG: IFP         Controlled by EMC32 • 15a View         0.1         0.1         0.01         0.01         1E-03         1E-04         1E-04         1E-05         1E-07						RBW 3	мн.	7								
Controlled by EMC32 • 15a View           0.1           0.1           0.01           0.01           1E-03           1E-03           1E-04           1E-05           1E-07           1E-08		50 GD		111.2 11		Kon 2		-								
0.1 0.01 1E-03 1E-03 1E-04 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-04 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05			:													
0.1 0.01 0.01 1E-03 1E-03 1E-04 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-04 1E-05 1E-04 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05 1E-05				_						-						
0.01       0.01         1E-03       0.01         1E-04       0.01         1E-05       0.01         SF 1.7543 GHz       Mean Pwr + 20.00 d         Complementary Cumulative Distribution Function       Samples: 50000         Mean       Peak       Crest       10%       10.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB																
0.01       0.01         1E-03       0.01         1E-04       0.01         1E-05       0.01         SF 1.7543 GHz       Mean Pwr + 20.00 d         Complementary Cumulative Distribution Function       Samples: 50000         Mean       Peak       Crest       10%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB																
0.01       0.01         1E-03       0.01         1E-04       0.01         1E-05       0.01         SF 1.7543 GHz       Mean Pwr + 20.00 d         Complementary Cumulative Distribution Function       Samples: 50000         Mean       Peak       Crest       10%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB											+					
0.01       0.01         1E-03       0.01         1E-04       0.01         1E-05       0.01         SF 1.7543 GHz       Mean Pwr + 20.00 d         Complementary Cumulative Distribution Function       Samples: 50000         Mean       Peak       Crest       10%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB			·													
1E-03	0.1 <del></del>															
1E-03					×			E								
1E-03											+					
1E-03						K		[		[	I					
1E-03																
1E-03	D,01 <del></del>														======	
1E-04				×	ç		53333					=====			EEEEEE	3333
1E-04					~		:2::				<u> </u>					
1E-04					$\sim$											
1E-04							,	N I								
1E-04	1E-03															
1E-05						<u> </u>	=====	E : 1,2 : : : : : : : : : : : : : : : : : : :				33333			=====	
1E-05								t:::t:::			+					
1E-05							<b>\</b>									
1E-05	10 04						$\mathbf{N}$									
Kean Pwr + 20.00 d         Complementary Cumulative Distribution Function       Samples: 50000         Mean       Peak       Crest       10%       1%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB	1E-04						- 7									
Complementary Cumulative Distribution Function       Mean Pwr + 20.00 d         Mean       Peak       Crest       10%       1%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB							22227	t::::t:								
Complementary Cumulative Distribution Function       Mean Pwr + 20.00 d         Mean       Peak       Crest       10%       1%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB								$\sum_{i=1}^{n}$								
Complementary Cumulative Distribution Function       Mean Pwr + 20.00 d         Mean       Peak       Crest       10%       1%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB									(		+					
Complementary Cumulative Distribution Function       Mean Pwr + 20.00 d         Mean       Peak       Crest       10%       1%       0.1%       0.01%         Trace 1       19.26 dBm       30.64 dBm       11.38 dB       6.00 dB       8.87 dB       10.23 dB       10.87 dB	1E-05								1						<u> </u>	
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB	12 00							·	F							
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB									:1::::							::::
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB									4		+					
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB									\ <del> </del>							
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB	F 1.7543	GHz				1		1	1		1	M	lean P	wr +	20.0	0 di
Mean         Peak         Crest         10%         1%         0.1%         0.01%           Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB			ulative Dis	tributio	n Fu	nction										
Trace 1         19.26 dBm         30.64 dBm         11.38 dB         6.00 dB         8.87 dB         10.23 dB         10.87 dB								109	<i>′</i> o	1%	1	0.19				
	Trace 1															
Measuring		Υ					_		Maa	curing			111		5.12.20	24

#### Technology = CAT-M1, Radio Technology = eFDD 4 16QAM, Operating Frequency = high channel (S01_AF02)

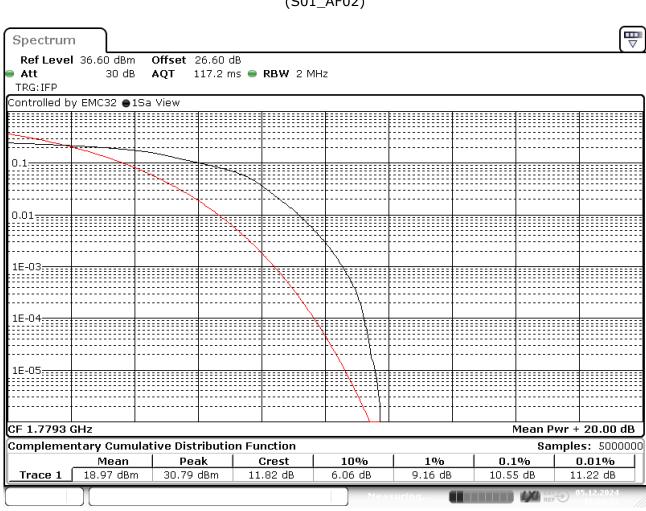
Date: 5.DEC.2024 10:05:28



#### ∀ Spectrum Ref Level 36.90 dBm Offset 26.90 dB Att 30 dB 117.2 ms 👄 RBW 2 MHz AQT TRG: IFP Controlled by EMC32 🛭 1Sa View 0.10.011E-03 1E-04 1E-05 Mean Pwr + 20.00 dB CF 707.5 MHz **Complementary Cumulative Distribution Function** Samples: 5000000 Mean 10% 1% 0.1% 0.01%Peak Crest 30.77 dBm 11.87 dB 9.22 dB 11.45 dB Trace 1 18.90 dBm 5.94 dB 10.78 dB 1.20

#### Technology = CAT-M1, Radio Technology = eFDD 12 16QAM, Operating Frequency = mid channel (S01_AF02)

Date: 5.DEC.2024 10:07:15




#### ₽ Spectrum Ref Level 36.10 dBm Offset 26.10 dB Att 30 dB AQT 78.1 ms 👄 RBW 10 MHz TRG: IFP Controlled by EMC32 🔵 1Sa View 0.1 0.011E-03: 1E-04: 1E-05 Mean Pwr + 20.00 dB CF 783.9 MHz **Complementary Cumulative Distribution Function** Samples: 5000000 Mean 10% 1% 0.1% 0.01%Peak Crest 13.57 dB 10.84 dB 13.07 dB Trace 1 15.70 dBm 29.26 dBm 6.58 dB 12.35 dB LXI

Technology = CAT-M1, Radio Technology = eFDD 13 16QAM, Operating Frequency = high channel (S01_AF02)

Date: 5.DEC.2024 10:09:38





#### Technology = CAT-M1, Radio Technology = eFDD 66 16QAM, Operating Frequency = high channel (S01_AF02)

Date: 5.DEC.2024 10:20:55



#### ∀ Spectrum Ref Level 36.00 dBm Offset 26.00 dB Att 30 dB 117.2 ms 👄 RBW 2 MHz AQT TRG: IFP Controlled by EMC32 🛭 1Sa View 0.10.011E-03: 1E-04 1E-05 Mean Pwr + 20.00 dB CF 663.7 MHz **Complementary Cumulative Distribution Function** Samples: 5000000 Mean 10% 1% 0.1% 0.01%Peak Crest 11.97 dB 9.25 dB 11.45 dB Trace 1 18.63 dBm 30.60 dBm 5.86 dB 10.78 dB 1.20

#### Technology = CAT-M1, Radio Technology = eFDD 71 16QAM, Operating Frequency = low channel (S01_AF02)

Date: 5.DEC.2024 10:22:22



#### ₽ Spectrum Ref Level 36.00 dBm Offset 26.00 dB Att 30 dB AQT 117.2 ms 👄 RBW 2 MHz TRG: IFP Controlled by EMC32 🔵1Sa View 0.10.011E-03 1E-04 1E-05 CF 698.7 MHz Mean Pwr + 20.00 dB **Complementary Cumulative Distribution Function** Samples: 5000000 10% Mean 1% 0.1% 0.01%Peak Crest 11.79 dB 9.04 dB 11.39 dB Trace 1 18.21 dBm 30.00 dBm 5.86 dB 10.64 dB 1.20

#### Technology = CAT-M1, Radio Technology = eFDD 85 16QAM, Operating Frequency = low channel (S01_AF02)

Date: 5.DEC.2024 10:24:30

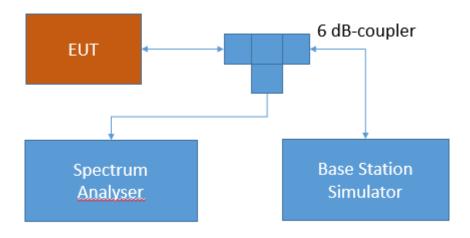
## 5.21.5 TEST EQUIPMENT USED

- Radio Lab



#### 5.22 RF OUTPUT POWER

#### Standard FCC PART 27 Subpart P


#### The test was performed according to:

ANSI C63.26: 2015; 5.2.4.1, Wideband Signal: 5.2.4.4

#### 5.22.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable RF Output power test case per § 2.1046. The limit and the requirements come from the applicable rule part for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; RF Output power

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

#### 5.22.2 TEST REQUIREMENTS / LIMITS

FCC Part 27; Miscellaneous Wireless Communication Services

Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands

§ 27.1507 – Effective radiated power limits for 900 MHz broadband systems Band 8:

(a) (4) *Portable stations.* Portable stations must not exceed 3 watts ERP.



