TEST REPORT **Class II Permissive Change** Report Number: 3059839 Project Number: 30598391 May 10, 2004 Revised: July 30, 2004 Testing performed on the **Mobile Computer** Model: MC9063 FCC ID: H9PMC9063B IC ID: 1549D-MC9063B to FCC Parts: 15C, 22H & 24E for **Symbol Technologies Inc.** A2LA Certificate Number: 1755-01 Test Performed by: **Intertek Testing Services** 1365 Adams Court Menlo Park, CA 94025 Test Authorized by: Symbol Technologies Inc. One Symbol Plaza Holtsville, NY 11742-1300 Tested by: Date: May 11, 2004 Reviewed by: David Chemomoodix Date: May 15, 2004 This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government. EMC Report for Symbol Technologies Inc. on the MC9063 File: 30598391 ## TABLE OF CONTENTS | 1.0 | Test Rationale | | | | | |------------|------------------|--|--|--|--| | 2.0 | Summary of Tests | | | | | | 3.0 | | | | | | | 3.0 | | ral Description | | | | | | 3.1 | Product Description | | | | | | 3.2 | Related Submittal(s) Grants | | | | | | 3.3 | Test Methodology | | | | | | 3.4 | Test Facility | | | | | 4.0 | Syste | m Test Configuration | | | | | | 4.1 | Support Equipment and description | | | | | | 4.2 | Block Diagram of Test Setup. | | | | | | 4.3 | Justification | | | | | | 4.4 | Software Exercise Program. | | | | | | 4.5 | Mode of operation during test | | | | | | 4.6 | Modifications required for Compliance | | | | | | 4.7 | Additions, deviations and exclusions from standards | | | | | - 0 | CDI | | | | | | 5.0 | | IA RF Modem and RLAN. Simultaneous transmission test | | | | | | 5.1 | Requirement | | | | | | 5.2 | Procedure | | | | | | 5.3 | Test Result1 | | | | | 6.0 | List o | of Test Equipment1 | | | | | | | · | | | | | 7.0 | Docu | ıment History1 | | | | #### 1.0 **Test Rationale** This is Class II Permissive Change report intended to show compliance of the certified device - Mobile Computer, model MC9063, FCC ID: H9PMC9063B to the requirements of FCC Specification Parts 15C, 22H, and 24E after modification. The MC9063 integrates certified radio modules listed below: - RLAN module Part 15 Spread Spectrum transmitter, FCC ID: H9P2164436 - CDMA module Part 22/24 800/1900 MHz Dual Band CDMA Data Modem, FCC ID: N7N-EM3420P As declared by the Applicant, the modules are identical (unmodified) to the original granted devices, except that the different antennas are used. The model MC9063, FCC ID: H9PMC9063B was tested and certified with no simultaneous transmit of co-located transmitters. Simultaneous transmission was disabled by software. The only modification made on the MC9063, FCC ID: H9PMC9063B is the modification of the software which in this Application enables simultaneous transmit of co-located transmitters. Since the MC9063 utilizes unmodified approved modules, the following test results from the original reports are applicable to the MC9063: | TEST | REFERENCE | RESULTS | | | | |---|-------------------|-----------------------|--|--|--| | RLAN, FCC ID: H9P2164436 | | | | | | | 6 dB Bandwidth | 15.247(a)(2) | Complies | | | | | Power Density | 15.247(d) | Complies | | | | | Out-of-band Antenna Conducted Emission | 15.247(c) | Complies | | | | | CDMA, FCC ID: N7N-EM3420P | | | | | | | Out-of-band Antenna Conducted Emission including emission on the block-edge frequencies | 2.1051, 22.901(d) |), 24.938(a) Complies | | | | | Frequency stability vs temperature and voltage | 2.1053 | Complies | | | | | Occupied Bandwidth | 2.1049 | Complies | | | | Page 4 of 2 Further, the MC9063 tested for this Application is unmodified device tested for the Application FCC ID: H9PMC9063B. Therefore, the following test results from that Application are applicable: | TEST | REFERENCE | RESULTS | | | | | |---|--------------------------|----------|--|--|--|--| | RLAN, | RLAN, FCC ID: H9P2164436 | | | | | | | Conducted output power | 15.247(b) | Complies | | | | | | CDMA, FCC ID: N7N-EM3420P | | | | | | | | ERP/EIRP | 22.913, 24.232 | Complies | | | | | | MC9063, FCC ID: H9PMC9063B | | | | | | | | Radiated emissions from digital part and receiver | 15.109 | Complies | | | | | | AC line conducted emissions | 15.107 | Complies | | | | | The only required tests to be performed are: for Part 22/24 CDMA and RLAN operating simultaneously - spurious radiated emissions # 2.0 Summary of Tests | TEST | REFERENCE | RESULTS | | | |--|-----------|---------|--|--| | CDMA (FCC ID: N7N-EM3420P) and RLAN (FCC ID: H9P2164436) | | | | | | Spurious radiated emissions 2.1053 Complies | | | | | A pre-production version of the EUT was received on March 10, 2004 in good operating condition. As declared by the Applicant, it is identical to the production units. Date of Test: March 11, 2004 - April 22, 2004 Page 6 of 2 # 3.0 General Description # 3.1 Product Description | Equipment Under Test | | | | | |----------------------------------|---------------------------------|--------------------------|-----------------|--| | Description | Mobile Computer | | | | | Manufacturer | Symbol Technologies Inc. | | | | | Type | MC9063 | | | | | Part Number | MC9063-SKEJBAEA7WW | | | | | Serial Number | ALP75427 | | | | | FCC ID | H9PMC9063B | | | | | IC ID | 1549D-MC9063B | | | | | Radio Modules Integrated | RLAN (21-64436), CDMA (EM | | | | | Technical Description | Symbol MC9063 is Mobile Com | | | | | | offers 2.4 GHz 802.11b Wireless | | | | | | EM3420 CDMA2000-1X dual ba | and (800/1900) radio car | rd. | | | | | | | | | | Battery/ Power Supp | ly | | | | Description | Lithium Battery | | | | | Manufacturer | Symbol Technologies Inc. | | | | | Part Number | 21-65587-01 | | | | | Voltage | 7.2 V | | | | | | | | | | | | Radio Modules | | | | | Description | RLAN radio | CDMA dual band rac | dio | | | Manufacturer | Symbol Tech. Sierra Wireless | | | | | Type | 21-64436 | | | | | Power | 7-16 V | 3.4 – 4.5V | | | | Transmitter Operating Range, MHz | 2412 –2462 | 824.7-848.31 | 1851.25-1908.75 | | | RF Output Power | 68 mW | 93 mW | 275 mW | | | on file with FCC | (peak conducted) | (average ERP) | (average EIRP) | | | Receiver Operating Range, MHz | 2412 –2462 | 869.7 - 893.31 | 1930 - 1990 | | | Intermediate Frequency | 374 MHz | N/A | N/A | | | Emission Designator | 11M0F1D | 1M25F9W | | | | Type of transmission | DSSS | CDMA | | | | FCC ID | H9P2164436 | N7N-EM3420P | | | | IC ID | 1549D-2164436 2417C-EM3420 | | | | | Ancillaries | | | | | | Description Headset | | | | | | Manufacturer | VXI Corporation | | | | | Type | VXI 61-SYB | | | | | Part Number | 50-11300-050 | | | | ### 3.2 Related Submittal(s) Grants None. ### 3.3 Test Methodology Radiated emissions measurements were performed according to the procedures in ANSI C63.4 (1992). Tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Data Sheet**" of this Application. For emission testing, the Equipment Under Test (EUT) was configured for testing in a typical fashion (as a customer would normally use it). During testing, all cables were manipulated to produce worst-case emissions. For radiated emission measurements, the EUT is attached to a cardboard box (if necessary) and placed on the wooden turntable. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). The EUT is wired to transmit full power. The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. All readings are extrapolated back to the equivalent three-meter reading using inverse scaling with distance. Care was taken to ensure proper power supply voltages during testing. #### Diagram of the test setup EMC Report for Symbol Technologies Inc. on the MC9063 File: 30598391 ### Field Strength Calculation The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: ``` \begin{split} FS &= RA + AF + CF - AG \\ Where \ FS &= Field \ Strength \ in \ dB(\mu V/m) \\ RA &= Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB(\mu V) \\ CF &= Cable \ Attenuation \ Factor \ in \ dB \\ AF &= Antenna \ Factor \ in \ dB(1/m) \\ AG &= Amplifier \ Gain \ in \ dB \end{split} ``` Assume a receiver reading of 52.0 dB(μ V) is