

TEST REPORT

FCC Sub6 n26(Part22) Test for TM19FNEUHD2

Class II Permissive Change

APPLICANT

LG Electronics Inc.

REPORT NO. HCT-RF-2501-FC055

DATE OF ISSUEJanuary 23, 2025

Tested by Jung Ki Lim

Technical ManagerJong Seok Lee

As

And

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Brigini Huh BongJai Huh / CEO

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2501-FC055

DATE OF ISSUE January 23, 2025

Applicant	LG Electronics Inc.
	128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
Product Name	Telematics
Model Name	TM19FNEUHD2
Date of Test	September 30, 2024 ~ December 10, 2024
Location of Test	■ Permanent Testing Lab □ On Site Testing
	(Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggido, Republic of Korea)
FCC ID	BEJTM19FNEUHD2
FCC Classification	PCS Licensed Transmitter (PCB)
Test Standard Used	FCC Rule Part(s): § 22
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 117

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	January 23, 2025	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

F-TP22-03 (Rev. 06) Page 3 of 117

CONTENTS

1. GENERAL INFORMATION	5
1.1 MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	7
2.1 DESCRIPTION OF EUT	7
2.2 MEASURING INSTRUMENT CALIBRATION	7
2.3 TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 CONDUCTED OUTPUT POWER	9
3.3 RADIATED POWER	10
3.4 RADIATED SPURIOUS EMISSIONS	11
3.5 PEAK- TO- AVERAGE RATIO	12
3.6 OCCUPIED BANDWIDTH	14
3.7 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	15
3.8 BAND EDGE	16
3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	18
3.10 WORST CASE(RADIATED TEST)	19
3.11 WORST CASE (CONDUCTED TEST)	20
4. LIST OF TEST EQUIPMENT	21
5. MEASUREMENT UNCERTAINTY	22
6. SUMMARY OF TEST RESULTS	23
7. SAMPLE CALCULATION	24
8. TEST DATA	26
8.1 Conducted Output Power	26
8.2 EFFECTIVE RADIATED POWER	
8.3 RADIATED SPURIOUS EMISSIONS	32
8.4 PEAK-TO-AVERAGE RATIO	33
8.5 OCCUPIED BANDWIDTH	34
8.6 CONDUCTED SPURIOUS EMISSIONS	35
8.7 BAND EDGE	35
8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	36
9. TEST PLOTS	40
10. ANNEX A_ TEST SETUP PHOTO	117

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	LG Electronics Inc.
Address:	128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
FCC ID:	BEJTM19FNEUHD2
Application Type:	Class II Permissive Change
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 22
EUT Type:	Telematics
Model(s):	TM19FNEUHD2
SCS(kHz):	15
Bandwidth(MHz):	5, 10, 15, 20
Waveform:	CP-OFDM, DFT-S-OFDM
Modulation:	DFT-S-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
Tx Frequency:	826.5 MHz - 846.5 MHz : 5 MHz 829.0 MHz - 844.0 MHz : 10 MHz 831.5 MHz - 841.5 MHz : 15 MHz 834.0 MHz - 839.0 MHz : 20 MHz
Date(s) of Tests:	September 30, 2024 ~ December 10, 2024
EUT Serial number:	Radiated: Honda MY26 #02, Honda MY26 #22(RSE) Conducted: Honda MY26 #01
Antenna Information	Please refer to the Antenna Approval Specification document.

F-TP22-03 (Rev. 06) Page 5 of 117

1.1 MAXIMUM OUTPUT POWER

Mode	Tx Frequency	Emission		Conducted Output Power		
(MHz)			Modulation	Max. Power (W)	Max. Power (dBm)	
		4M50G7D	PI/2 BPSK	0.233	23.67	
		4M50G7D	QPSK	0.231	23.64	
Sub6 n26 (5)	826.5 - 846.5	4M50W7D	16QAM	0.181	22.57	
		4M50W7D	64QAM	0.131	21.17	
		4M50W7D	256QAM	0.086	19.33	
		8M97G7D	PI/2 BPSK	0.233	23.67	
		9M98G7D	QPSK	0.230	23.61	
Sub6 n26 (10)	829.0 – 844.0	8M95W7D	16QAM	0.186	22.70	
		8M96W7D	64QAM	0.130	21.14	
		8M99W7D	256QAM	0.085	19.31	
		13M5G7D	PI/2 BPSK	0.243	23.86	
		13M4G7D	QPSK	0.237	23.74	
Sub6 n26 (15)	831.5 - 841.5	13M4W7D	16QAM	0.189	22.76	
		13M5W7D	64QAM	0.135	21.31	
		13M4W7D	256QAM	0.086	19.36	
		17M9G7D	PI/2 BPSK	0.239	23.78	
		17M9G7D	QPSK	0.235	23.71	
Sub6 n26 (20)	834.0 - 839.0	17M9W7D	16QAM	0.187	22.71	
		17M9W7D	64QAM	0.132	21.21	
		17M9W7D	256QAM	0.085	19.30	

F-TP22-03 (Rev. 06) Page 6 of 117

2. INTRODUCTION

2.1 DESCRIPTION OF EUT

The EUT was a Telematics with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6.