## 5.22.3 TEST PROTOCOL

Technology	Radio Technology	Channel	Ressource Blocks / Subcarrier	Bandwidth [MHz]	Peak Cond. Power [dBm]	Average Cond. Power [dBm]	RMS Cond. Power [dBm]	FCC ERP Limit [W]	IC ERP Limit [W]	Max. Antenna Gain FCC [dBi]	Max. Antenna Gain IC [dBi]
CAT-M1	eFDD 8 QPSK	low	1	1.4	-	-	23.6	3	-	11.2	-
CAT-M1	eFDD 8 QPSK	low	3	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	low	6	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	mid	1	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	mid	3	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	mid	6	1.4	-	-	23.6	3	-	11.2	-
CAT-M1	eFDD 8 QPSK	high	1	1.4	-	-	23.6	3	-	11.2	-
CAT-M1	eFDD 8 QPSK	high	3	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	high	6	1.4	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 16QAM	low	1	1.4	-	-	23.2	3	-	11.6	-
CAT-M1	eFDD 8 16QAM	low	5	1.4	-	-	23.7	3	-	11.1	-
CAT-M1	eFDD 8 16QAM	mid	1	1.4	-	-	23.3	3	-	11.5	-
CAT-M1	eFDD 8 16QAM	mid	5	1.4	-	-	23.7	3	-	11.1	-
CAT-M1	eFDD 8 16QAM	high	1	1.4	-	-	23.1	3	-	11.7	-
CAT-M1	eFDD 8 16QAM	high	5	1.4	-	-	23.7	3	-	11.1	-
CAT-M1	eFDD 8 QPSK	mid	1	3	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	mid	3	3	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 QPSK	mid	6	3	-	-	23.5	3	-	11.3	-
CAT-M1	eFDD 8 16QAM	mid	1	3	-	-	23.1	3	-	11.7	-
CAT-M1	eFDD 8 16QAM	mid	5	3	-	-	23.7	3	-	11.1	-

Comment: The max. antenna gain is regarding the output power not SAR / MPE. Remark: Please see next sub-clause for the measurement plot.



~

# 5.22.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 8 16QAM, Operating Frequency = mid channel, ChBW = 1.4 MHz, Ressource Blocks = 5 (S01_AF01)

<b>Xef Level</b> 36.10 dBm Att 20 dB ● : T:RFP		0 ms) = VBW 1001		-т			SGL Count 100/10
ACLR	e el	r r		Ĩ	3 I F	, i	●1Rm Viev
dBm							
		-	Т*1				
dBm							
dBm							
Bm							
I dBm							
	/						
I dBm							_
dBm		· · · · · · · · · · · · · · · · · · ·	1				+
dBm							
) dBm							
) dBm							
899.0 MHz		500 pts		300.0 kHz/			Span 3.0 M
Result Summary			None				

01:25:38 PM 10/21/2024

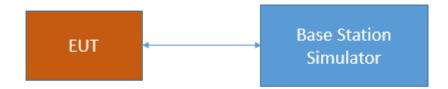
## 5.22.5 TEST EQUIPMENT USED

- Radio Lab



#### 5.23 FREQUENCY STABILITY

#### Standard FCC PART 27 Subpart P


## The test was performed according to:

ANSI C63.26: 2015; 5.6

#### 5.23.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable frequency stability test case per § 2.1055. The limit and the requirements come from the applicable rule part for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



## Test Setup FCC Part 22/24/27/90 Cellular; Frequency stability

The attenuation of the measuring / stimulus path is known for each measured frequency and are considered.

## 5.23.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 27; Miscellaneous Wireless Communication Services

Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands

#### § 2.1055 - Frequency stability

#### All Bands

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.



## 5.23.3 TEST PROTOCOL

Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %

CAT-M1 eFDD8

CAI-M1 e		\ / - lt	1.1	Europ.	Europe 1	Vardiat		
Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict		
-30	0			-4	-4	passed		
-30	5	normal	1768.75	0	-2	passed		
-30	10			-1	-2	passed		
-20	0			-15	-19	passed		
-20	5	normal	1768.75	0	-2	passed		
-20	10			-3	-5	passed		
-10	0			-1	11	passed		
-10	5	normal	1768.75	5	8	passed		
-10	10			7	14	passed		
0	0			-2	-5	passed		
0	5	normal	normal	1768.75	0	-6	passed	
0	10			-5	-6	passed		
10	0			1	7	passed		
10	5	normal	1768.75	5	20	passed		
10	10			0	-9	passed		
20	0	low	1768.75	-1	-3	passed		
20	5			-1	-3	passed		
20	10			0	-2	passed		
20	0	normal = high ¹⁾	=		12	20	passed	
20	5			=	=	1768.75	-8	-24
20	10			-1	-5	passed		
20	0			0	-3	passed		
20	5	high	1768.75	12	22	passed		
20	10			-1	2	passed		
30	0			1	1	passed		
30	5	normal	1768.75	2	4	passed		
30	10			4	4	passed		
40	0			3	5	passed		
40	5	normal	1768.75	2	5	passed		
40	10			5	14	passed		
50	0			1	3	passed		
50	5	normal	1768.75	-2	-14	passed		
50	10			-1	-2	passed		

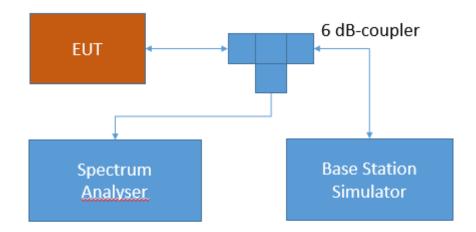
## 5.23.4 TEST EQUIPMENT USED

- Radio Lab



## 5.24 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

#### Standard FCC PART 27 Subpart P


## The test was performed according to:

ANSI C63.26: 2015; 5.7.4

## 5.24.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2.1051. The limit comes from the applicable rule part for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



## Test Setup FCC Part 22/24/27/90 Cellular; Spurious Emissions at antenna terminal

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

## 5.24.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

#### FCC Part 27; Miscellaneous Wireless Communication Services



## Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands

#### §27.1509 – Emission limits

#### Band 8

(a) For 900 MHz broadband operations in 897.5–900.5 MHz band by at least  $43 + 10 \log (P) dB$ .

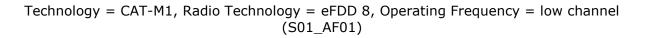
(b) For 900 MHz broadband operations in the 936.5–939.5 MHz band, by at least 50 + 10 log (P) dB.

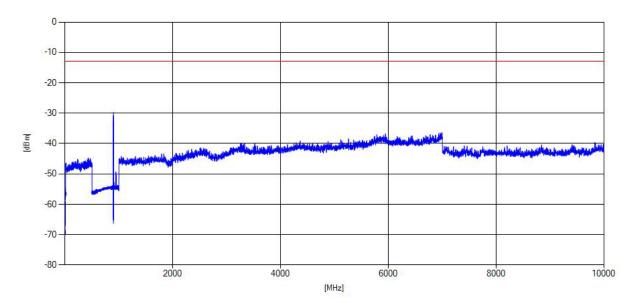
(c) Compliance with the provisions of paragraphs (a) and (b) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the licensee's band, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

(e) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

#### 5.24.3 TEST PROTOCOL


Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %


Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
CAT-M1 eFDD8	low	rms	maxhold	20	897.5	-32.7	-13	>13
CAT-M1 eFDD8	mid	rms	maxhold	100	5879.0	-37.1	-13	>13
CAT-M1 eFDD8	high	rms	maxhold	100	6931.0	-36.3	-13	>13

Remark: Please see next sub-clause for the measurement plot.



# 5.24.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)



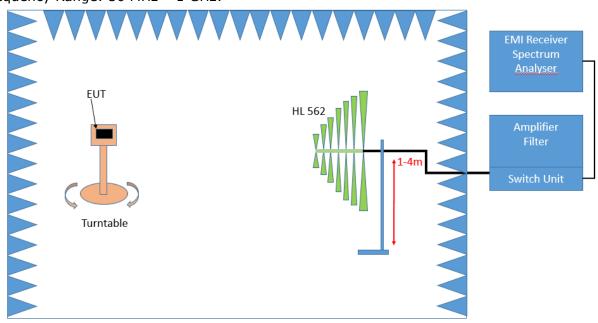


5.24.5 TEST EQUIPMENT USED

- Radio Lab



## 5.25 FIELD STRENGTH OF SPURIOUS RADIATION


#### Standard FCC PART 27 Subpart P

#### The test was performed according to: ANSI C63.26: 2015; 5.5.2.3.1

#### 5.25.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053. The limit and requirements come from the applicable rule part for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Frequency Range: 30 MHz – 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz



EUT Luttable/tilt device Furntable/tilt dev

Frequency Range: 1 GHz – 26.5 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m² in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

#### 1. Measurement above 30 MHz and up to 1 GHz

#### **Step 1:** Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement



In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The highest emission will also be recorded and adjusted.

- Detector: Peak
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range:  $\pm$  45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: RMQ
- Measured frequencies: in step 1 determined frequencies
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

#### 3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

## Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size  $\pm$  45° for the elevation axis is performed. The turn table azimuth will slowly vary by  $\pm$  22.5°.

TEST REPORT REFERENCE: MDE_UBLOX_2412_FCC_01

The elevation angle will slowly vary by  $\pm 45^{\circ}$  EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: coupled

#### Step 3:

Spectrum analyser settings for step 3:

- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

## 5.25.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

#### FCC Part 27; Miscellaneous Wireless Communication Services

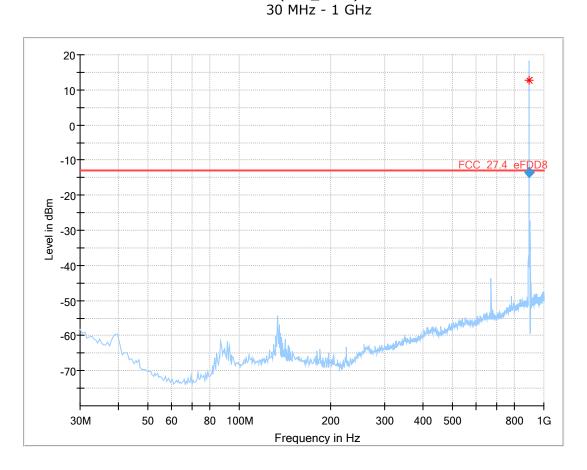
## Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands

#### §27.1508 – Field strength limits

The predicted or measured median field strength must not exceed 40 dB $\mu$ V/m at any given point along the geographic license boundary, unless the affected licensee agrees to a different field strength. This value applies to both the initially offered service areas and to partitioned service areas.

#### 5.25.3 TEST PROTOCOL

Ambient temperature:	20 - 28 °C
Relative humidity:	30 - 40 %

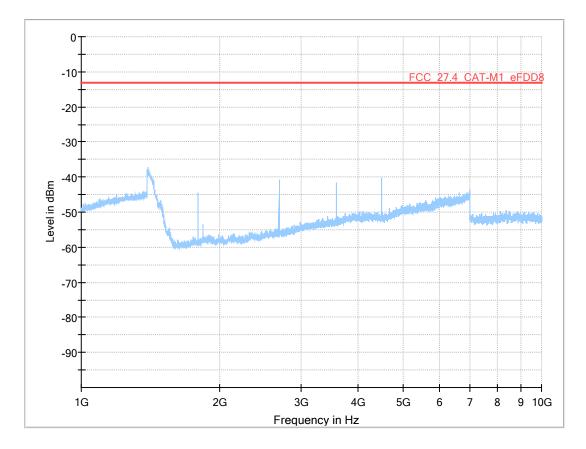

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
CAT-M1 eFDD 8	low	rms	maxhold	100	896.3	-13.5	-13	0.5
CAT-M1 eFDD 8	mid	rms	maxhold	100	900.6	-34.5	-13	21.5
CAT-M1 eFDD 8	high	rms	maxhold	100	897.4	-46.0	-13	33.0
CAT-M1 eFDD 8	high	rms	maxhold	100	900.6	-18.5	-13	5.5
CAT-M1 eFDD 8	high	rms	maxhold	100	901.1	-38.4	-13	25.4
CAT-M1 eFDD 8	high	rms	maxhold	100	902.7	-45.1	-13	32.1



Remark: Please see next sub-clause for the measurement plot.

