

Elliott Laboratories Inc. www.elliotfabs.com

684 West Maude Avenue 408-245-7800 Phone Sunnyvale, CA 94085-3518 408-245-3499 Fax

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart E (UNII Devices) and Industry Canada RSS 210 Issue 5 (LELEAN Devices) on the Adimos, Inc. Model: WVM-1101

FCC ID: SIV-WVM1101 UPN: 5280A-W VM1101

GRANTEE: Adimos, Inc. 101 1st Street Los Altos, CA 94022

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086

REPORT DATE:

September 23, 2004

FINAL TEST DATES:

July 15, July 17 and July 31, 2004

AUTHORIZED SIGNATORY:

David W. Bare Chief Technical Officer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: WVM-1101

Manufacturer:

Adimos, Inc. 101 1st Street Los Altos, CA 94022

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power Licence-Exempt Radiocommunication Devices) FCC Part 15 Subpart E (UNII Devices)

Measurement Facility Description Filed With Industry Canada:

File Number: IC 2845-2

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Company Address

Haved W Bare

David W. Bare Chief Technical Officer Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: September 23, 2004

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	1
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS	5
MEASUREMENT UNCERTAINTIES	6
EQUIPMENT UNDER TEST (EUT) DETAILS	7
CENEDAL	7
OTHER FUT DETAILS	/ 7
ENCLOSURE	7
MODIFICATIONS	7
SUPPORT EQUIPMENT	8
EUT INTERFACE PORTS	8
EUT OPERATION DURING TESTING	8
ANTENNA REQUIREMENTS	8
TEST SITE	9
	0
CONDUCTED EMISSIONS CONSIDER ATIONS	9 Q
RADIATED EMISSIONS CONSIDERATIONS	9
MEASUREMENT INSTRUMENTATION	10
	10
KECEIVER SYSTEM	10
INSTRUMENT CONTROL COMPUTER	10
POWER METER	10
FILTERS/ATTENUATORS	11
ANTENNAS	11
ANTENNA MAST AND EQUIPMENT TURNTABLE	11
INSTRUMENT CALIBRATION	11
TEST PROCEDURES	12
EUT AND CABLE PLACEMENT	12
CONDUCTED EMISSIONS	12
RADIATED EMISSIONS	12
CONDUCTED EMISSIONS FROM ANTENNA PORT	13
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	14
FCC 15.407 (A) OUTPUT POWER LIMITS	15
RS-210 6.2.2(Q1) OUTPUT POWER LIMITS	15
SPURIOUS RADIATED EMISSIONS LIMITS	16
AC POWER PORT CONDUCTED EMISSIONS LIMITS	16
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS.	17
SAMPLE CALCULATIONS - RADIATED EMISSIONS	18
EXHIBIT 1: Test Equipment Calibration Data	I
EXHIBIT 2: Test Data Log Sheets	2
EXHIBIT 5. Test Configuration 1 holographs EXHIBIT 4: Proposed ECC ID Label & Label Location	5 1
EXHIBIT 5: Detailed Photographs	<i>+</i> 5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	9
EXHIBIT 10: Advertising Literature	10
EXHIBIT 11: RF Exposure Information	11
EXHIBIT 12: Modular Approval Requirements	12

SCOPE

An electromagnetic emissions test has been performed on the Adimos Inc. model WVM-1101 pursuant to Subpart E of Part 15 of FCC Rules for Unlicensed National Information Infrastructure (UNII) devices and RSS-210 Issue 5 for licence-exempt local area network (LELAN) devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-2001 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Adimos Inc. model WVM-1101 and therefore apply only to the tested sample. The sample was selected and prepared by Malcom Caraballo of Adimos, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart E of Part 15 of FCC Rules and RSS-210 for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules and RSS-210.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC and IC. The FCC issues a grant of equipment authorization and IC certifies upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units that are subsequently manufactured.

SUMMARY OF RESULTS

FCC Part 15 Section	RSS 210 Section	Description	Comments	Result
Operation in th	ne 5.15 – 5.25 GH	lz Band		
15.407 (d)		As the device operates in the $5.15 - 5.25$ GHz band the antenna must be integral to the device.	Antenna Gain = 5.6i The antenna is integral to the module once installed in a host system	COMPLIES
15.407(e)		Indoor operation only	Refer to user's manual in Exhibit 6	COMPLIES
15.407(a) (1)	6.2.2 q1 (i)	Bandwidth	26dB: 29.1 MHz 99%: 17.3 MHz	N/A
15.407(a) (1)	6.2.2 q1 (i)	Output Power	16.6dBm (0.046W)	COMPLIES
15.407(a) (1))	6.2.2 q1 (i)	Power Spectral Density	-1.1 dBm/MHz	COMPLIES
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-5.2dB @ 67.506 MHz	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-2.4dBm @ 5150 MHz	COMPLIES
Operation in the density of spuri signals detailed it	ne 5.25 – 5.35 GH ous emissions in in FCC 15.407(a)(z Band Note: The device the 5.15 – 5.25 GHz band (1) and RSS 210 6.2.2 q1 (i)	is restricted to indoor use only, therefore the were limited to the power spectral limits for i	e spectral ntentional
		Maximum Antenna Gain /Integral Antenna	Antenna Gain = 5.6i The antenna is integral to the module once installed in a host system	COMPLIES
15.407(a) (2)	6.2.2 q1 (ii)	Bandwidth	26dB: 26.3 MHz 99%: 17.3 MHz	N/A
15.407(a) (2)	6.2.2 q1 (ii)	Output Power	17.9dBm (0.062W)	COMPLIES
15.407(a) (2))	6.2.2 q1 (ii)	Power Spectral Density	-0.4 dBm/MHz	COMPLIES
15.407(b) (5) / 15.209	6.2.2 q1 (ii)	Spurious Emissions below 1GHz	-5.2dB @ 67.506 MHz	COMPLIES
15.407(b) (2)	6.2.2 q1 (ii)	Spurious Emissions above 1GHz	-0.8dBm @ 5350 MHz	COMPLIES

General requir	General requirements for all bands				
	6.2.2 q(iv)(a)	Digital Modulation	Digital Modulation is used, refer to the "Theory of Operations" (Exhibit 9) for a detailed explanation.	COMPLIES	
	6.2.2 q(iv)(b)	Peak Spectral Density	9.8dBm/MHz	COMPLIES	
15.407(a)(6)		Peak Excursion Ratio	<13dB	COMPLIES	
	6.2.2 q(iv)(c)	Channel Selection	The device was tested on the channels representing the highest, lowest and center channels available.	N/A	
15.407 (c)	6.2.2 q(iv)(d)	Automatic Discontinuation of Operation in the absence of information to transmit	Operation is discontinued in the absence of information to transmit, refer to the "Theory of Operations" in Exhibit 9 for a detailed explanation.	COMPLIES	
15.407 (g)	6.2.2 q(iv)(e)	Frequency Stability	Frequency stability is better than 10ppm, (refer to the test data over 0-55 degrees C)	COMPLIES	
	6.2.2 q(iv)(g)	User Manual information	All relevant statements have been included in the user's manuals. Refer to Exhibit 6 for details	COMPLIES	
15.407 (f)	6.2.2 q(iv)(g)	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11	COMPLIES	
15.407(b) / 15.207		AC Conducted Emissions	-11.8dB @ 0.196 MHz	COMPLIES	
	6.6	AC Conducted Emissions	-11.6dB @ 2.298 MHz	COMPLIES	