2.2 MEASURING INSTRUMENT CALIBRATION

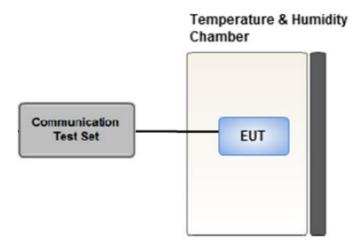
The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3 TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea

F-TP22-03 (Rev. 06) Page 7 of 117

3. DESCRIPTION OF TESTS


3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 - Section 4.3 - ANSI C63.26-2015 - Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 – Section 5.2
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 - Section 5.7 - ANSI C63.26-2015 - Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Radiated Power	- ANSI C63.26-2015 - Section 5.2.4.4 - KDB 971168 D01 v03r01 - Section 5.8
Radiated Spurious and Harmonic Emissions	- ANSI C63.26-2015 - Section 5.5.3 - KDB 971168 D01 v03r01 - Section 5.8

F-TP22-03 (Rev. 06) Page 8 of 117

3.2 CONDUCTED OUTPUT POWER

Test setup

Test Overview

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies.

Conducted Output Power was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v03r01, Section 5.2.

F-TP22-03 (Rev. 06) Page 9 of 117

3.3 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 10 of 117

3.4 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- $2. VBW \ge 3 \times RBW$
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

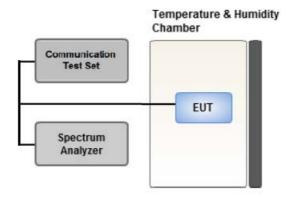
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 11 of 117

3.5 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms, $\,$
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as P_{Pk}.

Use one of the applicable procedures presented 5.2 (ANSI C63.26-2015) to measure the total average power and record as P_{Avg} . Determine the P.A.R. from:

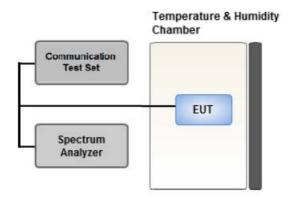
P.A.R $_{(dB)} = P_{Pk} _{(dBm)} - P_{Avg (dBm)} (P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 12 of 117

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW $\geq 3 \times RBW$.
- 3. Set span $\geq 2 \times OBW$.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set $\geq [10 \times (\text{number of points in sweep}) \times (\text{transmission period})]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 13 of 117

3.6 OCCUPIED BANDWIDTH.

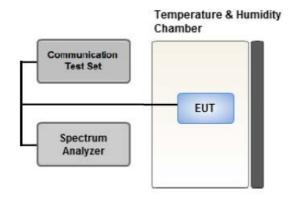
Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- $3. VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5 % of the 99 % occupied bandwidth observed in Step 7

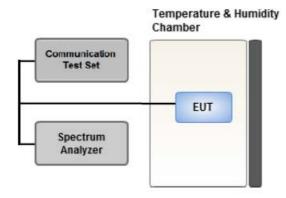
F-TP22-03 (Rev. 06) Page 14 of 117

3.7 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- $2. VBW \ge 3 MHz$
- 3. Detector = Peak
- 4. Trace Mode = Max Hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

F-TP22-03 (Rev. 06) Page 15 of 117

3.8 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of

operation were investigated and the worst case configuration results are reported in this section.

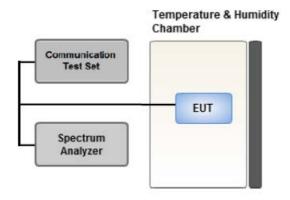
Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- 4. $VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

F-TP22-03 (Rev. 06) Page 16 of 117

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by $10 \log(1 \, \text{MHz/RB})$ or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 17 of 117

3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 $\,^{\circ}$ C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter.
 - Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 18 of 117

3.10 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported. Mode: SA. NSA

Worst case: SA

- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.

Therefore, only the worst case(stand-alone) results were reported.

- Radiated Spurious emissions are measured while operating in EN-DC mode with Sub 6 NR carrier as well as an LTE carrier (anchor).

All EN-DC mode of operation (=anchor) were investigated and the test results were measured No Peak Found.

The test results which are attenuated more than 20 dB below the permissible value, so it was not reported.

- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data.
- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

- In the case of radiated spurious emissions, all bandwidth of operation were investigated and the worst case bandwidth results are reported. (Worst case: 15 MHz)

[Worst case]

	L			
Test Description	Modulation	RB size	RB offset	Axis
Effective Radiated Power	PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	See Sec	ction 8.2	Х
Radiated Spurious Emissions	PI/2 BPSK	See Sec	ction 8.3	Χ

F-TP22-03 (Rev. 06) Page 19 of 117

3.11 WORST CASE (CONDUCTED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported. (Worst case: DFT-S-OFDM)
- Modulation : All Modulation of operation were investigated and the worst case configuration results are reported. (Worst case: PI/2 BPSK)
- $\hbox{-All modes of operation were investigated and the worst case configuration results are reported.}\\$

Mode: SA, NSA Worst case: SA

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported. Please refer to the table below.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
Occupied Bandwidth Peak- to- Average Ratio	PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM	5, 10, 15, 20	Mid	Full RB	0
			Low	1	0
		5	High	1	24
	PI/2 BPSK	40	Low	1	0
		10	High	1	51
Band Edge		45	Low	1	0
		15	High	1	78
		00	Low	1	0
		20	High	1	105
		5, 10, 15, 20	Low, High	Full RB	0
Spurious and Harmonic Emissions at Antenna Terminal	PI/2 BPSK	5, 10, 15, 20	Low, Mid, High	1	1