# 5.25.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Technology = CAT-M1, Radio Technology = eFDD 8, Operating Frequency = low channel (S02_AF01)




#### Final_Result

Frequency	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB)
896.315750	-13.47	-13.00	0.47	1000.0	100.000	120.0	V	138.0	-62.2



1 GHz - 10 GHz



#### **Final Result**

Freque (MHz	 RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Elevation (deg)	Corr. (dB)

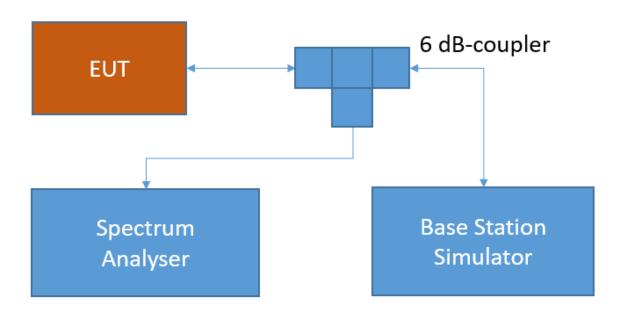
## 5.25.5 TEST EQUIPMENT USED

- -Radiated Emissions FAR: for measurements above 1GHz
- Radiated Emissions SAC: for measurements up to 1GHz in a semi anechoic room



# 5.26 EMISSION AND OCCUPIED BANDWIDTH

### Standard FCC PART 27 Subpart P


#### The test was performed according to:

ANSI C63.26: 2015; 5.4.3 (relative meas. Procedure [26dB for GSM, EGDE, WCDMA, HSDPA, HSUPA]) 5.4.4 (Power bandwidth (99%))

### 5.26.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per FCC §2.1049. The limit and the requirements come from the applicable rule part for the operating band of the cellular device.

The EUT was connected to the test setups according to the following diagram:



# Test Setup FCC / ISED Cellular; Emission and occupied bandwidth

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



# 5.26.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1049; Occupied Bandwidth:

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

(i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

#### §27.1506 – Frequencies

The 897.5-900.5 MHz and 936.5-939.5 MHz band segments are available for licensing with an authorized bandwidth up to 3 megahertz paired channels. The 897.5-900.5 MHz segment must only be used for uplink transmissions. The 936.5-939.5 MHz segments must only be used for downlink transmissions.

### 5.26.3 TEST PROTOCOL

Relative humidit	y: 30 - 40	)%					
Technology	Radio Technology	Channel	Ressource Blocks / Subcarrier	Bandwidth [MHz]	Nominal BW [MHz]	26 dB BW [kHz]	99 % BW [kHz]
CAT-M1	eFDD 8 QPSK	low	6	1.4	1.4	-	1116.0
CAT-M1	eFDD 8 QPSK	mid	6	1.4	1.4	-	1110.0
CAT-M1	eFDD 8 QPSK	high	6	1.4	1.4	-	1116.0
CAT-M1	eFDD 8 16QAM	low	5	1.4	1.4	-	954.0
CAT-M1	eFDD 8 16QAM	mid	5	1.4	1.4	-	954.0
CAT-M1	eFDD 8 16QAM	high	5	1.4	1.4	-	942.0

Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %



# 5.26.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 8 QPSK, Operating Frequency = low channel (S01_AA01)

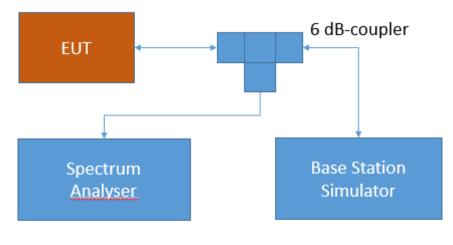
Spectrun	n 🗶								
Ref Leve Att SGL Count		Offset SWT	25.70 dB 10 s 👄	RBW 30 VBW 100		e Auto Swe	ер		
●1Pk Max									
30 dBm						1[1]		898.	18.23 dBm 40100 MHz
20 dBm					M1	cc Bw		1.1160	00000 MHz
10 dBm			protection T	bounderproduced	www.wwWw	n with the 2			
			Ż			¹			
0 dBm							M		
-10 dBm	HANNAM MANAN	n h					""ILING	hilminuur	ikddi a. is
lt30,d₿m ^{#U} lk	HIVER -							- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	┢║┉┉╖╢
-30 dBm—									· ·
-40 dBm—									
-50 dBm									
-60 dBm									
Start 896.	7 MHz	•		500	pts	•		Stop 8	99.7 MHz
	)[					leady			0.10.2024

Date: 10.OCT.2024 15:32:05

# 5.26.5 TEST EQUIPMENT USED



# 5.27 BAND EDGE COMPLIANCE


#### Standard FCC PART 27 Subpart P

#### **The test was performed according to:** ANSI C63.26: 2015; 5.7.3

# 5.27.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2. 1051. The limit comes from the applicable rule part and for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



# Test Setup FCC Part 22/24/27/90 Cellular; Band edge compliance

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

# 5.27.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

#### FCC Part 27; Miscellaneous Wireless Communication Services



# Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands

### §27.1509 – Emission limits

#### Band 8

(a) For 900 MHz broadband operations in 897.5–900.5 MHz band by at least  $43 + 10 \log (P) dB$ .

(b) For 900 MHz broadband operations in the 936.5–939.5 MHz band, by at least 50 + 10 log (P) dB.

(c) Compliance with the provisions of paragraphs (a) and (b) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the licensee's band, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(d) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

(e) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

### 5.27.3 TEST PROTOCOL

Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %

Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	RMS [dBm]	Limit /dBm	Margin to Limit /dB
CAT-M1	eFDD 8 QPSK	low	6	1.4	-27.9	-13	14.9
CAT-M1	eFDD 8 QPSK	high	6	1.4	-28.7	-13	15.7
CAT-M1	eFDD 8 16QAM	low	5	1.4	-27.3	-13	14.3
CAT-M1	eFDD 8 16QAM	high	5	1.4	-32.0	-13	19.0



# 5.27.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 8 16QAM, Operating Frequency = low channel (S01_AF01)

1 Frequency Sweep e1Rm View									
Att       20 dB = SWT       20 s = VBW 100 kHz       Mode Auto Sweep       Count 3/         If requency Sweep       PASS       M1[1]       -27.32 dB       97.500 00 MI         20 dBm       Image: Signal Stress	MultiView	Spectrum							-
1 Frequency Sweep         6 1Rm View           Limit Check         PASS         M1[1]         -27.32 dB           30 dbmine BEC         897.500 00 MI         897.500 00 MI           20 dbm         10 dbm         10 dbm         10 dbm           10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -10 dbm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -20 dbm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -20 dbm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -30 dBm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm           -30 dBm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm         10 dbm	Ref Level 36.	.10 dBm Offset 2	26.10 dB 🖷 RBW 20 kHz						SGL
Limit Check         PASS PASS         M1[1]         -27.32 dB 97,500 0.M           20 dBm	Att	20 dB 🖷 SWT	20 s 🖷 VBW 100 kHz	Mode Auto Swee	р				Count 3/3
20 dBm     20 dBm <td></td> <td></td> <td><i>8</i>.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>●1Rm View</td>			<i>8</i> .						●1Rm View
20 dBm     20 dBm <td>Limit Che</td> <td>ck</td> <td>P</td> <td>ASS</td> <td></td> <td></td> <td></td> <td></td> <td>-27.32 dBm</td>	Limit Che	ck	P	ASS					-27.32 dBm
10 dBm     Image: state stat	30 dBm		P	A55				8	97.500 00 MHz
10 dBm     Image: state stat									
10 dBm     Image: state stat	20 dBm								
0 dBm	20 000								
0 dBm									
-10 dBm	10 dBm				17	2			
-10 dBm									
-10 dBm	0.40m						400 a		
BEC	u asm-						······································	m	
BEC									
-20 dBm	-10 dBm								
-30 dBm	BEC	c		- /					
-30 dBm				5					
-30 dBm	-20 dBm							m	
-40 dBm				MIN				N.	-
-50 dBm	-30 dBm			4					~~~~~
-50 dBm			ANT						m
-50 dBm			man with						~
	-40 dBm	mont	me						
	mmmm								
	-50 dBm								
ν ₂ 60 dBm									
yf0 dBm────────────────────────────────────				40					
	√60 dBm		1	V2					
896.5 MHz 500 pts 250.0 kHz/ 899.0 MH	896.5 MHz		500 nt	ts.	2!	0.0 kHz/			899.0 MHz
Poadu 2024-10-3			000 p		20		Poadu		2024-10-23

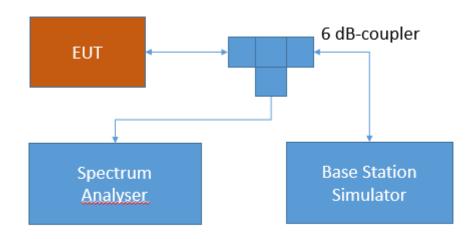
08:29:42 AM 10/23/2024

# 5.27.5 TEST EQUIPMENT USED



# 5.28 PEAK TO AVERAGE RATIO

# Standard FCC PART 27 Subpart P


#### The test was performed according to:

ANSI C63.26: 2015; 5.2.3.4 (broadband noise-like signal using CCDF [LTE, CAT-M1, NB-IoT]) 5.2.6 (alternative procedure for PAPR [GSM, EDGE, WCDMA, HSDPA, HSUPA])

### 5.28.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance of the EUT to the peak-to-average limits and requirements of the applicable rule part and for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; Peak-average ratio

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams. The internal CCDF (complementary cumulative distribution function) of the spectrum analyser is used for this measurement

### 5.28.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 27; Miscellaneous Wireless Communication Services

Subpart P – Regulations Governing Licensing and Use of 900 MHz Broadband Service in the 897.5–900.5 MHz and 936.5–939.5 MHz Bands



# §27.1507 – Effective radiated power limits for 900 MHz broadband systems Band 8:

(d) **PAR limit.** The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.