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Adimos hc. model WVM-1101 is a radio transceiver, which is designed to transmit / receive audio and video data over a short range using 802.11a. There are two versions, the "Transmit" module is designed to convert audio/video signals into digital data and transmit it to the "Receive" module, which contains circuitry to convert the received data back to analog audio/video signals. The "receive" module is also designed to convert an IR signal from a remote control into data for transmission to the "Transmit" module which converts the IR control signal to output back to the host device, such as a VCR, TV or similar piece of AV equipment. Both the transmit and receive modules used an identical rf transceiver module.

The EUT was treated as tabletop equipment during testing. The electrical rating of the EUT is 3.3 V dc.

The sample was received on July 15, 2004 and tested on July 15 and July 31, 2004. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Adimos	WVM 1101 T	AV Transmitter	prototype	SE6-WVM1101
		module		
Adimos	WVM 1101 R	AV Receiver	prototype	SE6-WVM1101
		module		

The emissions and performance of the 802.11a transceiver were identical for the two module types (determined through preliminary testing). The radiated spurious emissions from the A/V interface circuitry was different for the frequency range 30 - 1000 MHz. Radiated spurious emissions were measured on the receiver device, which represented the worst-case.

OTHER EUT DETAILS

The EUT is a modular transceiver. During normal use the interface ports would be connected internally within the host device. The EUT was tested in a host fixture.

ENCLOSURE

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host device.

MODIFICATIONS

The EUT required modifications during testing in order to comply with the emission specifications. The EUT was modified with the addition of rf absorbing material inside the shield over the rf module.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Adimos	WVM- DS Rev.C	test fixture	none	none
Adimos	(2) antenna	antenna	none	none
Mean Wel	PSU 30A-0	ac/dc power supply		none

No equipment was used as remote support equipment for emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

			Cable(s)	
Port	Connected To	Description	Shielded or	Length(m)
			Unshielded	
Ethernet	laptop via hub	Cat 5 UTP	Unshielded	3
Video Input	not connected			
Audio input left	not connected			
Audio Input right	not connected			
S Video	not connected			
antenna 1	antenna	Rx / Tx antenna	Shielded	0.3
antenna 2	antenna	Rx / Tx antenna	Shielded	0.3

The audio and video ports were not connected to the test fixture, as the purpose was to evaluate the device for modular approval. Emissions form these connections will be evaluated against the appropriate product standard when the module is installed in an end product. A laptop computer was used to configure the module in transmit or receive mode and then the Ethernet cable was disconnected during radiated emissions tests.

EUT OPERATION DURING TESTING

The RX and TX modules were on the EUT table operating in a normal mode.

ANTENNA REQUIREMENTS

As the device is intended to operate in the 5.15 - 5.25 GHz band an integral antenna as detailed in 15.407 (d) and RSS-210 6.2.2(q1) (i) is required. The antenna for the device is considered an integral antenna since the integrator is cautioned that he must use the specified antennas and cables and these must not be accessible to the end product user.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on July 15, July 17 and July 31, 2004 at the Elliott Laboratories Open Area Test Site #2 and Chamber #2 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-2001. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs that control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

RS-210 6.2.2(q1) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	200mW (23 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SPURIOUS RADIATED EMISSIONS LIMITS

The table below shows the limits for unwanted (spurious) emissions falling in the restricted bands detailed in Part 15.205 and Industry Canada RSS-210 Table 2.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

The table below shows the limits for unwanted (spurious) emissions outside of the restricted bands above 1GHz.

Operating Frequency (MHz)	EIRP Limit (dBm)	Equivalent Field Strength At 3m (dBuV/m)
5150 - 5250	-27 dBm	68.3 dBuV/m
5250 - 5350	-27 dBm (note 1)	68.3 dBuV/m
5725 - 5825	-27 dBm (note 2)	68.3 dBuV/m
	-17 dBm (note 3)	78.3 dBuV/m

Note 1: If operation is restricted to indoor use only then emissions in the band 5.15 – 5.25 GHz must meet the power spectral density limits for the intentional signals detailed in RSS 210 and FCC Subpart E for devices operating in the 5.15 – 5.25 GHz band.
Note 2: Applies to spurious signals separated by more than 10 MHz from the allocated band.
Note 3: Applies to spurious signals within 10 MHz of the allocated band.

AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205 and Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