F-TP22-03 (Rev. 06) Page 20 of 117

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Precision Dipole Antenna	UHAP	Schwarzbeck	01273	03/10/2026	Biennial
Precision Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	02289	02/14/2026	Biennial
Horn Antenna(1~18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1299	04/27/2025	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial
Horn Antenna(15~40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Loop Antenna(9 kHz~30 MHz)	FMZB1513	Rohde & Schwarz	1513-175	01/06/2027	Biennial
Bilog Antenna	VULB9160	Schwarzbeck	3150	03/09/2025	Biennial
Hybrid Antenna	VULB9160	Schwarzbeck	760	02/24/2025	Biennial
RF Switching System	FBSR-06B (1G HPF + LNA)	T&M SYSTEM	F3L1	05/14/2025	Annual
RF Switching System	FBSR-06B (3G HPF + LNA)	T&M SYSTEM	F3L2	05/14/2025	Annual
RF Switching System	FBSR-06B (6G HPF + LNA)	T&M SYSTEM	F3L3	05/14/2025	Annual
RF Switching System	FBSR-06B (LNA)	T&M SYSTEM	F3L4	05/14/2025	Annual
Power Amplifier	CBL18265035	CERNEX	22966	11/07/2025	Annual
Power Amplifier	CBL26405040	CERNEX	25956	02/26/2025	Annual
DC Power Supply	E3632A	Hewlett Packard	MY40004427	08/22/2025	Annual
Power Splitter(DC~26.5 GHz)	11667B	Hewlett Packard	11275	02/29/2025	Annual
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Signal Analyzer(10 Hz~26.5 GHz)	N9020A	Agilent	MY51110063	04/04/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer (10 Hz~40 GHz)	FSV40	REOHDE & SCHWARZ	101436	02/13/2025	Annual
Signal & Spectrum Analyzer (2 Hz~67 GHz)	FSW67	REOHDE & SCHWARZ	101736	23/05/2025	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262287701	05/16/2025	Annual
Wideband Radio Communication Tester	MT8000A	Anritsu Corp.	6262302511	05/14/2025	Annual
Signal Analyzer(5 Hz~40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
4-Way Divider	ZC4PD-K1844+	Mini-Circuits	942907	09/10/2025	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/26/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 21 of 117

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (\pm kHz)
Occupied Bandwidth	95 (Confidence level about 95 %, <i>k</i> =2)
Frequency stability	28 (Confidence level about 95 %, <i>k</i> =2)
Parameter	Expanded Uncertainty (±dB)
Block Edge	0.70 (Confidence level about 95 %, <i>k</i> =2

Block Edge	0.70 (Confidence level about 95 %, <i>k</i> =2)
Conducted Spurious Emissions	1.18 (Confidence level about 95 %, <i>k</i> =2)
Peak- to- Average Ratio	0.68 (Confidence level about 95 %, <i>k</i> =2)
Radiated Power	4.74 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 22 of 117

6. SUMMARY OF TEST RESULTS

6.1 Test Condition : Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 22.917(a)	< 43 + 10log10 (P[Watts]) at Band Edge and for all out-of-band emissions	PASS
Conducted Output Power	§ 2.1046	N/A	PASS
Frequency stability / variation of ambient temperature	§ 2.1055, § 22.355	< 2.5 ppm	PASS

Note:

6.2 Test Condition : Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Effective Radiated Power	§ 22.913(a)(5)	< 7 Watts max. ERP	PASS
Radiated Spurious and	§ 2.1053,	< 43 + 10log10 (P[Watts]) for	DACC
Harmonic Emissions	§ 22.917(a)	all out-of band emissions	PASS

Note:

F-TP22-03 (Rev. 06) Page 23 of 117

^{1.} Conducted tests were tested using 5G Wireless Tester.

^{1.} Radiated tests were tested using 5G Wireless Tester.

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Level (dBm) (dBd) C.L Pol.	RP			
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain	CI	Dal	EI	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 24 of 117

7.3. Emission Designator

GSM Emission Designator EDGE Emission Designator

Emission Designator = 249KGXW Emission Designator = 249KG7W

GSM BW = 249 kHz
G = Phase Modulation
G = Phase Modulation

X = Cases not otherwise covered
T = Quantized/Digital Info
W = Combination (Audio/Data)
W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W Emission Designator = 4M48G7D

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data) D = Data transmission; telemetry; telecommand

QPSK Modulation

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 25 of 117

8. TEST DATA

8.1 Conducted Output Power

Developed the	666(111)	OEDM	Modulation	RB	RB	Max.Average Power (dBm)				
Bandwidth	SCS(kHz)	OFDM	Modulation	Size	Offset	165300	167300	169300		
						826.5 MHz	836.5 MHz	846.5 MHz		
				1	1	23.67	23.60	23.64		
				1	13	23.65	23.56	23.46		
				1	23	23.59	23.53	23.54		
			pi/2 BPSK	12	0	23.12	23.15	23.08		
				12	7	23.67	23.58	23.42		
E MI I-	15	DFT-s		12	13	23.07	23.04	22.90		
5 MHz	15			25	0	23.11	23.07	23.01		
			QPSK	1	1	23.62	23.52	23.64		
			16QAM	1	1	22.57	22.53	22.53		
			64QAM	1	1	21.13	21.10	21.17		
			256QAM	1	1	19.33	19.30	19.27		
		СР	QPSK	1	1	22.20	22.00	22.13		