# 5.28.3 TEST PROTOCOL

Ambient	20 - 28 °C
temperature:	
Relative	30 - 40 %
humidity:	

Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	Peak to Average Ratio	Limit (IC) [dB]
CAT-M1	eFDD 8 QPSK	low	6	1.4	9.7	13
CAT-M1	eFDD 8 QPSK	mid	6	1.4	9.7	13
CAT-M1	eFDD 8 QPSK	high	6	1.4	9.7	13
CAT-M1	eFDD 8 16QAM	low	5	1.4	10.2	13
CAT-M1	eFDD 8 16QAM	mid	5	1.4	10.1	13
CAT-M1	eFDD 8 16QAM	high	5	1.4	10.2	13



# 5.28.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 8 16QAM, Operating Frequency = low channel (S01_AF02)

Spectrum	·								
Ref Level	35.70 dBm	Offset 2	25.70 dB						
Att	30 dB	AQT 1	.17.2 ms 🖷	RBW 2 M	Hz				
TRG: IFP		-							
Controlled by	/ EMC32 🔵 1	Sa View							
				=============		E======			
F======									
								4	
0.1									
				==================					= = = <del>= = = = = = = = = =</del>
		~~	<u> </u>			Essessesse			
;		·····		¥		}			
			k	+~		}+		•	
0.01									
0,01			<u> </u>						
				******		<u> </u>			
				+>	<			·	
				¥	-\	++		• • • • • • • • • • • • • • •	
1E-03					<u> </u>				
12 00				- N					
				+		<u> </u>		·	
				+				·	
1E-04									
					χ.				
					-**				
								• • • • • • • • • • • • • • • •	
								·	
1E-05									
								:::::::::::::::::::::::::::::::::::::::	
:=======					::p:::://:p::::	<u> </u>			
						tt			
CF 898.2 MI	 				N		M	lean Pwr +	20 00 de
Complemer		latino Diet	vibution C.	unotion			11		
Complemen					100/	1 10/	1 0.10		s: 500000
	Mean	<b>Pea</b> 29.32		Crest	10%	1%	0.10		<b>).01%</b>
Trace 1	18.02 dBm	29.32	ubm I	1.30 dB	5.94 dB	8.84 dB	10.17	ub IL	).84 dB
	][]				Mea	isuring			5.12.2024 10:02:39

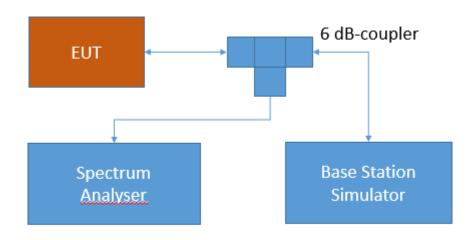
Date: 5.DEC.2024 10:02:39

# 5.28.5 TEST EQUIPMENT USED



# 5.29 RF OUTPUT POWER

### Standard FCC PART 90 Subpart S


#### The test was performed according to:

ANSI C63.26: 2015; 5.2.4.1, Wideband Signal: 5.2.4.4

### 5.29.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable RF Output power test case per § 2.1046 and RSS-GEN 6.12. The limit and the requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; RF Output power

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

### 5.29.2 TEST REQUIREMENTS / LIMITS

#### Part 90; PRIVATE LAND MOBILE RADIO SERVICES

Subpart S—Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands

§90.635 Limitations on power and antenna height.



(b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

#### RSS-140; 4.3 Transmitter Output Power

The equivalent radiated power (e.r.p.) for control and mobile equipment shall not exceed 30 W. The e.r.p. for portable equipment including handheld devices shall not exceed 3 W.

## 5.29.3 TEST PROTOCOL

Technology	ımidity: Radio Technology	Channel	Ressource Blocks / Subcarrier	Bandwidth [MHz]	Peak Cond. Power [dBm]	Average Cond. Power [dBm]	RMS Cond. Power [dBm]	FCC ERP Limit [W]	IC ERP Limit [W]	Max. Antenna Gain FCC [dBi]	Max. Antenna Gain IC [dBi]
CAT-M1	eFDD 26 QPSK	low	1	1.4	-	-	25.1	100	3	24.9	9.7
CAT-M1	eFDD 26 QPSK	low	3	1.4	-	-	24.9	100	3	25.1	9.9
CAT-M1	eFDD 26 OPSK	low	6	1.4	-	-	25.8	100	3	24.2	9.0
CAT-M1	eFDD 26 OPSK	mid	1	1.4	-	-	24.8	100	3	25.2	10.0
CAT-M1	eFDD 26 QPSK	mid	3	1.4	-	-	24.9	100	3	25.1	9.9
CAT-M1	eFDD 26 QPSK	mid	6	1.4	-	-	25.7	100	3	24.3	9.1
CAT-M1	eFDD 26 OPSK	high	1	1.4	-	-	24.7	100	3	25.3	10.1
CAT-M1	eFDD 26 OPSK	high	3	1.4	-	-	25.5	100	3	24.5	9.3
CAT-M1	eFDD 26 QPSK	high	6	1.4	-	-	25.6	100	3	24.4	9.2
CAT-M1	eFDD 26 16QAM	low	1	1.4	-	-	24.5	100	3	25.5	10.3
CAT-M1	eFDD 26 16QAM	low	5	1.4	-	-	25.2	100	3	24.8	9.6
CAT-M1	eFDD 26 16QAM	mid	1	1.4	-	-	24.5	100	3	25.5	10.3
CAT-M1	eFDD 26 16QAM	mid	5	1.4	-	-	24.9	100	3	25.1	9.9
CAT-M1	eFDD 26 16QAM	high	1	1.4	-	-	24.4	100	3	25.6	10.4
CAT-M1	eFDD 26 16QAM	high	5	1.4	-	-	24.3	100	3	25.7	10.5
CAT-M1	eFDD 26 QPSK	low	1	5	-	-	24.3	100	3	25.7	10.5
CAT-M1	eFDD 26 QPSK	low	3	5	-	-	24.3	100	3	25.7	10.5
CAT-M1	eFDD 26 QPSK	low	6	5	-	-	24.3	100	3	25.7	10.5
CAT-M1	eFDD 26 QPSK	mid	1	5	-	-	24.2	100	3	25.8	10.6
CAT-M1	eFDD 26 QPSK	mid	3	5	-	-	24.1	100	3	25.9	10.7
CAT-M1	eFDD 26 QPSK	mid	6	5	-	-	24.2	100	3	25.8	10.6
CAT-M1	eFDD 26 QPSK	high	1	5	-	-	24.3	100	3	25.7	10.5
CAT-M1	eFDD 26 QPSK	high	3	5	-	-	24.2	100	3	25.8	10.6
CAT-M1	eFDD 26 QPSK	high	6	5	-	-	24.2	100	3	25.8	10.6
CAT-M1	eFDD 26 16QAM	low	1	5	-	-	24.0	100	3	26.0	10.8



CAT-M1	eFDD 26 16QAM	low	5	5	-	-	24.5	100	3	25.5	14.0
CAT-M1	eFDD 26 16QAM	mid	1	5	-	-	23.8	100	3	26.2	14.7
CAT-M1	eFDD 26 16QAM	mid	5	5	-	-	24.3	100	3	25.7	14.2
CAT-M1	eFDD 26 16QAM	high	1	5	-	-	23.9	100	3	26.1	14.6
CAT-M1	eFDD 26 16QAM	high	5	5	-	-	24.4	100	3	25.6	14.1
CAT-M1	eFDD 26 QPSK	mid	1	10	-	-	24.2	100	3	25.8	14.3
CAT-M1	eFDD 26 QPSK	mid	3	10	-	-	24.1	100	3	25.9	14.4
CAT-M1	eFDD 26 QPSK	mid	6	10	-	-	24.2	100	3	25.8	14.3
CAT-M1	eFDD 26 16QAM	mid	1	10	-	-	23.9	100	3	26.1	14.7
CAT-M1	eFDD 26 16QAM	mid	5	10	-	-	24.3	100	3	25.7	14.2

Comment: The max. antenna gain is regarding the output power not SAR / MPE. Remark: Please see next sub-clause for the measurement plot.



# 5.29.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 26 QPSK, Operating Frequency = low channel, ChBW = 1.4 MHz, Ressource Blocks = 6 (S01_AA01)

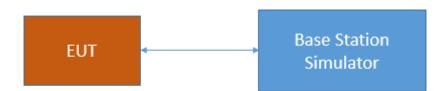
T:RFP		• VBW 100 kHz Mode	Auto FFT			Count 100/10
ACLR			ř ř			●1Rm Viev
dBm						
dBm			T×1			
dBm						
Bm						
ernadar.						
) dBm						
) dBm					$\overline{}$	
0_dBm						
) dBm						
) dBm						
) dBm						
814.7 MHz	2	500 pts	300.0	kHz/		Span 3.0 M

01:26:58 PM 10/22/2024

5.29.5 TEST EQUIPMENT USED



# 5.30 FREQUENCY STABILITY


### Standard FCC PART 90 Subpart S

#### **The test was performed according to:** ANSI C63.26: 2015; 5.6

### 5.30.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable frequency stability test case per § 2.1055 and RSS-GEN 6.11. The limit and the requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; Frequency stability

The attenuation of the measuring / stimulus path is known for each measured frequency and are considered.

# 5.30.2 TEST REQUIREMENTS / LIMITS FCC Part 90,

### § 90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.



Table Minimum Frequency Stability

[Parts per million (ppm)]

Executional Kongo	Mobile	Mobile stations					
Frequency range (MHz)	Over 2 watts output power	2 watts or less output power					
809-824	2.5	2.5					
851-854	1.5	1.5					

### RSS-140; 4.2 Frequency Stability

The frequency stability shall be sufficient to ensure that the occupied bandwidth stays within the operating frequency block when tested at the temperature and supply voltage variations specified in RSS-Gen.