 $R_r = Receiver Reading in dBuV$

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_{c} = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Radiated Emissions, 15-Ju	ın-04			
Engineer: Mark Briggs				
<u>Manufacturer</u>	Description	Model #	Asset #	<u>Cal Due</u>
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	29-Oct-04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Hewlett Packard	EMC Spectrum Analyzer, 9KHz-26.5GHz	8593EM	1141	23-Mar-05
Radio Antenna Port and Ra	adiated Spurious Emissions. 14-Jul-04			
Engineer: Mark Briggs	······			
Manufacturer	Description	Model #	Asset #	Cal Due
Elliott Laboratories	Tunahle Dinole Antenna	(White) (410-1000 MHz)	323	16-Mar-05
EMCO	Horn Antonna D Pidga 1 18CHz	2115	197	13 May 06
Livico	Microwovo Broomplifier 1.26 50Hz	94400	407	13-1viay-00
	ewielt Packard Wilciowave Freampliner, 1-20.3012		0/0	12-Jan-05
Hewlett Packard EMC Spectrum Analyzer, 9KHz-26.5GHz		8593EM	1141	23-Mar-05
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz),	84125C	1149	11-Jun-05
	Sunnyvale			
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	09-Oct-04
Conducted Emissions	Power Porto 15 Jul 04			
Conducted Emissions - AC	Power Ports, 15-Jul-04			
Manufacturor	Description	Model #	Accet #	
	Description		<u>ASSEL #</u>	
Solar Electronics Co	LISN Test Bessiver 0.000.0750 Mile	8028-50-15-24-BINC support	904	07-Aug-04
Ronde & Schwarz	Test Receiver, 0.009-2750 MHz		1332	12-Iviay-05
Ronde& Schwarz	Pulse Limiter	ESH3 Z2	1398	12-Jan-05
Radiated Emissions 1000	- 26 500 MHz 15- Jul-04			
Engineer: Juan Martinez				
Manufacturer	Description	Model #	Assat #	Cal Due
Manalacturer	Microwaya EMI test system (SA40 30Hz - 40GHz)	model #	<u>A3301 #</u>	<u>Oar Duc</u>
Hewlett Packard	Supportele	84125C	1149	11-Jun-05
Pobdo & Schwarz	Test Possiver 0.000 2750 MHz	ESN	1222	12 May 05
EMCO	Log Poriodic Antonna, 0.2.2 GHz	21/9	1404	12-10ay-03
	Biognical Antenna, 20 200 MUz	21100	1404	17-NOV-04
EMCO	Biconical Antenna, 30-300 Minz	31106	1490	10-Jan-00
Radiated Emissions, 30 - 4	0.000 MHz. 15-Jul-04			
Engineer: Juan Martinez				
Manufacturer	Description	Model #	Asset #	Cal Due
EMCO	Horn Antenna, D. Ridge 1-18CHz	3115	/187	13-May-06
Howlett Deekard	Microwovo Broomplifier 1.26 50Hz	94400	970	12 lop 05
Howlett Dockard	EMC Sportrum Applyzor OKHZ 26 50HZ	0449D 9502EM	1111	12-Jan-05
newiell Fackalu	Microwave EMI test system (SA40 30Hz - 40GHz)	6593EM	1141	23-IVIAI-03
Hewlett Packard	Sunnyvale	84125C	1149	11-Jun-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	09-Oct-04
Substitution Method, 15-Ju	ul-04			
Engineer: Juan Martinez				
<u>Manufacturer</u>	Description	Model #	Asset #	<u>Cal Due</u>
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	13-May-06
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Hewlett Packard	EMC Spectrum Analyzer, 9KHz-26.5GHz	8593EM	1141	23-Mar-05
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz),	84125C	1149	11-Jun-05
EMCO	Sunnyvale Horn Antenna, D. Ridge 1-18GHz	3115	1242	09-Oct-04
Linoo	Hom Andrina, D. Mage F 10012	0110	1272	00 000 04
Substitution Method, 15-Ju	ul-04			
Engineer: Juan Martinez				
<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohm	NRV-Z51	1069	18-Mar-05
Hewlett Packard	Signal Generator (sween) 0.01 - 26.5 GHz	8340A	1244	N/A
Rohde & Schwarz	Power Meter Single Channel	NRVS	1534	18-Mar-05
FMCO	Horn Antenna D Ridge 1-18GHz	3115	487	13-May-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1242	09-0ct-04
		00	1272	0000

Antenna RF Port, 15-Jul-04 Engineer: Juan Martinez Manufacturer	Description	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohm	NRV-Z51	1069	18-Mar-05
Hewlett Packard Rohde & Schwarz	Signal Generator (sweep) 0.01 - 26.5 GHz Power Meter, Single Channel	8340A NRVS	1244 1534	N/A 18-Mar-05
Hewlett Packard	Microwave EMI test system (SA40, 30Hz - 40GHz), Sunnyvale	84125C	1149	11-Jun-05
Temperature and Voltage E Engineer: Juan Martinez <u>Manufacturer</u>	Extreme, 15-Jul-04 <u>Description</u>	Model #	Asset #	Cal Due
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohm	NRV-Z51	1069	18-Mar-05
Hewlett Packard Rohde & Schwarz Hewlett Packard California Instruments California Instruments	Signal Generator (sweep) 0.01 - 26.5 GHz Power Meter, Single Channel EMC Spectrum Analyzer, 9KHz-26.5GHz Harmonics & Flicker test System Harmonics & Flicker Power Unit	8340A NRVS 8593EM 5001ix CTS-LR1-PCI (PACS-1)	1244 1534 1141 1221 1222	N/A 18-Mar-05 23-Mar-05 22-Aug-04 22-Aug-04
Radiated Spurious Emision Engineer: Juan Martinez	ns 30 - 40,000 MHz , 31-Jul-04			

Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	23-Jan-05
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	20-Nov-04
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	1561	05-May-06
Micro-Tronics	Band Reject Filter, 5150-5350MHz	BRC50703-02	1680	14-Jun-05

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T55971 32 Pages

6 Ell	iott

EMC Test Data

v			
Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Emissions Spec:	FCC 15.401, EN 301 893-1	Class:	Radio
Immunity Spec:	EN 301 489 - 17	Environment:	-

EMC Test Data

For The

Adimos, Inc.

Model

Wireless Video Module Model 1101

Date of Last Test: 8/7/2004

Elliott

EMC Test Data

Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Emissions Spec:	FCC 15.401, EN 301 893-1	Class:	Radio
Immunity Spec:	EN 301 489 - 17	Environment:	-

EUT INFORMATION

General Description

The Adimos Inc. model WVM-1101 is a radio transceiver, which is designed to transmit / receive audio and video data over a short range using 802.11a. There are two versions, the "Transmit" module is designed to convert audio/video signals into digital data and transmit it to the "Receive" module, which contains circuitry to convert the received data back to analog audio/video signals. The "receive" module is also designed to convert an IR signal from a remote control into data for transmission to the "Transmit" module which converts the IR control signal to output back to the host device, such as a VCR, TV or similar piece of AV equipment. Both the transmit and receive modules used an identical rf transceiver module. The EUT was treated as tabletop equipment during testing. The electrical rating of the EUT is 3.3 V dc.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Adimos	WVM 1101	transceiver	prototype	SE6-WVM1101

Other EUT Details

The EUT is a modular transceiver. During normal use the interface ports would be connected internally within the host device. The EUT was tested in a host fixture. For EN 301 893 tests the host fixture's dc input was wrapped through a ferrite core.

EUT Enclosure

The EUT does not have an enclosure as it is designed to be installed within the enclosure of a host device.

Modification History

Mod. #	Test	Date	Modification
1	Radiated emissions	7/31/2004	RF Absorbing material mounted inside the rf shield within the
			transceiver module.

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellio	tt		EM	C Test Data	
Client:	Adimos, Inc.		Job Number:	J55938	
Model:	Wireless Video Module N	Wireless Video Module Model 1101		T55971	
			Account Manager:	Susan Pelzl	
Contact:	Sherry Kathpalia / NuZea	1			
Emissions Spec:	FCC 15.401, EN 301 893	3-1	Class:	Radio	
Immunity Spec:	EN 301 489 - 17		Environment:	-	
	Tes	t Configuration	n #1 ent		
Manufacturer	Model	Description	Serial Number	FCC ID	
Adimos	WVM- DS Rev.C	test fixture	none	none	
Adimos	(2) antenna	antenna	none	none	
Mean Wel	PSU 30A-0	ac/dc power supply		none	
Manufacturer	Rei Model	mote Support Equipn	nent Serial Number	FCC ID	
none					
	Inte	erface Cabling and P	orts		
Port	Connected To	Description	Cable(s)	dod Longth(m)	
othornot	lanton via hub				
Video Input	unterminated	video	shielded	ے 1	
	unterminated	VIUEU	shielded	1	
Audio Input right	unterminated		Silielaed	1	
Audio input right	unterminated		shielaed		

Note: Some of the audio and video ports were not connected to the test fixture as the client that these ports would normally be connected a real product as opposed to a test fixture which is designed to allow setting the modules to non-standard modes such as "continuous transmit" for testing purposes. A laptop computer was used to configure the modules then disconnected during the test.