D 1 1111	666(111)	05014		RB	RB	Max.Average Power (dBm)				
Bandwidth	SCS(kHz)	OFDM	Modulation	Size	Offset	165800	167300	168800		
						829 MHz	836.5 MHz	844 MHz		
				1	1	23.64	23.67	23.65		
				1	26	23.61	23.64	23.62		
				1	50	23.58	23.62	23.61		
			pi/2 BPSK	25	0	23.19	23.10	23.08		
				25	14	23.60	23.59	23.63		
10 MH-	15	DFT-s		25	27	23.16	23.06	23.03		
10 MHz	15			50	0	23.12	23.13	23.14		
			QPSK	1	1	23.50	23.61	23.61		
			16QAM	1	1	22.54	22.64	22.70		
			64QAM	1	1	21.14	21.06	21.10		
			256QAM	1	1	19.13	19.31	19.24		
		СР	QPSK	1	1	22.20	22.05	22.02		

F-TP22-03 (Rev. 06) Page 26 of 117

Developed the	666(111)	OFDM	Modulation	RB	RB	Max.Average Power (dBm)				
Bandwidth	SCS(kHz)	ОЕДМ	Modulation	Size	Offset	166300	167300	168300		
						831.5 MHz	836.5 MHz	841.5 MHz		
				1	1	23.86	23.70	23.63		
				1	40	23.82	23.68	23.62		
				1	77	23.64	23.58	23.59		
			pi/2 BPSK	36	0	23.32	23.26	23.13		
				36	22	23.81	23.69	23.63		
15 1411-	15	DFT-s		36	43	23.27	23.24	23.17		
15 MHz	15			75	0	23.24	23.13	23.15		
			QPSK	1	1	23.74	23.59	23.59		
			16QAM	1	1	22.76	22.67	22.60		
			64QAM	1	1	21.31	21.13	21.20		
		<u> </u>	256QAM	1	1	19.33	19.36	19.28		
		СР	QPSK	1	1	22.27	22.11	22.26		

ماليان شامل	CCC/[-1]-/	OEDM	Modulation	RB	RB	Max.Average Power (dBm)				
Bandwidth	SCS(kHz)	OFDM	Modulation	Size	Offset	166800	167300	167800		
						834 MHz	836.5 MHz	839 MHz		
				1	1	23.75	23.69	23.72		
				1	53	23.74	23.66	23.58		
				1	104	23.60	23.58	23.56		
			pi/2 BPSK	50	0	23.21	23.27	23.19		
				50	28	23.78	23.67	23.60		
20.1411	15	DFT-s		50	56	23.16	23.12	23.09		
20 MHz	15			100	0	23.24	23.17	23.06		
			QPSK	1	1	23.71	23.69	23.59		
			16QAM	1	1	22.67	22.71	22.55		
			64QAM	1	1	21.11	21.21	21.20		
			256QAM	1	1	19.30	19.27	19.25		
		СР	QPSK	1	1	22.21	22.24	22.21		

F-TP22-03 (Rev. 06) Page 27 of 117

8.2 EFFECTIVE RADIATED POWER

Freq	Mod/		Measured	Substitute	Ant.			Limit	EF	RP	F	RB
(MHz)	Bandwidth [SCS (kHz)]	Modulation	Level (dBm)	Level (dBm)		C.L	Pol	W	W	dBm	Size	Offset
		PI/2 BPSK	-26.92	33.26	-9.90	1.44	Н		0.156	21.92		
		QPSK	-26.95	33.23	-9.90	1.44	Н		0.155	21.89		
826.5		16-QAM	-28.08	32.10	-9.90	1.44	Н		0.119	20.76	1	23
		64-QAM	-29.55	30.63	-9.90	1.44	Н		0.085	19.29		
		256-QAM	-31.55	28.63	-9.90	1.44	Н		0.054	17.29		
		PI/2 BPSK	-26.49	33.73	-9.90	1.45	Н		0.173	22.38		
	Sub6 n26/	QPSK	-26.56	33.66	-9.90	1.45	Н	. <	0.170	22.31		
836.5	5 MHz	16-QAM	-27.72	32.50	-9.90	1.45	Н	7.00	0.130	21.15	1	1
	[15 kHz]	64-QAM	-29.19	31.03	-9.90	1.45	Н	7.00	0.093	19.68		
		256-QAM	-31.19	29.03	-9.90	1.45	Н		0.059	17.68		
		PI/2 BPSK	-26.74	33.73	-9.90	1.45	Н		0.173	22.38		
		QPSK	-26.76	33.71	-9.90	1.45	Н		0.172	22.36		
846.5		16-QAM	-27.74	32.73	-9.90	1.45	Н		0.137	21.38	1	1
		64-QAM	-29.22	31.25	-9.90	1.45	Н		0.098	19.90		
		256-QAM	-31.20	29.27	-9.90	1.45	Н		0.062	17.92		