# 5.30.3 TEST PROTOCOL

Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %

CAT-M1 eFDD26

Temp. °C	Duration min	Voltage	Limit Hz	Freq. error Average (Hz)	Freq. error Max. (Hz)	Verdict
-30	0			2	3	passed
-30	5	normal	2047.5	-3	-7	passed
-30	10			-2	-6	passed
-20	0			-6	-8	passed
-20	5	normal	2047.5	-3	-4	passed
-20	10			-5	-6	passed
-10	0			12	18	passed
-10	5	normal	2047.5	12	18	passed
-10	10			14	23	passed
0	0			3	21	passed
0	5	normal	2047.5	6	9	passed
0	10			5	10	passed
10	0			-1	-5	passed
10	5	normal	2047.5	1	1	passed
10	10			9	17	passed
20	0			12	18	passed
20	5	low	2047.5	9	17	passed
20	10			-1	-3	passed
20	0	normal		-8	-20	passed
20	5	=	2047.5	0	5	passed
20	10	high 1)		-1	5	passed

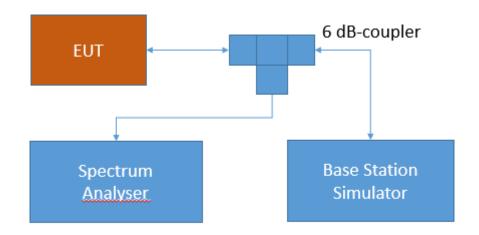


20	0			1	20	passed
20	5	high	2047.5	11	19	passed
20	10			8	9	passed
30	0			10	14	passed
30	5	normal	2047.5	-3	22	passed
30	10			4	8	passed
40	0			1	3	passed
40	5	normal	2047.5	3	5	passed
40	10			2	4	passed
50	0			-1	-4	passed
50	5	normal	2047.5	-2	-5	passed
50	10			-1	-5	passed

- 5.30.4 TEST EQUIPMENT USED
  - Radio Lab



# 5.31 SPURIOUS EMISSIONS AT ANTENNA TERMINALS


### Standard FCC PART 90 Subpart S

#### **The test was performed according to:** ANSI C63.26: 2015; 5.7.4

### 5.31.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2.1051 and RSS-GEN 6.13. The limit comes from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



# Test Setup FCC Part 22/24/27/90 Cellular; Spurious Emissions at antenna terminal

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

### 5.31.2 TEST REQUIREMENTS / LIMITS

#### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.



#### Part 90; PRIVATE LAND MOBILE RADIO SERVICES

# Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

#### §90.543 – Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

#### RSS-140; 4.4 Transmitter unwanted emission limits

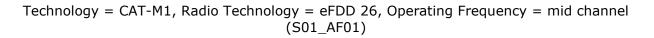
The power of any unwanted emission outside the bands 758-768 MHz and 788-798 MHz shall be attenuated below the transmitter output power P in dBW as follows, where p is the transmitter output power in watts:

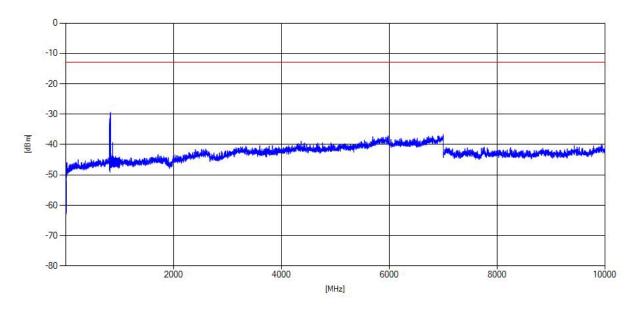
For any frequency between 769-775 MHz and 799-806 MHz:

65 + 10 log (p), dB in a 6.25 kHz band for mobile and portable/hand-held equipment

For any frequency between 775-788 MHz, above 806 MHz, and below 758 MHz: 43 + 10 log (p), dB in a bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency bands 758-768 MHz and 788-798 MHz, a resolution bandwidth of 30 kHz may be employed.

In addition, the equivalent isotropically radiated power (e.i.r.p.) of all emissions, including harmonics in the band 1559-1610 MHz, shall not exceed -70 dBW/MHz for wideband emissions, and -80 dBW/kHz for discrete emissions of less than 700 Hz bandwidth.


### 5.31.3 TEST PROTOCOL


Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
CAT-M1 eFDD26	low	rms	maxhold	100	6989.0	-36.9	-13	>13
CAT-M1 eFDD26	mid	rms	maxhold	100	813.6	-32.7	-13	>13
CAT-M1 eFDD26	high	rms	maxhold	100	6859.0	-36.4	-13	>13

Ambient temperature:20 - 28 °CRelative humidity:30 - 40 %



# 5.31.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)



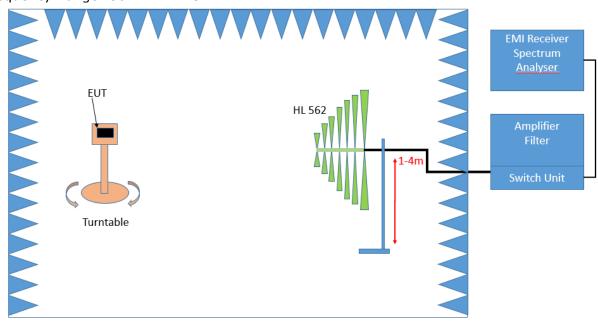


5.31.5 TEST EQUIPMENT USED



# 5.32 FIELD STRENGTH OF SPURIOUS RADIATION

#### Standard FCC PART 90 Subpart S

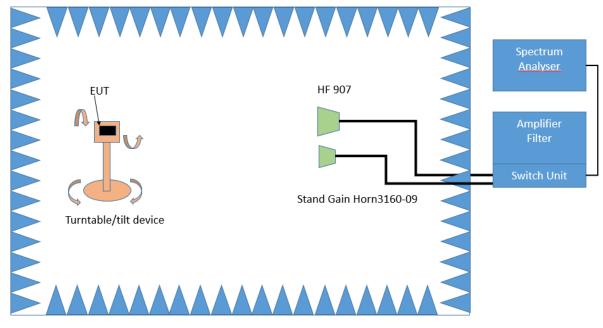

# The test was performed according to:

ANSI C63.26: 2015; 5.5.2.3.1

# 5.32.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable radiated spurious emission measurements per § 2.1053 and RSS-GEN 6.13. The limit and requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:




Frequency Range: 30 MHz – 1 GHz:

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz



Frequency Range: 1 GHz – 26.5 GHz



Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

The test set-up was made in accordance to the general provisions of ANSI C63.26 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table  $1.0 \times 2.0 \text{ m}^2$  in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

### 1. Measurement above 30 MHz and up to 1 GHz

#### Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

#### **Step 2:** Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.



For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by  $\pm$  45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by  $\pm$  100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak
- Measured frequencies: in step 1 determined frequencies
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: coupled
- Turntable angle range:  $\pm$  45 ° around the determined value
- Height variation range:  $\pm$  100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

#### Step 3: Final measurement with RMS detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: RMQ
- Measured frequencies: in step 1 determined frequencies
- RBW: 100 kHz
- VBW: 300 kHz
- Sweep time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

#### 3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

#### Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

- Antenna distance: 3 m
- Detector: Peak
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled
- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Polarisation: Horizontal + Vertical

#### Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size  $\pm$  45° for the elevation axis is performed.

The turn table azimuth will slowly vary by  $\pm$  22.5°.

The elevation angle will slowly vary by  $\pm 45^{\circ}$ 



EMI receiver settings (for all steps):

- Detector: Peak,
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep time: coupled

#### Step 3:

- Spectrum analyser settings for step 3:
- Detector: RMS
- Measured frequencies: in step 1 determined frequencies
- RBW: 1 MHz
- VBW: 3 MHz
- Sweep Time: 1 s

### 5.32.2 TEST REQUIREMENTS / LIMITS

### FCC Part 2.1053; Measurement required: Field strength of spurious radiation:

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate.

### Part 90; PRIVATE LAND MOBILE RADIO SERVICES

# Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

#### §90.543 – Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

#### RSS-140; 4.4 Transmitter unwanted emission limits

The power of any unwanted emission outside the bands 758-768 MHz and 788-798 MHz shall be attenuated below the transmitter output power P in dBW as follows, where p is the transmitter output power in watts:

For any frequency between 769-775 MHz and 799-806 MHz:

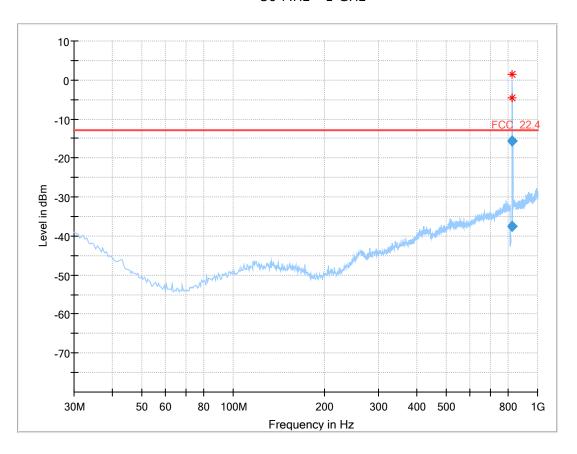
65 + 10 log (p), dB in a 6.25 kHz band for mobile and portable/hand-held equipment

For any frequency between 775-788 MHz, above 806 MHz, and below 758 MHz: 43 + 10 log (p), dB in a bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency bands 758-768 MHz and 788-798 MHz, a resolution bandwidth of 30 kHz may be employed.



In addition, the equivalent isotropically radiated power (e.i.r.p.) of all emissions, including harmonics in the band 1559-1610 MHz, shall not exceed -70 dBW/MHz for wideband emissions, and -80 dBW/kHz for discrete emissions of less than 700 Hz bandwidth.