Rx / Tx antenna

Rx / Tx antenna

shielded

shielded

EUT Operation During Emissions

See data sheets. The RX and TX modules were on the EUT table operating in a continuous Transmit or receive mode.

S Video

antenna 1

antenna 2

not connected

antenna

antenna

0.3

0.3

Elliot	t		EM	C Test Data
Client:	Adimos, Inc.		Job Number:	J55938
Model:	Wireless Video Module M	odel 1101	T-Log Number:	T55971
			Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZea	l		
Emissions Spec:	FCC 15.401, EN 301 893	-1	Class:	Radio
Immunity Spec:	EN 301 489 - 17		Environment:	-
Manufacturer	Lo Model	cal Support Equipm	ent Serial Number	FCC ID
Adimos	WVM- DS Rev.C	test fixture	none	none
Adimos	(2) antenna	antenna	none	none
Mean Wel	PSU 30A-0	ac/dc power supply		none
Manufacturer	Rer	note Support Equipn	nent Serial Number	FCC ID
none				
	Inte	erface Cabling and P	orts	·
Port	Connected To		Cable(s)	
		Description	Shielded or Unshield	ded Length(m)
ethernet	laptop via hub	Cat 5 UTP	unshielded	3

TOIL	Connected To	Description	Shielded or Unshielded	Length(m)
ethernet	laptop via hub	Cat 5 UTP	unshielded	3
Video Input	not connected			
Audio input left	not connected			
Audio Input right	not connected			
S Video	not connected			
antenna 1	antenna	Rx / Tx antenna	shielded	0.3
antenna 2	antenna	Rx / Tx antenna	shielded	0.3

The audio and video ports were not connected to the test fixture, as the purpose was to evaluate the device for modular approval. Emissions form these connections will be evaluated against the appropriate product standard when the module is installed in an end product. A laptop computer was used to configure the module in transmit or receive mode and then the Ethernet cable was disconnected during radiated emissions tests.

EUT Operation During Emissions

See data sheets. The RX and TX modules were on the EUT table operating in a continuous Transmit or receive mode.

E	Ellio	ott			EMC Tes	t Data
Client:	Adimos, I	nc.			Job Number: J55938	
Model	Wireless	Video Module Model 1101		T-L	og Number: T55971	
Model.	WIICIC33			Accou	int Manager: Susan Pelzl	
Contact:	Sherry Ka	thpalia / NuZeal				
Spec:	FCC 15.4	01, EN 301 893-1			Class: N/A	
Test Spe Da Test Test General [•] When meas spectrum a are correcte	cifics Objective: te of Test: Engineer: t Location: Test Cor suring the nalyzer or ed to allow	The objective of this test sess specification listed above. 7/31/2004 Juan Martinez Chamber #2 hfiguration conducted emissions from the power meter via a suitable atte for the external attenuators an	ion is to perform final qua Config. Use Config Chang EUT Voltag EUT's antenna port, the enuator to prevent overlo nd cables used.	alification testi d: 1 e: None e: 120V/60Hz antenna port ading the mea	ing of the EUT with respending of the EUT was connecte asurement system. All more	ct to the d to the easurement
Ambient	Conditio	ns: Temperatur	e: 24	°C		
	••••••	Rel. Humidit	y: 49	%		
Summar	y of Res	ults				
Rur	า #	Test Performed	Limit	Result	Comments]
1		Output Power	15.407(a) (1), (2)	Pass	5180MHz @ 16.6dBm	
1		Power Spectral Density (PSE)) 15.407(a) (1), (2)	Pass	5180MHz @ -1.1dBm 5320 MHz @ -0.4dBm	-
1		26dB Bandwidth	15.407	Pass	29.1 MHz]
1		99% Bandwidth	RSS 210	Pass	17.3 MHz	

Run #	Test Performed	Limit	Result	Comments
1	Output Dowor	1E (107(a)) (1) (2)	Dees	5180MHz @ 16.6dBm
I	Oulpul Power	15.407(d) (1), (Z)	Pass	5320 MHz @ 17.9dBm
1	Dower Spectral Density (DSD)	1E (107(a)) (1) (2)	Daaa	5180MHz @ -1.1dBm
Ι	Power Spectral Density (PSD)	15.407(a) (1), (2)	Pass	5320 MHz @ -0.4dBm
1	26dB Bandwidth	15.407	Pass	29.1 MHz
1	99% Bandwidth	RSS 210	Pass	17.3 MHz
1	20 dB Bandwidth	RSS 210	Pass	20.3 MHz
2	Dook Excursion Envolono	15 407(2) (4)	Dece	Peak to average
Z	Peak Excursion Envelope	15.407(a) (b)	Pass	excursion < 13dB
2	Antenna Conducted - Out of	1E 407/b)	Deee	All emissions below the
3	Band Spurious	15.407(D)	Pass	27dBm/MHz limit

Modifications Made During Testing: No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	IC Test	t Data
Client:	Adimos, li	IC.					J	ob Number:	J55938	
							T-L	oa Number:	T55971	
Model:	Wireless	/ideo Mo	dule Model	1101			Accour	nt Manager:	Susan Pelzl	
Contact	Sherry Ka	thpalia /	NuZeal							
Spec	FCC 15.4	01. EN 3	01 893-1					Class:	N/A	
0000		0.17 2.1 0	0.0701					010001		
Run #1: Ba	ndwidth.	Output F	Power and	Power Spec	tral Densit	v				
				p.		,				
	Anten	na Gain:	5.6	dBi						
_	D			Output	Power	Power	PSD (FCC	C - note 3)	PSD (RSS2	10 - note 4)
Frequency	Bandwi	atn (note	i) MHz	(note 2	2) dBm	(Watts)	dBm	/MHz	dBm	/MHz
(MHz)	20dB	26dB	99%	Measured	Limit		Measured	Limit	Avg	Peak
5180	20.3	29.1	17.3	16.6	17.0	0.046	-1.1	4.0	4.2	8.4
5260	20.1	26.3	17.1	17.9	24.0	0.062	-1.7	11.0	5.6	9.8
5320	19.8	25.1	17.3	17.9	24.0	0.062	-0.4	11.0	5.5	9.4
Note 1	Bandwidth	n measur	ed using RI	BW = 300kH	Ζ.					
Note 2	T= 1/t (t=4	luS) = VI	3W of 300k	Hz. RBW =	1MHz, VBW	/ =300kHz. L	inear mode	, sample de	tector and ma	x hold for 60
	seconds.	Use the	channel po	wer built in f	unction of th	e analyzer to	o integrate po	ower across	the 26-dB B	N.
Note 3	Measuren	nent of pe	eak power s	spectral dens	sity was ma	de using RBV	V = 1MHz, V	/BW = 3MH:	z. Use trace a	averaging of
11010 0	100 swee	ps.								
	Measuren	nent of pe	eak power s	spectral dens	sity was ma	de using RBV	V = 1MHz, V	/BW = 1MH:	z. The average	ge value is
Note 4	the peak of	output po	wer divided	by the 99%	bandwidth.	For RSS210	the measur	ed value mu	ust not exceed	the
	average v	alue by r	nore than 6	dB without r	educing the	limit for outp	ut power.			