F-TP22-03 (Rev. 06) Page 28 of 117

Freq (MHz)	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level (dBm)	Ant.	C.L	Pol	Limit W	EI W	RP dBm	-	RB Offset
(141112)	[SCS (kHz)]		(dBm)	Level (abili)	Gairi(GDI)			VV	VV	иын	Size	Oliset
		PI/2 BPSK	-26.78	33.36	-9.90	1.44	Н		0.159	22.02		
		QPSK	-26.82	33.32	-9.90	1.44	Н		0.158	21.98		
829.0		16-QAM	-27.82	32.32	-9.90	1.44	Н		0.125	20.98	1	50
		64-QAM	-29.28	30.86	-9.90	1.44	Н		0.090	19.52		
		256-QAM	-31.25	28.89	-9.90	1.44	Н		0.057	17.55		
		PI/2 BPSK	-26.70	33.52	-9.90	1.45	Н		0.165	22.17		
	Sub6 n26/	QPSK	-26.75	33.47	-9.90	1.45	Н		0.163	22.12		
836.5	10 MHz	16-QAM	-27.77	32.45	-9.90	1.45	Н	7.00	0.129	21.10	1	50
	[15 kHz]	64-QAM	-29.25	30.97	-9.90	1.45	Н	7.00	0.092	19.62		
		256-QAM	-31.22	29.00	-9.90	1.45	Н		0.058	17.65		
		PI/2 BPSK	-26.71	33.63	-9.90	1.45	Н		0.169	22.28		
		QPSK	-26.79	33.55	-9.90	1.45	Н		0.166	22.20		
844.0		16-QAM	-27.79	32.55	-9.90	1.45	Н		0.132	21.20	1	50
		64-QAM	-29.25	31.09	-9.90	1.45	Н		0.094	19.74		
		256-QAM	-31.27	29.07	-9.90	1.45	Н		0.059	17.72		

F-TP22-03 (Rev. 06) Page 29 of 117

Freq (MHz)	Mod/ Bandwidth [SCS (kHz)]	Modulation	Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain(dBi)	C.L	Pol	Limit W	W	RP dBm		RB Offset
		PI/2 BPSK	-26.66	33.54	-9.90	1.45	Н		0.166	22.19		
		QPSK	-26.75	33.45	-9.90	1.45	Н		0.162	22.10		
831.5		16-QAM	-27.74	32.46	-9.90	1.45	Н		0.129	21.11	1	77
		64-QAM	-29.21	30.99	-9.90	1.45	Н		0.092	19.64		
		256-QAM	-31.20	29.00	-9.90	1.45	Н		0.058	17.65		
		PI/2 BPSK	-26.61	33.61	-9.90	1.45	Н		0.168	22.26		
	Sub6 n26/	QPSK	-26.72	33.50	-9.90	1.45	Н	<	0.164	22.15		
836.5	15 MHz	16-QAM	-27.70	32.52	-9.90	1.45	Н	7.00	0.131	21.17	1	39
	[15 kHz]	64-QAM	-29.18	31.04	-9.90	1.45	Н	7.00	0.093	19.69		
		256-QAM	-31.17	29.05	-9.90	1.45	Н		0.059	17.70		
		PI/2 BPSK	-26.59	33.78	-9.90	1.45	Н		0.175	22.43		
		QPSK	-26.69	33.68	-9.90	1.45	Н		0.171	22.33		
841.5		16-QAM	-27.66	32.71	-9.90	1.45	Н		0.137	21.36	1	1
		64-QAM	-29.14	31.23	-9.90	1.45	Н		0.097	19.88		
		256-QAM	-31.10	29.27	-9.90	1.45	Н		0.062	17.92		

F-TP22-03 (Rev. 06) Page 30 of 117

Freq (MHz)	Mod/ Bandwidth [SCS (kHz)]	Modulation	Measured Level (dBm)	Substitute Level (dBm)	Ant. Gain(dBi)	C.L	Pol	Limit W	W	RP dBm		RB Offset
	[:::-/]	PI/2 BPSK	-26.60	33.72	-9.90	1.45	Н		0.173	22.37		
		QPSK	-26.63	33.69	-9.90	1.45	Н		0.171	22.34		
834.0		16-QAM	-27.59	32.73	-9.90	1.45	Н		0.137	21.38	1	53
		64-QAM	-29.07	31.25	-9.90	1.45	Н		0.098	19.90		
		256-QAM	-31.52	28.80	-9.90	1.45	Н		0.056	17.45		
		PI/2 BPSK	-26.59	33.63	-9.90	1.45	Н		0.169	22.28		
	Sub6 n26/	QPSK	-26.62	33.60	-9.90	1.45	Н	- <	0.168	22.25		
836.5	20 MHz	16-QAM	-27.71	32.51	-9.90	1.45	Н	7.00	0.131	21.16	1	53
	[15 kHz]	64-QAM	-29.19	31.03	-9.90	1.45	Н	1.00	0.093	19.68		
		256-QAM	-31.20	29.02	-9.90	1.45	Н		0.059	17.67		
		PI/2 BPSK	-26.70	33.67	-9.90	1.45	Н		0.171	22.32		
		QPSK	-26.84	33.53	-9.90	1.45	Н		0.165	22.18		
839.0		16-QAM	-27.75	32.62	-9.90	1.45	Н		0.134	21.27	1	104
		64-QAM	-29.21	31.16	-9.90	1.45	Н		0.096	19.81		
		256-QAM	-31.21	29.16	-9.90	1.45	Н		0.060	17.81		