obtained. The antenna factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to Intertek corresponding level in μ V/m. RA = 52.0 dB(μ V); CF = 1.6 dB; AF = 7.4 dB(1/m); AG = 29.0 dB FS = 52 + 7.4 + 1.6 - 29 = 32 dB(μ V/m) Level in μ V/m = Common Antilogarithm [(32 dB(μ V/m)/20] = 39.8 μ V/m ### 3.4 Test Facility The test facility is located at 1365 Adams Court, Menlo Park, California. Menlo Park is approximately 30 miles SE from San Francisco and 20 miles NW from San Jose. The geographic coordinates are 37° 28' 43" N Latitude and 122° 8' 40" W Longitude. Elevation is 60 feet above sea level. Radiated emission measurements were performed in a 10 meter Semi-Anechoic Chamber, referred to as Site 1. Site 1 is a radio frequency semi-anechoic chamber / Alternate Test Site (ATS) intended to closely simulate the measurement environment as established for the Open Area test Site (OATS). The chamber is a shielded enclosure used to control and maintain a predictable EMI environment within the test region. A lining of RF absorbing material (Absorber) and other anechoic materials are installed over all interior wall and ceiling surfaces as to completely shroud exposed metallic components and disrupt reflective properties. The ground plane is an exposed RF reflective surface. The turntable is flush mounted, 3 meters in diameter, and remotely controlled. The antenna mast can be positioned at 3 or 10 meters away from the turntable. The antenna mast is remote controlled and can lower/raise an antenna between 1-4 meters. The antenna mast can also rotate between horizontal and vertical polarizations. The site meets the characteristics of ANSI C63.4 and is registered with the FCC. File: 30598391 Page 9 of 2 # Diagram of 10 meter Chamber for Radiated Emissions Testing Page 10 of 2 # 4.0 System Test Configuration # 4.1 Support Equipment and description Laptop computer: DELL, Latitude CPi, model PPX # 4.2 Block Diagram of Test Setup | S = Shielded | F = With Ferrite | |----------------|-------------------------------| | U = Unshielded | $\mathbf{m} = \mathbf{Meter}$ | File: 30598391 Page 11 of 2 #### 4.3 Justification The MC9063 was previously tested in single transmission mode and the results were originally reported in Intertek report number 30567601. The ERP/EIRP of spurious emissions were measured in the CDMA mode, and the Field Strength of spurious emissions occurred in the restricted bands was measured in RLAN modes. The purpose of the tests described in this report is to measure emissions at intermodulation frequencies, which may occur during the simultaneous transmissions, as well, as emissions at some harmonic frequencies of each transmitter which may change the level because of simultaneous transmissions. As the signals at spurious emission frequencies are low, particular attention was made on the second order (F1±F2) and third order (2*F1±F2, 2*F2±F1) intermodulation frequencies. ### 4.4 Software Exercise Program The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to a typical use. The transmitters were setup to transmit continuously to simplify the measurement methodology. ### 4.5 Mode of operation during test Continuously transmitting signals on different channels. ### 4.6 Modifications required for Compliance Intertek installed no modifications during compliance testing in order to bring the product into compliance. #### 4.7 Additions, deviations and exclusions from standards No additions, deviations or exclusion have been made from standard. File: 30598391 Page 12 of 2 #### 5.0 CDMA RF Modem and RLAN. Simultaneous transmission test FCC Rule: 2.1053, 22.901(d), 24.238(a) ### 5.1 Requirement The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$. Note: This requirement corresponds to ERP/EIRP Limit for spurious radiation as -13 dBm. #### 5.2 Procedure The frequency range up to 25 GHz was investigated. The only combinations of the lowest CDMA channel with the highest RLAN channel and the highest CDMA