61	Elliott	EM	C Test Data
Client:	Adimos, Inc.	Job Number:	J55938
Model	Wiralass Vidao Modula Modal 1101	T-Log Number:	T55971
wouer.		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Spec:	FCC 15.401, EN 301 893-1	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

- 111

. .

The antenna gain of the radios integral antenna is 5.6dBi. The EIRP limit is -27dBm/MHz for all out of band signals that do not fall in restricted bands. A limit of -32.6 dBm was, therefore, used for signals not in restricted bands and close to the intentional band with the assumption that the antenna gain was equal to 5.6 within 100 MHz of the upper and lower band edges. For signals removed from the band edge by more than 100MHz, radiated measurements were made (refer to run #6) if the signal amplitude exceeded -37dBm.

All spurious signals in this frequency band measured during digital device radiated emissions test.

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

Note 4:

field strength measurements were made.

E	Ellio	ott						EM	IC Test Data
Client:	Adimos, I	nc.					Job	Number:	J55938
Model	Wiroloss	Vidoo Mo	dulo Modol	1101			T-Log	Number:	T55971
wouer.	WIIEless			1101			Account I	Manager:	Susan Pelzl
Contact:	Sherry Ka	athpalia / I	NuZeal						
Spec:	FCC 15.4	01, EN 30)1 893-1					Class:	N/A
20.	30 - 4(0 -	0,000 MH	lz (802.11a	ı, T× mode)	5260 MHz				
10.	o –								
	0-								
(m/Angp) -20	0- 0-								
1 - 30.	0				and the store		.		with a state of the second
• -40.	0- •	~~^	المعيطان فاللاس	Tren +	nin a state of the	يتحدينه فليهو خرد	Mary Manual A		
-50.	0-								
-60.	0- <mark>,</mark> ,,,,,, 30.0	5000.0) 1000	0.0 150)00.0 2 Frequ	0000.0 2 iency (MHz)	5000.0 30	0000.0	35000.0 40000.
			5004	F 407					
	Level dBm	Port	FCC 1 Limit	5.407 Margin	Detector	Comments			
15777.00	-35.6	RF Port	-32.6	-3.0	Peak	RB=VB = 1N	1Hz		
10520.92	-37.9	RF Port	-32.6	-5.3	Peak	RB=VB = 1N	1Hz		
Note 1:	Signal is i	n a restric	cted band.	Limitic 0	7dDm oirn	Ac the signal	otronath io oid	nificantly	lower than 07dDm no
Note 2:	Signal IS I field stren	not in rest ath meas	licieu Danu.	. LIMILIS-2 Pauired	/aBm eirp.	As the signal	strength is sig	nincantiy	lower than -270Bm no
	Signal is r	not in rest	ricted band	. Limit is -2	7dBm eirp.	Although the	signal strengt	n is sianif	icantly lower than -27dBm
Note 3:	field stren	igth meas	urements w	vere made.	· · · F	J	- J J -	5	, , , , , , , , , , , , , , , , , , ,
Note 4:	All spuriou	us signals	in this freq	uency band	measured	during digital	device radiate	d emissio	ns test.

E	Ellio	ott							EM	C Test	Data
Client:	Adimos, I	nc.						Job Ni	umber:	J55938	
Model	Wiroloss	Video Mo	laboM alub	1101				T-Log N	umber:	T55971	
Wouci.	WIICIC35			1101				Account Ma	nager:	Susan Pelzl	
Contact:	Sherry Ka	thpalia / N							Class	N1/A	
Spec:	FUU 15.4	01, EN 30	11 893-1						Class:	N/A	
	20 - 4	0 000 MH	- /902 11-	Ty mode	5220 MH-						
20.		0,000 Min	2 (002.118	s, ix mode,) 5520 MH2						
10.	n-										
	- n-										
<u> </u>	0-										
9 -20.	- n-										
l 10 -30	0-										
	0-	k		الهيحا والمراد وال			مربع		pla it	when when when when	
-10.					ندبه ا		• -				
-50,	0										
-60.	30.0	5000.0	0 1000	0.0 15	000.0 2	:0000.0	2500	0.0 300	00.0	35000.0	40000.
					Frequ	uency (MHz)					
_			F00	E 407							
Frequency MH7	Level dBm	Port	FCC 1	15.407 Margin	Detector	Comments					
5436.667	-37.5	RF Port	-32.6	-4.9	Peak	RB=VB = 1N	ЛНz				
Note 1	Cirral in i			-							
INOTE I:	Signal is i Signal is i	n a restric	ricted band.	Limit is -2	7dBm eirp.	As the signa	l stre	nath is sianit	icantly	lower than -2	7dBm no
Note 2:	field stren	gth meas	urements re	equired.	/ u2 op.	rie tie eigna		ingui le englim	ioainij		u.D.I.I.O
Note 3:	Signal is r	not in rest	ricted band	. Limit is -2	7dBm eirp.	Although the	e sign	al strength is	s signifi	icantly lower th	nan -27dBm
Note 4:	field stren	gth meas	urements w	vere made.	measured	during digital	devid	re radiated e	missio	ns test	
		us signuis	in this neg	dency band	measureu	during digital	ucvit		11113310	115 1631.	

y Lm	ott			EM	C Test Da
Client: Adimos,	nc.		J	ob Number:	J55938
Model: Wireless	Video Module Model 1101		T-L Accou	og Number: nt Manager:	T55971 Susan Pelzl
Contact: Sherry Ka	athpalia / NuZeal				
Spec: FCC 15.4	101, EN 301 893-1			Class:	N/A
	Radi	iated Emissio	ns		
Test Specifics					
- Objective:	The objective of this test session specification listed above.	n is to perform final qualif	ication testi	ng of the EL	IT with respect to the
Date of Test:	7/31/2004	Config. Used:	2		
Test Engineer:	Jmartinez	Config Change:	None		
Test Location:	SVOATS #2	EUT Voltage:	120V/60Hz		
General Test Co	nfiguration				
The EUT and all local	support equipment were located	l on the turntable for radia	ated spuriou	s emissions	testing. All remote
For radiated emission	s testing the measurement anter	nna was located 3 meters	from the El	JT.	
		22 °C			
Ambient Condition	ons: I emperature:				
Ambient Condition	DIS: I emperature: Rel. Humidity:	59 %			
Ambient Condition	ns: Temperature: Rel. Humidity:	59 %			
Ambient Condition Summary of Res	ns: Temperature: Rel. Humidity: ults Test Performed	59 %	Result	Ma	argin
Ambient Condition Summary of Res Run # 1a - 1c	Test Performed RE, 30 - 40,000 MHz - Spurious Emissions	Limit FCC Part 15.209 / 15.401	Result Pass	Ma -0.8dB @	argin 9 5350 MHz