F-TP22-03 (Rev. 06) Page 31 of 117

8.3 RADIATED SPURIOUS EMISSIONS

■ NR Band: N26

■ Bandwidth: <u>15 MHz</u>

■ Modulation: PI/2 BPSK

■ Distance: <u>3 meters</u>

■ SCS: <u>15 kHz</u>

Ch	Freq (MHz)	Measured	Ant. Gain	Substitute	C.L	Pol	Result	Limit	l	RB
CII	rreq (Mriz)	Level (dBm)	(dBi)	Level (dBm)	C.L	100	(dBm)	(dBm)	Size	Offset
166200	1,663.00	-50.64	9.58	-59.71	2.04	Н	-52.17	-13.00		
166300	2,494.50	-59.53	10.65	-64.00	2.50	V	-55.85	-13.00	1	77
(831.5)	3,326.00	-61.05	11.57	-62.60	2.99	V	-54.02	-13.00		
167200	1,673.00	-51.51	9.69	-60.89	2.05	Н	-53.25	-13.00		
167300	2,509.50	-60.16	10.55	-64.89	2.51	V	-56.85	-13.00	1	39
(836.5)	3,346.00	-60.97	11.53	-63.49	2.96	V	-54.92	-13.00		
160200	1,683.00	-52.56	9.80	-61.67	2.06	Н	-53.93	-13.00		
168300	2,524.50	-59.84	10.52	-64.11	2.54	V	-56.13	-13.00	1	39
(841.5)	3,366.00	-60.62	11.49	-63.05	2.96	V	-54.52	-13.00		

F-TP22-03 (Rev. 06) Page 32 of 117

8.4 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
	5 MHz	836.5	BPSK	25	0	4.13
			QPSK			4.60
			16-QAM			5.82
			64-QAM			6.27
			256-QAM			6.90
	10 MHz		BPSK	50		4.05
			QPSK			4.60
			16-QAM			5.59
			64-QAM			6.11
Sub6			256-QAM			6.66
n26	15 MHz		BPSK	75		3.90
			QPSK			4.58
			16-QAM			5.49
			64-QAM			5.97
			256-QAM			6.63
			BPSK	100		3.82
	20 MHz		QPSK			4.61
			16-QAM			5.58
			64-QAM			6.01
			256-QAM			6.59

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 41 \sim 60.

F-TP22-03 (Rev. 06) Page 33 of 117

8.5 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
	5 MHz	836.5	BPSK	25		4.5016
			QPSK			4.5028
			16-QAM			4.4993
			64-QAM			4.4967
			256-QAM			4.4959
	10 MHz		BPSK	50		8.9684
			QPSK			8.9822
Sub6			16-QAM			8.9488
			64-QAM			8.9592
			256-QAM		0	8.9935
n26	15 MHz		BPSK	75		13.454
			QPSK			13.434
			16-QAM			13.423
			64-QAM			13.491
			256-QAM			13.421
			BPSK	100		17.863
	20 MHz		QPSK			17.870
			16-QAM			17.860
			64-QAM			17.882
			256-QAM			17.869

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 61 \sim 80.

F-TP22-03 (Rev. 06) Page 34 of 117

8.6 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)	
		826.5	9.9402	30.815	-62.164	-31.349		
	5	836.5	6.0020	30.815	-62.772	-31.957		
Sub6 n26		846.5	4.9851	30.200	-63.215	-33.015		
		829.0	5.7528	30.815	-62.672	-31.857		
	10	836.5	8.5843	30.815	-63.432	-32.617		
		844.0	9.6511	30.815	-63.430	-32.615	12.00	
		831.5	9.5813	30.815	-63.091	-32.276	-13.00	
	15	836.5	9.7009	30.815	-61.843	-31.028		
		841.5	3.8286	30.200	-60.977	-30.777		
	20	834.0	3.1107	30.200	-63.257	-33.057		
		836.5	9.1526	30.815	-62.979	-32.164		
		839.0	9.9701	30.815	-62.003	-31.188		

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page $81 \sim 92$.
- 2. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 3. Factor(dB) = Cable Loss + Attenuator + Power Splitter

Frequency Range (GHz)	Factor [dB]
0.03 - 1	27.494
1 - 5	30.200
5 - 10	30.815
10 - 15	31.340
15 - 20	31.713
Above 20	32.355

8.7 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 93 $^{\sim}$ 116.

F-TP22-03 (Rev. 06) Page 35 of 117

8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: 5 MHz

■ Voltage(100 %): <u>13.200 VDC</u>

■ Deviation Limit: $\pm 0.000 25 \%$ or 2.5 ppm

Test.	Voltage (%)	Temp.	Frequency (Hz)	Freguese	Deviation	ppm
Frequncy				Frequency		
(MHz)				Error (Hz)	(%)	
	100 %	+20(Ref)	836 500 003	0.0	0.000 000	0.000
	100 %	-30	836 500 005	1.9	0.000 000	0.002
	100 %	-20	836 500 004	0.5	0.000 000	0.001
	100 %	-10	836 500 002	-1.0	0.000 000	-0.001
	100 %	0	836 500 001	-2.1	0.000 000	-0.002
836.5	100 %	+10	836 500 000	-3.4	0.000 000	-0.004
	100 %	+30	836 499 998	-4.7	-0.000 001	-0.006
	100 %	+40	836 499 997	-6.1	-0.000 001	-0.007
	100 %	+50	836 499 996	-7.2	-0.000 001	-0.009
	85 %	+20	836 499 998	-4.8	-0.000 001	-0.006
	115 %	+20	836 499 998	-5.2	-0.000 001	-0.006