# 5.32.3 TEST PROTOCOL

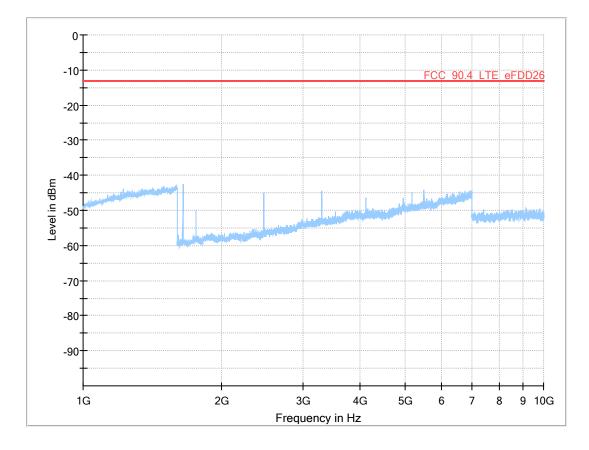

Ambient temperature:	20 - 28 °C
Relative humidity:	30 - 40 %

Radio Technology	Channel	Detector	Trace	Resolution Bandwidth /kHz	Frequency /MHz	Peak Value /dBm	Limit /dBm	Margin to Limit /dB
CAT-M1 eFDD 26	low	rms	maxhold	100	813.0	-38.4	-13	25.4
CAT-M1 eFDD 26	low	rms	maxhold	20	814.0	-16.3	-13	3.3
CAT-M1 eFDD 26	mid	rms	maxhold	-	-	-	-13	>20
CAT-M1 eFDD 26	high	rms	maxhold	20	824.0	-15.8	-13	2.8
CAT-M1 eFDD 26	high	rms	maxhold	100	825.0	-37.4	-13	24.4



# 5.32.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 26, Operating Frequency = high channel (S02_AF01) 30 MHz - 1 GHz




# Final_Result

Frequency (MHz)	RMS (dBm)	Limit (dBm)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
824.006000	-15.75	-13.00	2.75	1000.0	20.000	113.0	Н	15.0	-63.0
825.000000	-37.42	-13.00	24.42	1000.0	100.000	109.0	Н	22.0	-63.0



1 GHz - 10 GHz



#### **Final Result**

Frequency	RMS	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Elevation	Corr.
(MHz)	(dBm)	(dBm)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	(dB)

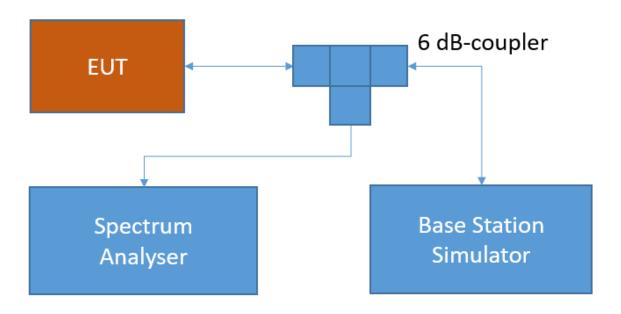
# 5.32.5 TEST EQUIPMENT USED

- Radiated Emissions FAR: for measurements above 1GHz
- Radiated Emissions SAC: for measurements up to 1GHz in a semi anechoic room



# 5.33 EMISSION AND OCCUPIED BANDWIDTH

### Standard FCC PART 90 Subpart S


#### The test was performed according to:

ANSI C63.26: 2015; 5.4.3 (relative meas. Procedure [26dB for GSM, EGDE, WCDMA, HSDPA, HSUPA]) 5.4.4 (Power bandwidth (99%))

#### 5.33.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per FCC §2.1049 and RSS-GEN 6.7. The limit and the requirements come from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setups according to the following diagram:



# Test Setup FCC / ISED Cellular; Emission and occupied bandwidth

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.



# 5.33.2 TEST REQUIREMENTS / LIMITS **FCC Part 2.1049; Occupied Bandwidth:**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured under the following conditions as applicable:

(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

(i) Transmitters designed for other types of modulation—when modulated by an appropriate signal of sufficient amplitude to be representative of the type of service in which used. A description of the input signal should be supplied.

# **RSS-GEN; 6.7 Occupied Bandwidth**

The emission bandwidth (×dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated × dB below the maximum in-band spectral density of the modulated signal. Spectral density (power per unit bandwidth) is to be measured with a detector of resolution bandwidth in the range of 1% to 5% of the anticipated emission bandwidth, and a video bandwidth at least  $3 \times$  the resolution bandwidth.

When the occupied bandwidth limit is not stated in the applicable RSS or reference measurement method, the transmitted signal bandwidth shall be reported as the 99% emission bandwidth, as calculated or measured.

The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) shall be approximately  $3\times$ RBW.

Note: Video averaging is not permitted.

A peak, or peak hold, may be used in place of the sampling detector as this may produce a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold may be necessary to determine the occupied bandwidth if the device is not transmitting continuously.



The trace data points are recovered and are directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded.

The difference between the two recorded frequencies is the 99% occupied bandwidth.

# 5.33.3 TEST PROTOCOL

Ambient tempera Relative humidity							
Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	Nominal BW [MHz]	26 dB BW [kHz]	99 % BW [kHz]
CAT-M1	eFDD 26 QPSK	low	6	1.4	1.4	-	1116.0
CAT-M1	eFDD 26 QPSK	mid	6	1.4	1.4	-	1110.0
CAT-M1	eFDD 26 QPSK	high	6	1.4	1.4	-	1116.0
CAT-M1	eFDD 26 16QAM	low	5	1.4	1.4	-	954.0
CAT-M1	eFDD 26 16QAM	mid	5	1.4	1.4	-	954.0
CAT-M1	eFDD 26 16QAM	high	5	1.4	1.4	_	954.0



# 5.33.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 26 QPSK, Operating Frequency = low channel (S01_AA01)

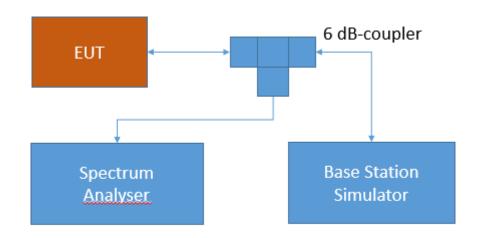
Spectrum	1 🗶								₽
Ref Level Att SGL Count		Offset e SWT	26.10 dB 10 s 👄	RBW 30 VBW 100		e Auto Swei	эр		
🔵 1Pk Max									
30 dBm						1[1]		814.	18.94 dBm 35500 MHz
			M1		0	cc Bw	Ĩ	1.1160	00000 MHz 
20 dBm			- punt	huburruht	www.whow	www.			
10 dBm			<u>'</u> € ,						
0 dBm		t the second sec	~				N.		
-10 dBm	Marsheredert	144 provent					MMU	Wallan (	
153180#1111	MANAR AL							<u>լ ստթյ ֆ</u>	<u>Incongradi</u> t
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm	2 MHz			500	nts			Ston 9	316.2 MHz
				000		eady			10.10.2024 16:15:21

Date: 10.0CT.2024 16:15:22

# 5.33.5 TEST EQUIPMENT USED



# 5.34 BAND EDGE


### Standard FCC PART 90 Subpart S

#### The test was performed according to: ANSI C63.26: 2015; 5.7.3

### 5.34.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance to the applicable conducted spurious emission test case per § 2. 1051 and RSS-GEN 6.13. The limit comes from the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



# Test Setup FCC Part 22/24/27/90 Cellular; Band edge compliance

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams.

# 5.34.2 TEST REQUIREMENTS / LIMITS

### FCC Part 2.1051; Measurement required: Spurious emissions at antenna terminal:

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.



#### Part 90; PRIVATE LAND MOBILE RADIO SERVICES

# Subpart R—Regulations Governing the Licensing and Use of Frequencies in the 763-775 and 793-805 MHz Bands

#### §90.543 – Emission limitations.

(a) The adjacent channel power (ACP) requirements for transmitters designed for various channel sizes are shown in the following tables. Mobile station requirements apply to handheld, car mounted and control station units. The tables specify a value for the ACP as a function of the displacement from the channel center frequency and measurement bandwidth. In the following tables, "(s)" indicates a swept measurement may be used.

#### RSS-140; 4.4 Transmitter unwanted emission limits

The power of any unwanted emission outside the bands 758-768 MHz and 788-798 MHz shall be attenuated below the transmitter output power P in dBW as follows, where p is the transmitter output power in watts:

For any frequency between 769-775 MHz and 799-806 MHz:

65 + 10 log (p), dB in a 6.25 kHz band for mobile and portable/hand-held equipment

For any frequency between 775-788 MHz, above 806 MHz, and below 758 MHz:  $43 + 10 \log (p)$ , dB in a bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency bands 758-768 MHz and 788-798 MHz, a resolution bandwidth of 30 kHz may be employed.

In addition, the equivalent isotropically radiated power (e.i.r.p.) of all emissions, including harmonics in the band 1559-1610 MHz, shall not exceed -70 dBW/MHz for wideband emissions, and -80 dBW/kHz for discrete emissions of less than 700 Hz bandwidth.

#### 5.34.3 TEST PROTOCOL

Ambient temperature:	20 - 28 °C
Relative humidity:	30 - 40 %

Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	RMS [dBm]	Limit /dBm	Margin to Limit /dB
CAT-M1	eFDD 26 QPSK	low	6	1.4	-27.2	-13	14.2
CAT-M1	eFDD 26 QPSK	high	6	1.4	-27.8	-13	14.8
CAT-M1	eFDD 26 16QAM	low	5	1.4	-25.6	-13	12.6
CAT-M1	eFDD 26 16QAM	high	5	1.4	-31.4	-13	18.4



# 5.34.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 26 16QAM, Operating Frequency = low channel (S01_AF01)

									-
MultiView	Spectrum								-
Ref Level 36.	10 dBm Offse	t 26.10 dB 🖷 RB	<b>№</b> 20 kHz						SGL
Att	20 dB 🖷 SWT	20 s 🖷 VB	🛚 100 kHz 🖪	Auto Swee	p				Count 3/3
1 Frequency Sv					()) ())				●1Rm View
Limit Chec	:k		PA PA	SS				M1[1]	-25.61 dBm
30 dBm			PA	SS				8	14.000 00 MHz-
								c	
20 dBm		1		-					
10 dBm					7				
0 dBm					······································		mmmm	~	
-10 dBm									
BEC -20 dBm									
-20 aBm-			M	1				hung	m.
-30 dBm									- Mar
NON #132.94		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m						- mar
-40 dBm	m	10 III III III III III III III III III I			-				
www.www									
-50 dBm									
vf0 dBm		1	V	2	7				
813.0 MHz			500 pts		25	50.0 kHz/			815.5 MHz
013.0 MHZ			500 pts		23				
							Ready		2024-10-22 15:21:58

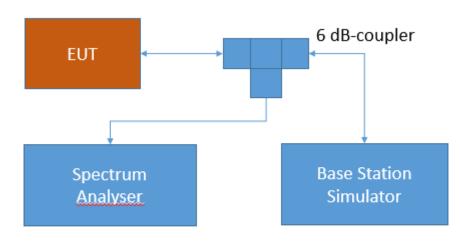
03:21:58 PM 10/22/2024

# 5.34.5 TEST EQUIPMENT USED



# 5.35 PEAK TO AVERAGE RATIO

### Standard FCC PART 90 Subpart S


#### The test was performed according to:

ANSI C63.26: 2015; 5.2.3.4 (broadband noise-like signal using CCDF [LTE, CAT-M1, NB-IoT]) 5.2.6 (alternative procedure for PAPR [GSM, EDGE, WCDMA, HSDPA, HSUPA])

### 5.35.1 TEST DESCRIPTION

This test case is intended to demonstrate compliance of the EUT to the peak-to-average limits and requirements of the applicable rule part and ISED RSS-Standard for the operating band of the cellular device.