E	Ellic	ott						EM	IC Test Data
Client:	Adimos, Ir	IC.					J	ob Number:	: J55938
Model	Miroloce \	/idoo Ma	dulo Modol	1101			T-L	og Number:	: T55971
wouer.	WILEIESS V			1101			Accou	nt Manager:	: Susan Pelzl
Contact:	Sherry Ka	thpalia /	NuZeal						
Spec:	FCC 15.40	01, EN 3	01 893-1					Class	: N/A
Spurious Ra	adiated Em	issions:						•	
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5150.000	51.6	h	54.0	-2.4	Avg	325	2.0	Band edge	
5150.000	50.6	V	54.0	-3.4	Avg	254	1.2	Band edge	
15540.000	46.5	V	54.0	-7.5	Avg	277	1.2	Noise floor	
10360.000	60.7	V	68.3	-7.6	Avg	325	1.3	x2 fundam	ental harmonic
8285.000	44.4	V	54.0	-9.6	Avg	10	1.2	VCO or LC) (Restricted band)
15540.000	44.3	h	54.0	-9.7	Avg	360	1.1	Noise floor	
8288.000	43.2	h	54.0	-10.8	Avg	0	1.2	VCO or LC) (Restricted band)
5150.000	63.1	h	74.0	-10.9	Pk	325	2.0	Band edge	
5088.027	42.6	h	54.0	-11.4	Avg	0	1.0	Noise floor	
5150.000	62.1	V	74.0	-11.9	Pk	254	1.2	Band edge	
5088.027	41.0	V	54.0	-13.0	Avg	0	1.0	Noise floor	
4296.500	54.0	h	68.3	-14.3	Avg	0	1.0	Noise floor	
15540.000	59.2	V	74.0	-14.8	Pk	277	1.2	Noise floor	
10360.000	52.1	h	68.3	-16.2	Avg	321	1.5	x2 fundam	ental harmonic
15540.000	56.0	h	74.0	-18.0	Pk	360	1.1	Noise floor	
5088.027	55.6	h	74.0	-18.4	Pk	0	1.0	Noise floor	
4296.500	47.2	V	68.3	-21.1	Avg	0	1.0	Noise floor	
8285.000	52.4	V	74.0	-21.6	Pk	10	1.2	VCO or LC) (Restricted band)
5088.027	52.1	V	74.0	-21.9	Pk	0	1.0	Noise floor	
8288.000	51.2	h	74.0	-22.8	Pk	0	1.2	VCO or LC) (Restricted band)
				de de Part					- P 9
Note 1:	For emissi 27dBm/MI	ions in re Hz (-68.:	estricted bar 3dBuV/m).	ias, the limi	t of 15.209 w	as used. Fo	r all other e	missions, th	le limit was set to -
Note 2:	Bandege r	measure gs.)	ements were	measured	at 3 meters (35.80B Ref I	Level Offset	corrections	factor was included into

E	Ellic	ott						EM	IC Test Data
Client:	Adimos, In	IC.					J	ob Number:	J55938
Model	Wiroloss V	/idoo Mc	dulo Modol	1101			T-L	og Number:	T55971
wouer.	VVII CICSS V			1101			Accou	nt Manager:	Susan Pelzl
Contact:	Sherry Kat	thpalia /	NuZeal						
Spec:	FCC 15.40)1, EN 3	01 893-1					Class:	N/A
Run #1b: F	Radiated S	purious	Emissions	, 1000 - 400	000 MHz. C	enter Chann	el @ 5260	MHz	
Power setti	ng 17.5		15.000	115 047					
Frequency	Level	Pol	15.2097	15.247 Marain	Detector	Azimuth	Height	Comments	
IVIHZ	αBhr/w 25.5	<u> </u>	LIMIL 54.0		PK/QP/AVg	degrees		v2 fundame	ontal harmonic
10520.000	51 Q		54.0	-1.7	Avg	0 278	1.3	x2 fundame	antal harmonic
8/15 000	50.6	V V	54.0	-2.1	Avg	270	1.0		(Postrictod hand)
15790.000	JU.U 17 7	V	54.0	-3.4	Avg	0 201	1.1	Noiso floor	
8/15 000	47.7	v b	54.0	-0.5	Avg	201	1.0		(Postrictod band)
15790.000	47.5	 	54.0	-0.5	Avg	10	1.2	Noiso floor	
10520.000	47.5	h	74.0	-0.0	Avy Dk	200	1.0	v2 fundame	ontal harmonic
15720.000	62.2	11 V	74.0	-0.0	F K Dk	0 201	1.3	Noiso floor	
13700.000	12.0	V	54.0	-10.7	Γκ	201	1.0		
4200.000	42.7	V	74.0	-11.1	Avy Dk	270	1.Z	v2 fundame	ontal harmonic
15780.000	61.6	b v	74.0	-11.2	Dk	270	1.4		
5088 000	/1.0	11 V	54.0	-12.4	Δνα	233	1.0	Noise floor	
8/15 000	57.1	V	74.0	-12.3	Dk	0	1.0	VCO or LO	(Postricted band)
4200 000	3/.1	 	54.0	-10.7	Γκ	0	1.1	Noise floor	
9/15 000	52 1	 	74.0	-17.0 20.0	Avy Dk	0 15	1.0		(Postrictod band)
5088 000	52.1	 	74.0	-20.7	Dk	13	1.2	Noise floor	
1200.000	50.5	V	74.0	-21.7	Dk	221	1.0		
4200.000	46.5	 h	74.0	-23.3	Pk	0	1.2	Noise floor	
4200.000	40.5	11	74.0	-21.5	ΤK	0	1.0		
Note 1:	For emissi 27dBm/Mł	ons in re Hz (-68.3	estricted bar 3dBuV/m).	nds, the limi	t of 15.209 w	vas used. Fo	r all other e	missions, th	e limit was set to -