F-TP22-03 (Rev. 06) Page 36 of 117

■ BandWidth: 10 MHz

■ Voltage(100 %): <u>13.200 VDC</u>

■ Deviation Limit: $\pm 0.000 25 \% \text{ or } 2.5 \text{ ppm}$

Test. Frequncy	Voltage (%)	Temp.	Frequency (Hz)	Frequency Error (Hz)	Deviation (%)	ppm
(MHz)						
	100 %	+20(Ref)	836 499 998	0.0	0.000 000	0.000
	100 %	-30	836 499 995	-2.8	0.000 000	-0.003
	100 %	-20	836 499 994	-4.0	0.000 000	-0.005
	100 %	-10	836 499 993	-5.1	-0.000 001	-0.006
	100 %	0	836 499 992	-6.3	-0.000 001	-0.007
836.5	100 %	+10	836 500 002	3.4	0.000 000	0.004
	100 %	+30	836 500 001	2.6	0.000 000	0.003
	100 %	+40	836 500 000	1.6	0.000 000	0.002
	100 %	+50	836 499 999	0.7	0.000 000	0.001
	85 %	+20	836 499 999	0.8	0.000 000	0.001
	115 %	+20	836 499 999	1.1	0.000 000	0.001

F-TP22-03 (Rev. 06) Page 37 of 117

■ BandWidth: <u>15 MHz</u>

■ Voltage(100 %): <u>13.200 VDC</u>

■ Deviation Limit: $\pm 0.000 25 \% \text{ or } 2.5 \text{ ppm}$

Test. Frequncy (MHz)	Voltage (%)	Temp.	Frequency (Hz)	Frequency Error (Hz)	Deviation (%)	ppm
100 %	-30	836 500 003	1.2	0.000 000	0.001	
100 %	-20	836 500 003	0.6	0.000 000	0.001	
100 %	-10	836 500 002	-0.1	0.000 000	0.000	
100 %	0	836 500 001	-0.9	0.000 000	-0.001	
100 %	+10	836 500 000	-1.9	0.000 000	-0.002	
100 %	+30	836 500 000	-2.4	0.000 000	-0.003	
100 %	+40	836 499 999	-3.0	0.000 000	-0.004	
100 %	+50	836 499 998	-3.9	0.000 000	-0.005	
85 %	+20	836 500 001	-1.4	0.000 000	-0.002	
115 %	+20	836 499 998	-3.8	0.000 000	-0.005	

F-TP22-03 (Rev. 06) Page 38 of 117

■ BandWidth: <u>20 MHz</u>

■ Voltage(100 %): <u>13.200 VDC</u>

■ Deviation Limit: $\pm 0.000 25 \% \text{ or } 2.5 \text{ ppm}$

Test. Frequncy (MHz)	Voltage (%)	Temp.	Frequency (Hz)	Frequency Error (Hz)	Deviation (%)	ppm
100 %	-30	836 500 005	2.4	0.000 000	0.003	
100 %	-20	836 500 004	1.2	0.000 000	0.001	
100 %	-10	836 500 004	0.7	0.000 000	0.001	
100 %	0	836 500 003	0.2	0.000 000	0.000	
100 %	+10	836 500 002	-0.8	0.000 000	-0.001	
100 %	+30	836 500 002	-1.2	0.000 000	-0.001	
100 %	+40	836 500 001	-2.0	0.000 000	-0.002	
100 %	+50	836 500 001	-2.2	0.000 000	-0.003	
85 %	+20	836 500 004	0.8	0.000 000	0.001	
115 %	+20	836 500 005	2.2	0.000 000	0.003	

F-TP22-03 (Rev. 06) Page 39 of 117

9. TEST PLOTS

F-TP22-03 (Rev. 06) Page 40 of 117

NR26_5 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 41 of 117

NR26_5 M_PAR_Mid_QPSK_FullRB

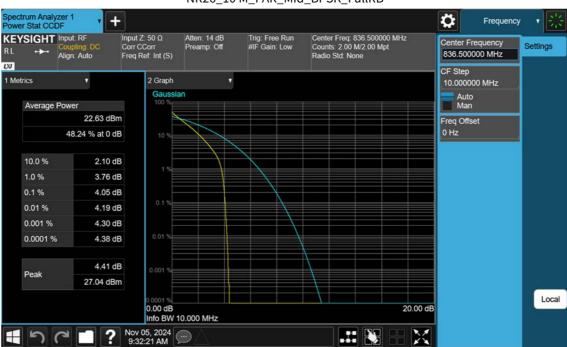
F-TP22-03 (Rev. 06) Page 42 of 117

NR26_5 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 43 of 117

NR26_5 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 44 of 117



NR26_5 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 45 of 117

NR26_10 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 46 of 117

pectrum Analyzer 1 ower Stat CCDF ø Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) Atten: 14 dB Preamp: Off Center Freq. 836.500000 MHz Counts: 2.00 M/2.00 Mpt Radio Std: None KEYSIGHT Input: RF Trig: Free Run #IF Gain: Low Center Frequency 836.500000 MHz Settings LXI CF Step 10.000000 MHz 1 Metrics 2 Graph Auto Man Average Power Freq Offset 0 Hz 22.18 dBm 46.70 % at 0 dB 2.56 dB 10.0 % 1.0 % 4.27 dB 0.1 % 4.60 dB 0.01 % 4.73 dB 0.001 % 4.85 dB 0.0001 % 5.03 dB 5.05 dB Peak 27.23 dBm Local 0.00 dB Info BW 10.000 MHz 20.00 dB ? Nov 05, 2024 9:32:44 AM