channel with the lowest RLAN channel were investigated. The EUT is powered from a fully charged battery. The preliminary scan was performed by placing a measuring antenna at a distance about 0.2m from the EUT to identify the spurious emission frequencies. Then the measuring antenna was placed at a distance of 3 meters from the EUT. During the tests, the EUT azimuth was varied and the antenna height is adjusted from 1m - 4m in the horizontal and vertical polarization in order to identify the maximum level of emissions from the EUT. The test was performed with the EUT positioned in three orthogonal axes. The worst-case emissions was reported. For spurious emissions attenuation, the substitution method is used. The EUT is substituted by a reference antenna (half-wave dipole - below 1 GHz, or Horn antenna - above 1GHz) which is connected to a signal generator (SG). The signal generator output was adjusted to obtain the same reading from the measuring antenna as from EUT. The Power of the signal generator (V_g in dBm) on the end of the cable is recorded. ERP (in dBm) is calculated as: ERP = V_g + G, where G is the transmitting antenna gain (in dBd). EIRP (in dBm) is calculated as: EIRP = V_g + G, where G is the transmitting antenna gain (in dBi). EMC Report for Symbol Technologies Inc. on the MC9063 File: 30598391 ### 5.3 Test Result | 1 | 2 | 3 | 4 | 5 | | | |--|--|----------------------|------------------------|-------------------|--|--| | Frequenc | SA Reading
when | SG Power
to | ERP/EIRP * of spurious | ERP/EIRP
Limit | | | | - | measured the EUT | get the same reading | emissions | | | | | MHz | dB(μV) | dBm | dBm | dBm | | | | Cellular Ba | and at 825.25 MHz and RI | LAN at 2462 MHz | | | | | | 2484 | 17.5 | -50.1 | -44.6 | -13.0 | | | | 3301 | 19.1 | -48.6 | -43.3 | -13.0 | | | | 4924 | 16.4 | -54.4 | -47.8 | -13.0 | | | | Cellular Ba | and at 847.75 MHz and RI | LAN at 2412 MHz | | | | | | 3391 | 16.7 | -50.7 | -45.4 | -13.0 | | | | 4824 | 16.0 | -55.9 | -49.3 | -13.0 | | | | PCS Band | PCS Band at 1851.25 MHz and RLAN at 2462 MHz | | | | | | | 2484 | 17.9 | -49.9 | -44.2 | -13.0 | | | | 3702.5 | 25.5 | -43.6 | -34.8 | -13.0 | | | | 4924 | 16.9 | -53.9 | -47.3 | -13.0 | | | | PCS Band at 1908.75 MHz and RLAN at 2412 MHz | | | | | | | | 3817.5 | 24.1 | -45.0 | -36.2 | -13.0 | | | | 4824 | 16.2 | -55.7 | -49.1 | -13.0 | | | ^{*} Calculated as SG Power (in column 4) + substitution horn antenna gain (in dBd - for Cell band, or in dBi - for PCS band) All other spurious emissions, not reported, are at least 20 dB below the limit. The EUT complies by more than 20 dB. # 6.0 List of Test Equipment Measurement equipment used for emission compliance testing utilized the equipment on the following list: | EQUIPMENT | MANUFACTURER | MODEL NUMBER | SERIAL
NUMBER | CAL.
INTERVAL | CAL.
DUE | |--------------------|-----------------|----------------------|------------------|------------------|-------------| | Spectrum Analyzer | Hewlett Packard | 8566B | 2416A00317 | 12 | 10/28/04 | | w/85650 QP Adapter | | | 2043A00251 | | | | Spectrum Analyzer | R & S | FSP40 | 036612004 | 12 | 2/04/05 | | BI-Log Antenna | EMCO | 3143 | 9509-1160 | 12 | 10/1/04 | | Dipole Antenna | CDI | Roberts | 331 | 12 | 9/10/04 | | Horn Antenna | EMCO | 3115 | 8812-3049 | 12 | 4/14/05 | | Horn Antenna | EMCO | 3115 | 9170-3712 | 12 | 7/05/04 | | Horn Antenna | EMCO | 3160-09 | Not Labeled | # | # | | Pre-Amplifier | Sonoma Inst. | 310 | 185634 | 12 | 9/21/04 | | Pre-Amplifier | Miteq | AMF-4D-001180-24-10P | 799159 | 12 | 9/06/04 | | Pre-Amplifier | CTT | ALO/400-8023 | 47526 | 12 | 3/25/05 | [#] No Calibration required Page 15 of 2 # 7.0 **Document History** | Revision/
Job Number | Writer
Initials | Date | Change | |-------------------------|--------------------|---------------|---| | 1.0 / 3059839 | DC | May 15, 2004 | Original document | | 2.0 / 3059839 | DC | July 30, 2004 | Information regarding Bluetooth module has been removed | | | | | |