E	Ellic	ott						EM	IC Test Data
Client:	Adimos, Ir	IC.					J	ob Number:	J55938
Model	Wireless \	/ideo Ma	ndule Model	1101			T-L	og Number:	T55971
mouch.	WIICIC33			1101			Accour	nt Manager:	Susan Pelzl
Contact:	Sherry Ka	thpalia /	NuZeal						
Spec:	FCC 15.40	01, EN 3	01 893-1					Class:	N/A
Other Spuri	ous Radiat	ed Emis	sions:						
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	53.2	h	54.0	-0.8	Avg	0	2.0	Band edge	
5350.000	51.9	V	54.0	-2.1	Avg	351	1.2	Band edge	
10640.000	49.5	V	54.0	-4.5	Avg	284	1.2	x2 fundame	ental harmonic
5088.000	49.1	V	54.0	-4.9	Avg	0	1.0	Noise floor	
15960.000	46.0	V	54.0	-8.0	AVg	0	1.0	Noise floor	
10640.000	65.9	V	74.0	-8.1	PK	284	1.2	x2 fundame	ental narmonic
15960.000	45.4	<u>n</u>	54.0	-8.6	AVg	0	1.0	NOISE TIOOP	
5350.000	64.0	n L	74.0	-10.0	PK	0	2.0	Band edge	
5088.000	42.9 42.5	n h	54.0	- .	Avg	0	1.0	Noise floor	
5407.980	42.5 42.5	<u>n</u>	54.0	-11.5 11 E	Avg	0	1.0	Noise floor	
0E11 000	42.3	<u>v</u>	04.U	-11.5	AVY	254	1.0	NOISE 11001	(Non Destricted hand)
8011.000 E2E0.000	20.0 40.1	<u> </u>	08.3	-11./	PK Dk	304	1.3	Pand adda	(NOII-RESUICIED Dalid)
9511 000	02.1 56.1	V	74.0 60.2	-11.9	PK Dk	301 12	1.Z	VCO or LO	(Non Dostricted hand)
10640.000	10.0	<u>v</u>	00.3 54.0	-12.Z	PK	1Z 220	1.1	vCO 0I LO	ontal harmonic
5088 000	40.0 50.0	11 V	74.0	-13.Z 15.2	Avy Dk	230	1.Z 1.0	Noiso floor	
15060.000	50.0	V	74.0	-15.2	F K Dk	0	1.0	Noise floor	
106/0 000	58.4	<u>v</u> h	74.0	-15.5	F K Dk	228	1.0	v2 fundame	ental harmonic
15060 000	57.8	 h	74.0	-16.2	Dk	230	1.2		
5088.000	55.7	 h	74.0	-18.3	Pk	0	1.0	Noise floor	
5407 980	54.1	V	74.0	-10.5	Pk	0	1.0	Noise floor	
4434 480	43.7	V	68.3	-24.6		0	1.0	Noise floor	
4434 480	41.2	h	68.3	-27.1	Ava	0	1.0	Noise floor	
5407 980	43.1	h	74.0	-30.9	Pk	0	1.0	Noise floor	
01077700	10.1		7 110	00.7		•	110		
Note 1:	For emissi 27dBm/MI	ions in re Hz (-68.:	estricted bar 3dBuV/m).	nds, the limi	t of 15.209 w	vas used. Fo	r all other e	missions, th	e limit was set to -
Note 2:	Bandege r the readin	measure gs.)	ments were	measured	at 3 meters ((35.8dB Ref L	evel Offset	corrections	factor was included into

CD11	ott				
UE	Oll			Elvi	
Client: Adimos, I	Inc.		J	ob Number:	J55938
Model: Wireless	Video Module Model 1101		T-Lo	og Number:	T55971
Contact. Shorry K	athralia / Nu7aal		Accour	nt Manager:	Susan Pelzi
Spec: FCC 15.4	401. EN 301 893-1			Class:	Radio
0,000				-	
	Radia	ated Emissio	ns		
Test Specifics					
Objective:	The objective of this test session specification listed above.	is to perform final qualifi	ication testir	ng of the EU	IT with respect to the
Date of Test:	7/17/2004	Config. Used:	2		
Test Engineer:	Juan Martinez	Config Change:	None		
Test Location:	SVOATS #2	EUT Voltage:	120V/60Hz		
General Test Co The EUT and all lo	nfiguration cal support equipment were locate	ed on the turntable for ra	diated emis	sions testing	g.
Unless otherwise s	specified, the measurement antenr	na was located 3 meters	from the El	JT.	
Ambiant Conditi		26 ° C			
	Rel. Humidity:	35 %			
	J	00 /0			
Summary of Res	sults				
Run #	Test Performed	Limit	Result	Ma	argin
1	RE, 30 - 1000MHz, Maximized	FCC 15.209	Pass	-5.2dB @	67.506MHz
	Emissions		<u> </u>	<u> </u>	
Modifications Ma The following modi Removed 3 out of Deviations From No deviations were	ade During Testing: ifications were made to the EUT di the 4 metal standoff holding the m The Standard e made from the requirements of th	uring testing in order to d odule. he standard.	comply with	the requirer	nents of the standard:

E	Ellio	ott						EM	IC Test Data
Client:	Adimos, li	IC.					J	ob Number:	J55938
Madalı	Wireless \	lidoo Ma	dula Madal	1101			T-L	og Number:	T55971
woder:	wireless		aule wodel	1101			Accou	nt Manager:	Susan Pelzl
Contact:	Sherry Ka	thpalia /	NuZeal						
Spec:	FCC 15.4	01, EN 3	01 893-1					Class:	Radio
Dup #1. D	roliminary	Dadiate	d Emissio	nc 20 1000	MLI-				
Note - the e	missions	helow 10	Hz were in	denendent (of onerating f	requency an	d onerating	mode (Tx v	ersus Ry)
Frequency	l evel		FCC	15.209	Detector	Azimuth	Height	Comments	
MHz	dBuV/m	v/h	Limit	Margin	Pk/OP/Avg	dearees	meters	Comments	
67 506	34.8	V	40.0	-5.2	OP	-	-		
62 500	34.0	V	40.0	-5.8					
52,500	34.0	V	40.0	-6.0					
42 500	37.0	V	40.0	-0.0					
47 520	32.5 32.5	V	<u>40.0</u>	-7.5		-			
/180.000	38.0	V	46.0	-8.0					
77 505	21.2	V	40.0	-0.0					
875.080	31.3	V	46.0	-0.7					
875.000	37.3	h b	40.0	-0.7					
57 500	37.0	N N	40.0	-9.0					
180 000	36.0	h b	40.0	-7.0					
72 512	26.0	II V	40.0	-10.0		-	-		
/2.512	20.0	v h	40.0	-14.0		-	-		
27 502	24.2	II V	40.0	-14.0		-	-		
67 506	24.3	v h	40.0	-1J.7 15.7		-	-		
420.040	24.3	li b	40.0	-13.7		-	-		
77 505	24.0	h	40.0	-10.0		-	-		
100 000	24.0	II V	40.0	-10.0		-	-		
400.000	27.7	v h	40.0	-10.1		-	-		
560.000	27.1	II V	40.0	-10.7		-	-		
40.000	20.4	V	40.0	-17.0		-	-		
40.000	22.0	 h	40.0	-10.0					
22 502	27.0	II V	40.0	-10.2		-	-		
560.000	21.5	 h	40.0	-10.5					
130 010	20.0	h	/16 D	-19.5		-			
62 500	20.4	h	40.0	-17.0					
32 502	20.1	h	40.0	-17.7					
120 040	20.0	V	46.0	-20.0					
420.040	24.0	V	40.0	-21.2					
72 512	18.1	h	40.0	-21.7					
47 520	16.1	h	40.0	-23.2	OP	-	-		
720 000	יס. ז יס. ז יס. ז	h	46.0	-23.5			-		
720.000	22.J 22.J	V	/16 D	-23.5 -23 F		-			
432 540	22.5	h	46.0	-25.5 -25.2		-			
127 510	20.7 17 /	V	Δ2 5	-26.1		-	-		
938 000	18.2	h	46.0	-27.8	OP	-	-		
430.000	16.2	V	46.0	-29.6	OP	-	-		
100.040	10.4	v	10.0	27.0				1	