The EUT was connected to the test setup according to the following diagram:



Test Setup FCC Part 22/24/27/90 Cellular; Peak-average ratio

The attenuation of the measuring and stimulus path are known for each measured frequency and are considered.

The Spectrum Analyzer settings can be directly found in the measurement diagrams. The internal CCDF (complementary cumulative distribution function) of the spectrum analyser is used for this measurement



# 5.35.2 TEST REQUIREMENTS / LIMITS

#### Part 90; PRIVATE LAND MOBILE RADIO SERVICES

# Subpart S—Regulations Governing Licensing and Use of Frequencies in the 806-824, 851-869, 896-901, and 935-940 MHz Bands

#### §90.635 Limitations on power and antenna height.

(b) The maximum output power of the transmitter for mobile stations is 100 watts (20 dBw).

#### RSS-140; 4.3 Transmitter Output Power

The equivalent radiated power (e.r.p.) for control and mobile equipment shall not exceed 30 W. The e.r.p. for portable equipment including handheld devices shall not exceed 3 W.

#### 5.35.3 TEST PROTOCOL

Ambient temperature: Relative	20 - 28 °C 30 - 40 %					
humidity: Technology	Radio Technology	Channel	Ressource Blocks	Bandwidth [MHz]	Peak to Average Ratio	Limit (IC) [dB]
CAT-M1	eFDD 26 QPSK	low	6	1.4	9.6	13
CAT-M1	eFDD 26 QPSK	mid	6	1.4	9.7	13
CAT-M1	eFDD 26 QPSK	high	6	1.4	9.7	13
CAT-M1	eFDD 26 16QAM	low	5	1.4	10.0	13
CAT-M1	eFDD 26 16QAM	mid	5	1.4	12.0	13
CAT-M1	eFDD 26 16QAM	high	5	1.4	10.1	13



# 5.35.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

#### Technology = CAT-M1, Radio Technology = eFDD 26 16QAM, Operating Frequency = mid channel (S01_AF02)

Spectrur								7
Ref Leve	el 36.10 dBm	Offset 2	6.10 dB					
Att	30 dB	AQT 1	17.2 ms 👄	RBW 2 Mi	Ηz			
TRG: IFP		-						
Controlled I	by EMC32 🔵 1	.Sa View						
						:		
	1							
	h							
0.1						<u> </u>		
	1	~~						
	11			+>	1			
	11				K	[		
0.01			<u> </u>		<u> </u>			
			×					
	+		· · · · · · · · · · · · · · · · · · ·					
	+		·····		·· <b>·</b> ·································			
	+		,	<b>K</b>	··+·······················			
15-03				$\sim$	\\			
TC-00				$\sim$		N; : : : : : : : : : : : : : : : : : : :	=======================================	
				···· .				
				· · · · · · · · · · · · · · · · · · ·				
	+							
15 04								
1E-04				· · · · · · · · · · · · · · · · · · ·				
					<b>X</b>			
	1					t====s==s==s==t==		
						ι <u>γ</u> Ι		
					$  \rangle$			
1E-05								
						⊧====={==={ <b>1</b> ==		
					· · · · · · · · · · · · · · · · · · ·			
	1							
	1							
CF 819.0 N							Mean P	wr + 20.00 dE
Compleme	entary Cumi	lative Distr	ibution Fu	nction			Sa	mples: 50000
	Mean	Pea	k	Crest	10%	1%	0.1%	0.01%
Trace 1	16.68 dBm	) 30.13 d	JBm 13	.45 dB	6.58 dB	10.58 dB	12.00 dB	12.75 dB
	<u> </u>	1	1	1				05 12 2024

Date: 5.DEC.2024 10:17:35

# 5.35.5 TEST EQUIPMENT USED



# 6 TEST EQUIPMENT

## 6.1 TEST EQUIPMENT HARDWARE

### 1 Radiated Emissions FAR Radiated Emissions in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1		T/P Logger 13	Lufft Mess- und	13936	2023-12	2025-12
1.2	CO3000	Controller for bore sight mast FAC	<u>Regeltechnik GmbH</u> innco systems GmbH	CO3000/1460/54 740522/P	N/A	N/A
1.3	AMF- 7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
1.4	5HC2700/12750		Trilithic	9942012	N/A	N/A
1.5	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-	N/A	N/A
1.6	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	N/A	N/A
1.7	Fluke 177		Fluke Europe B.V.	86670383	2023-08	2025-08
1.8			Miteq	849785	N/A	N/A
1.9	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
1.10	3160-09		EMCO Elektronic GmbH	00083069	N/A	N/A
1.11	4HC1600/12750 -1.5-KK		Trilithic	9942011	N/A	N/A
1.12		Bore Sight	innco systems GmbH	9210522	N/A	N/A
1.13 1.14	TT 1.5 WI VLFX-650+		Maturo GmbH	- 15542	N/A N/A	N/A N/A
1.15	5HC3500/18000		Trilithic	200035008	N/A	N/A
1.16	Opus 20 THI	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
1.17		EUT Tilt Device (Rohacell)		TD1.5- 10kg/024/37907 09	N/A	N/A
1.18	00101800-25-	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324	N/A	N/A
1.19	HF 906		Rohde & Schwarz	357357/002	2022-07	2025-07
1.20	JUN-AIR Mod.	Air Compressor	JUN-AIR Deutschland GmbH	612582	N/A	N/A



Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.21			Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2025-10
1.22			Rohde & Schwarz GmbH & Co. KG	167766-By	2022-05	2025-05
1.23			Rohde & Schwarz GmbH & Co. KG	168927-cv	2023-08	2026-08

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

### 2 Radiated Emissions SAC Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
2.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
2.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
2.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2024-03	2026-03
2.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia Germany EMC Solution GmbH		N/A	N/A
	CBL6111C + INMET 64671	Hybrid Antenna with 6dB Attenuator	Chase	2624	2023-03	2026-03
2.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
2.7	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
2.8	EP 1200/B,		Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
2.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
2.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2025-10
2.11	AM 4.0		Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A
2.12	SB4- 100.OLD20- 3T/10 Airwin 2 x 1.5 kW	Air compressor (oil-free)	airWin Kompressoren UG	901/00503	N/A	N/A



Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.13			Rohde & Schwarz GmbH & Co. KG	167766-By	2022-05	2025-05
2.14			Rohde & Schwarz GmbH & Co. KG	168927-cv	2023-08	2026-08

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

3 Radio Lab Conducted Radio Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.1	1575	Broadband Resistive Power Divider DC to 40 GHz	API Weinschel, Inc.	4070	N/A	N/A
3.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
3.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
	Temperature Chamber Weiss WT 64/75	Temperature Chamber Vötsch 03	Weiss	59226066700010	2024-07	2026-07
3.5	A8455-4	4 Way Power Divider (SMA)	-	-	N/A	N/A
3.6	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
3.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	7482	2023-12	2025-12
3.8	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2025-10
3.9	CMW500		Rohde & Schwarz GmbH & Co. KG	167766-By	2022-05	2025-05
3.10	CMW500		Rohde & Schwarz GmbH & Co. KG	168927-cv	2023-08	2026-08

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"



# 6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Controller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
INNCO Mast Controller	1.02.62
FSW43:	
Software	Version
Instrument Firmware	5.21
FSV30:	
Software	Version
Instrument Firmware	3.70
CMW500:	
Software	Version
Instrument Firmware	V4.0.140



### 7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
			loss
		LISN	(incl. 10
		insertion	dB
		loss	atten-
Frequency	Corr.	ESH3-Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	 11.2	0.5	10.7
28	11.2	0.5	10.7
30	 11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

#### Sample calculation

 $U_{LISN}$  (dB  $\mu$ V) = U (dB  $\mu$ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.



	1		-		- -	1		1	
				cable loss	cable	cable	distance	d _{Limit}	dused
	AF		cable los		loss 3	loss 4	corr.	(meas.	(meas.
_	HFH-	-	1 (inside		(switch	(to	(-40 dB/	distance	distance
Frequency	Z2)	Corr.	chamber		unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.		0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.		0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.		0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.		0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.		0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.		0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.		0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.		0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.	1 0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.	1 0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.		0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.	1 0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.	1 0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.	2 0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.	2 0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.	2 0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.	2 0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.	2 0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.	2 0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.	2 0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.	3 0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.		0.2	0.1	-40	30	3
20	19.57	-39.3	0.		0.2	0.1	-40	30	3
22	19.61	-39.3	0.		0.2	0.1	-40	30	3
24	19.61	-39.3	0.		0.2	0.1	-40	30	3
26	19.54	-39.3	0.		0.2	0.1	-40	30	3
28	19.46	-39.2	0.		0.3	0.1	-40	30	3
30	19.73	-39.1	0.		0.3	0.1	-40	30	3