Y L	Elliott				EMC Tes
Client:	Adimos, Inc.				lob Number: J55938
Model:	Wireless Video N	Iodule Model 1101		T-L	og Number: T55971
Contact	Sharny Kathnalia	/ NuZool		Accou	nt Manager: Susan Pelzl
Spec:	FCC 15.401, EN	301 893-1			Class: Radio
		Radia	ted Emissi	ons	
est Spe	cifics				
. (Dbjective: The ob specifi	ojective of this test session is cation listed above.	s to perform final qu	alification testi	ng of the EUT with respe
Date	e of Test: 7/15/2	004 Aparting a	Config. Use	ed: 2	
Test I Test	Engineer: Juan N Location: SVOA	nartinez TS #2	Contig Chang EUT Voltad	je: None je: 120V/60Hz	2
Note, pre measurer of the measurer	liminary testing nent antenna. M asurement anten Conditions: / of Results	indicates that the emissions iaximized testing indicated in na, <u>and</u> manipulation of the Temperature: Rel. Humidity:	were maximized by that the emissions w EUT's interface cab 20 °C 56 %	vorientation of vere maximize vles.	the EUT and elevation of d by orientation of the EU
Run	#	Test Performed	Limit	Result	Margin
	RE	, 1000 - 30,000 MHz,	RSS-210	Pass	-1 //dB @ 8//16 0MHz

E	Elliott	EM	IC Test Data
Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Spec:	FCC 15.401, EN 301 893-1	Class:	Radio

Run #1: Maximized readings, 1000 - 30,000 MHz Measurements made at 3m per IC requirements.

Frequency	Level	Pol	RSS-2	210 Rx	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
8416.000	58.6	V	60.0	-1.4	Pk	53	1.2	
4200.000	48.2	V	60.0	-11.8	Pk	127	1.4	
4200.000	47.3	h	60.0	-12.7	Pk	127	1.4	
8416.000	43.5	h	60.0	-16.5	Pk	0	1.2	

6I	Elliott	EM	C Test Data
Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Spec:	FCC 15.401, EN 301 893-1	Class:	Radio

Conducted Emissions - Power Ports

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 7/15/2004 Test Engineer: Juan Martinez Test Location: SVOATS #2 Config. Used: 2 Config Change: None EUT Voltage: Refer to individual run

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. Remote support equipment was located approximately 2 meters from the test area. All I/O connections were routed overhead.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	56 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN55022 B	Pass	-11.2dB @ 0.196 MHz
2	CE, AC Power,120V/60Hz	EN55022 B	Pass	-11.8dB @ 0.196 MHz
3	CE, AC Power, 120V/60Hz	RSS-210	Pass	-11.6dB @ 2.298 MHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Elliott	EM	C Test Data
Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Spec:	FCC 15.401, EN 301 893-1	Class:	Radio

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.199	46.0	Line	63.7	-17.7	QP	
0.199	35.0	Line	53.7	-18.7	Average	
0.298	41.0	Line	60.3	-19.3	QP	
0.298	33.9	Line	50.3	-16.4	Average	
0.397	39.7	Line	57.9	-18.2	QP	
0.397	34.6	Line	47.9	-13.3	Average	
0.196	48.7	Neutral	63.8	-15.1	QP	
0.196	42.6	Neutral	53.8	-11.2	Average	
0.295	43.3	Neutral	60.4	-17.1	QP	
0.295	38.8	Neutral	50.4	-11.6	Average	
0.394	39.0	Neutral	58.0	-19.0	QP	
0.394	35.1	Neutral	48.0	-12.9	Average	
				-		-

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.196	51.2	Line	63.8	-12.6	QP	
0.196	39.8	Line	53.8	-14.0	Average	
0.291	39.3	Line	60.5	-21.2	QP	
0.291	32.5	Line	50.5	-18.0	Average	
2.245	18.5	Line	56.0	-37.5	QP	
2.245	10.5	Line	46.0	-35.5	Average	
0.196	51.2	Neutral	63.8	-12.6	QP	
0.196	42.0	Neutral	53.8	-11.8	Average	
0.295	40.6	Neutral	60.4	-19.8	QP	
0.295	32.8	Neutral	50.4	-17.6	Average	
0.394	32.1	Neutral	58.0	-25.9	QP	
0.394	26.9	Neutral	48.0	-21.1	Average	

E	Elliott	EM	C Test Data
Client:	Adimos, Inc.	Job Number:	J55938
Model:	Wireless Video Module Model 1101	T-Log Number:	T55971
		Account Manager:	Susan Pelzl
Contact:	Sherry Kathpalia / NuZeal		
Spec:	FCC 15.401, EN 301 893-1	Class:	Radio

Run #3: AC Power Port Conducted Emissions, 0.45 - 30MHz, 120V/60Hz

Frequency	Level	AC	RSS	-210	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.599	30.4	Line	48.0	-17.6	QP	
0.701	32.0	Line	48.0	-16.0	QP	
2.298	36.4	Line	48.0	-11.6	QP	
0.599	27.9	Neutral	48.0	-20.1	QP	
1.496	29.1	Neutral	48.0	-18.9	QP	
2.298	33.8	Neutral	48.0	-14.2	QP	

EXHIBIT 3: Test Configuration Photographs

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of Adimos, Inc. Model WVM-1101Construction

EXHIBIT 6: Operator's Manual for Adimos, Inc. Model WVM-1101

EXHIBIT 7: Block Diagram of Adimos, Inc. Model WVM-1101

EXHIBIT 8: Schematic Diagrams for Adimos, Inc. Model WVM-1101

EXHIBIT 9: Theory of Operation for Adimos, Inc. Model WVM-1101

EXHIBIT 10: Advertising Literature

1 Page

EXHIBIT 11: RF Exposure Information

EXHIBIT 12: Modular Approval Requirements