## 7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG ( $d_{Limit}$ /  $d_{used}$ )

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values



## 7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

 $(\underline{d_{\text{Limit}}} = 3 \text{ m})$ 

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
					<i>`</i>	(useu) m
÷	-					3
					-	3
					-	3
	-					3
			-			3
						3
	-					3
						3
1.18	0.31	0.96	0.13	0.0		3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
	0.60	1.56	0.27	0.0		3
2.14	0.60	1.63	0.29			3
						3
2.23	0.61	1.71	0.30	0.0	3	3
	1 (inside chamber) dB 0.29 0.39 0.56 0.73 0.84 0.98 1.04 1.18 1.28 1.39 1.44 1.55 1.59 1.67 1.67 1.67 1.67 1.87 1.90 1.99 2.14 2.22	cable loss         2           1 (inside         (outside           (chamber)         (chamber)           dB         dB           0.29         0.04           0.39         0.09           0.56         0.14           0.73         0.20           0.84         0.21           0.78         0.24           1.04         0.26           1.18         0.31           1.28         0.35           1.39         0.38           1.44         0.39           1.55         0.46           1.59         0.43           1.67         0.42           1.67         0.42           1.87         0.54           1.90         0.46           1.99         0.60           2.14         0.60	cable loss         2         loss 3           1 (inside         (outside         (switch           (amber)         unit)         unit)           dB         dB         dB           0.29         0.04         0.23           0.39         0.09         0.32           0.56         0.14         0.47           0.73         0.20         0.59           0.74         0.70         0.70           0.75         0.20         0.59           0.73         0.20         0.59           0.74         0.70         0.70           0.75         0.20         0.59           0.74         0.70         0.70           0.75         0.24         0.70           0.75         0.24         0.80           1.04         0.25         0.89           1.18         0.31         0.96           1.18         0.35         1.03           1.44         0.39         1.20           1.55         0.46         1.24           1.59         0.43         1.35           1.67         0.42         1.41           1.87         0.54         1.46 <td>cable loss         2         loss 3         loss 4           1 (inside         (outside         (switch         (to           chamber)         unit)         receiver)           dB         dB         dB         dB           0.29         0.04         0.23         0.02           0.39         0.09         0.32         0.08           0.56         0.14         0.47         0.08           0.73         0.20         0.59         0.12           0.84         0.21         0.70         0.11           0.98         0.24         0.80         0.13           1.04         0.26         0.89         0.15           1.18         0.31         0.96         0.13           1.28         0.35         1.03         0.19           1.39         0.38         1.11         0.22           1.44         0.39         1.20         0.19           1.59         0.43         1.24         0.23           1.59         0.43         1.24         0.23           1.59         0.43         1.29         0.23           1.67         0.42         1.41         0.15</td> <td>cable loss         2         loss 3         loss 4         corr.           1 (inside         (outside         (switch         (to         (-20 dB/           chamber)         unit)         receiver)         decade)           dB         dB         dB         dB         dB           0.29         0.04         0.23         0.02         0.00           0.39         0.09         0.32         0.08         0.00           0.56         0.14         0.47         0.08         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.0           0.73         0.20         0.59         0.13         0.0           0.73         0.20         0.59         0.13         0.0           0.74         0.76         0.13         0.0         0.0           1.18         0.31         0.96         0.13         0.0           1.44         0.39         1.20         0.19         0.</td> <td>cable loss2loss 3loss 4corr.(max. (+20 dB/ distance (limit)1 (inside chamber)(outside unit)(switch unit)(to receiver)(-20 dB/ decade)distance (limit)dBdBdBdBdBdBm0.290.040.230.020.00330.390.090.320.080.00330.560.140.470.080.00330.730.200.590.120.00330.840.210.700.110.00330.980.240.800.130.00331.040.260.890.150.00331.180.310.960.130.00331.180.310.960.130.00331.180.351.030.190.03341.180.351.030.190.00331.590.461.240.230.00331.670.421.410.150.00331.670.421.410.150.00331.670.441.460.250.00331.670.441.460.250.00331.690.601.560.270.00331.990.601.560.270.00331.990.601.660.330.0033</td>	cable loss         2         loss 3         loss 4           1 (inside         (outside         (switch         (to           chamber)         unit)         receiver)           dB         dB         dB         dB           0.29         0.04         0.23         0.02           0.39         0.09         0.32         0.08           0.56         0.14         0.47         0.08           0.73         0.20         0.59         0.12           0.84         0.21         0.70         0.11           0.98         0.24         0.80         0.13           1.04         0.26         0.89         0.15           1.18         0.31         0.96         0.13           1.28         0.35         1.03         0.19           1.39         0.38         1.11         0.22           1.44         0.39         1.20         0.19           1.59         0.43         1.24         0.23           1.59         0.43         1.24         0.23           1.59         0.43         1.29         0.23           1.67         0.42         1.41         0.15	cable loss         2         loss 3         loss 4         corr.           1 (inside         (outside         (switch         (to         (-20 dB/           chamber)         unit)         receiver)         decade)           dB         dB         dB         dB         dB           0.29         0.04         0.23         0.02         0.00           0.39         0.09         0.32         0.08         0.00           0.56         0.14         0.47         0.08         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.00           0.73         0.20         0.59         0.12         0.0           0.73         0.20         0.59         0.13         0.0           0.73         0.20         0.59         0.13         0.0           0.74         0.76         0.13         0.0         0.0           1.18         0.31         0.96         0.13         0.0           1.44         0.39         1.20         0.19         0.	cable loss2loss 3loss 4corr.(max. (+20 dB/ distance (limit)1 (inside chamber)(outside unit)(switch unit)(to receiver)(-20 dB/ decade)distance (limit)dBdBdBdBdBdBm0.290.040.230.020.00330.390.090.320.080.00330.560.140.470.080.00330.730.200.590.120.00330.840.210.700.110.00330.980.240.800.130.00331.040.260.890.150.00331.180.310.960.130.00331.180.310.960.130.00331.180.351.030.190.03341.180.351.030.190.00331.590.461.240.230.00331.670.421.410.150.00331.670.421.410.150.00331.670.441.460.250.00331.670.441.460.250.00331.690.601.560.270.00331.990.601.560.270.00331.990.601.660.330.0033

(<u>d_{Limit} = 10 m)</u>

	<b>'</b> /								
30	18.6	-9.9	0.2	9 0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.3	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.5	5 0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.7	3 0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.8	4 0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.9	3 0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.0	1 0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.1	3 0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.2	3 0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.3	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.4	4 0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.5	5 0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.5	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.6	7 0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.6	7 0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.8	7 0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.9	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.9	9 0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.1	4 0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.2	2 0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.2	3 0.61	1.71	0.30	-10.5	10	3

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction =  $-20 * LOG (d_{Limit}/d_{used})$ 

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.



### 7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

	AF R&S		
Frequency	HF907	Corr.	
MHz	dB (1/m)	dB	
1000	24.4	-19.4	
2000	28.5	-17.4	
3000	31.0	-16.1	
4000	33.1	-14.7	
5000	34.4	-13.7	
6000	34.7	-12.7	
7000	35.6	-11.0	

cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable loss 4 (to	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

	AF R&S	
Frequency	HF907	Corr.
	dB	
MHz	(1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

1

T

cable loss 1 (relay inside chamber)	cable loss 2 (inside chamber)	cable loss 3 (outside chamber)	cable loss 4 (switch unit, atten- uator & pre-amp)	cable loss 5 (to receiver)	used for FCC 15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
	dB	
MHz	(1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

-					
cable loss				cable loss	cable
1 (relay	cable loss	cable loss	cable loss	5	loss 6
inside	2 (High	3 (pre-	4 (inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

#### Sample calculation

E (dB  $\mu$ V/m) = U (dB  $\mu$ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.



$\begin{array}{c c c c c c c c c c c c c c c c c c c $						,		
EMCO FrequencyEMCO 3160-09Corr.1 (inside (pre- (hamber)3 (inside (switch)(switch) (unit)(to receiver)MHzdB (1/m)dBdBdBdBdBdBdBdB1800040.2-23.50.72-35.856.202.812.661850040.2-22.00.69-35.716.4662.762.571900040.3-21.30.74-35.077.043.112.992000040.3-20.30.72-34.497.303.073.002050040.3-19.10.87-34.077.613.203.332150040.3-19.10.89-33.577.343.353.222250040.4-19.00.88-33.756.993.522.662350040.4-19.30.90-33.356.993.522.662400040.4-19.80.88-33.996.883.882.55								
Frequency3160-09Corr.chamber)amp)chamber)unit)receiverMHzdB (1/m)dB1800040.2-23.51850040.2-23.21900040.2-22.01900040.3-21.32000040.3-20.32000040.3-20.32050040.3-19.92150040.3-19.12200040.3-19.12150040.3-19.12200040.3-19.12200040.4-19.52350040.4-19.52350040.4-19.32400040.4-19.82400040.4-19.82400040.42400040.42400040.440.4-19.82400040.440.50.88-33.996.883.892.5								
MHzdB (1/m)dB1800040.2-23.51850040.2-23.21900040.2-22.01950040.3-21.32000040.3-20.32050040.3-19.92100040.3-19.12100040.3-19.12200040.3-19.12150040.3-19.12200040.3-19.12200040.3-19.10.87-34.467.48315040.3-19.10.87-33.577.343200040.4-19.52350040.4-19.32400040.4-19.80.88-33.756.993.522.660.88-33.996.883.882.50					(pre-	•	(switch	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
2100040.3-19.10.87-34.077.613.203.32150040.3-19.10.90-33.967.473.283.112200040.3-18.70.89-33.577.343.353.212250040.4-19.00.87-33.667.063.752.942300040.4-19.50.88-33.756.923.772.742350040.4-19.30.90-33.356.993.522.662400040.4-19.80.88-33.996.883.882.54	20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
2150040.3-19.10.90-33.967.473.283.112200040.3-18.70.89-33.577.343.353.222250040.4-19.00.87-33.667.063.752.942300040.4-19.50.88-33.756.923.772.742350040.4-19.30.90-33.356.993.522.662400040.4-19.80.88-33.996.883.882.54	20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
2200040.3-18.70.89-33.577.343.353.22250040.4-19.00.87-33.667.063.752.92300040.4-19.50.88-33.756.923.772.72350040.4-19.30.90-33.356.993.522.62400040.4-19.80.88-33.996.883.882.5	21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
2250040.4-19.00.87-33.667.063.752.92300040.4-19.50.88-33.756.923.772.72350040.4-19.30.90-33.356.993.522.62400040.4-19.80.88-33.996.883.882.5	21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
23000         40.4         -19.5         0.88         -33.75         6.92         3.77         2.7           23500         40.4         -19.3         0.90         -33.35         6.99         3.52         2.6           24000         40.4         -19.8         0.88         -33.99         6.88         3.88         2.5	22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
23500         40.4         -19.3         0.90         -33.35         6.99         3.52         2.60           24000         40.4         -19.8         0.88         -33.99         6.88         3.88         2.50	22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
24000 40.4 -19.8 0.88 -33.99 6.88 3.88 2.5	23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
	23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24500 40.4 -19.5 0.91 -33.89 7.01 3.93 2.5	24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
	24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000 40.4 -19.3 0.88 -33.00 6.72 3.96 2.14	25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500 40.5 -20.4 0.89 -34.07 6.90 3.66 2.2	25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000 40.5 -21.3 0.86 -35.11 7.02 3.69 2.2	26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500         40.5         -21.1         0.90         -35.20         7.15         3.91         2.30	26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

### 7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

### 7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

#### Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$ 

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG ( $d_{\text{Limit}}/d_{\text{used}}$ ) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.



## 8 MEASUREMENT UNCERTAINTIES

Test Case(s)	Parameter	Uncertainty
- Field strength of spurious radiation	Field Strength	± 5.5 dB
- Emission and Occupied Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
<ul><li>RF Output Power</li><li>Peak to Average Ratio</li></ul>	Power	± 2.2 dB
<ul> <li>Band Edge Compliance</li> <li>Spurious Emissions at Antenna Terminal</li> </ul>	Power Frequency	± 2.2 dB ± 11.2 kHz
- Frequency Stability	Frequency	± 25 Hz



### 9 EMISSION AND OCCUPIED BANDWIDTH PHOTO REPORT

Please see separate photo report.