NR26_10 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 47 of 117



NR26_10 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 48 of 117

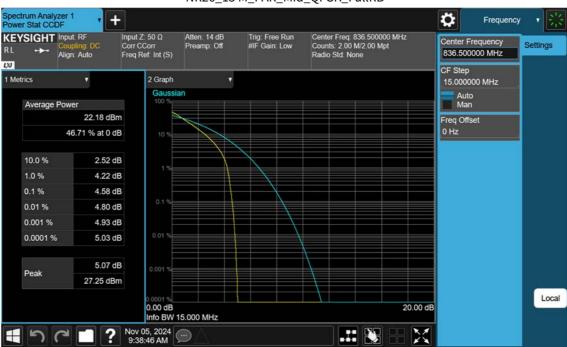
NR26_10 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 49 of 117



NR26_10 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 50 of 117



NR26_15 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 51 of 117

NR26_15 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 52 of 117

NR26_15 M_PAR_Mid_16QAM_FullRB

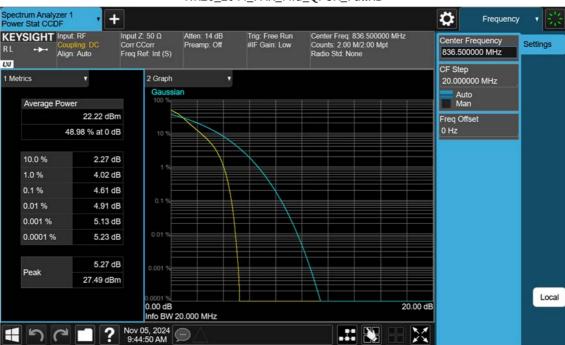
F-TP22-03 (Rev. 06) Page 53 of 117

NR26_15 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 54 of 117

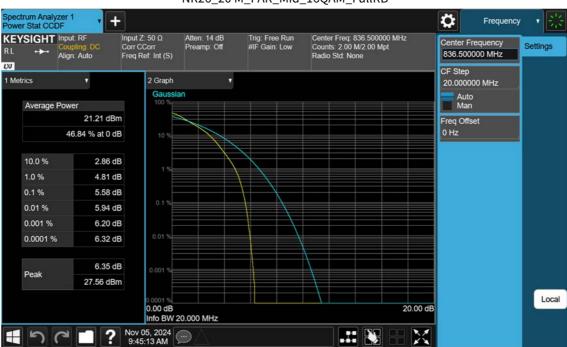
NR26_15 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 55 of 117



NR26_20 M_PAR_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 56 of 117

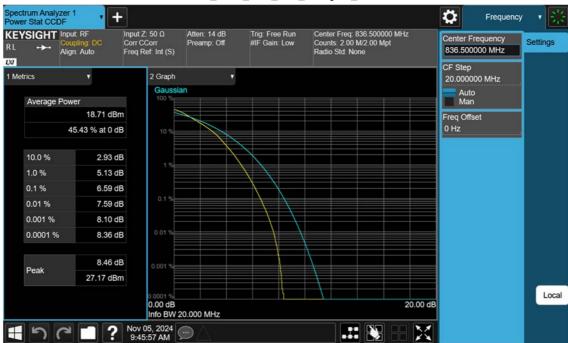


NR26_20 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 57 of 117

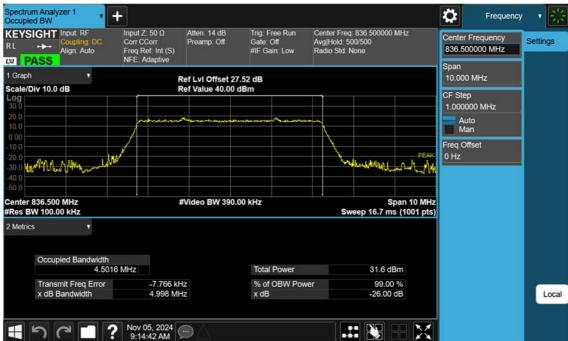
NR26_20 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 58 of 117



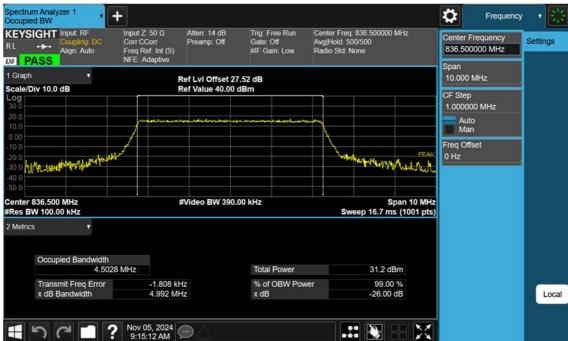
NR26_20 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 59 of 117



NR26_20 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 60 of 117



NR26_5 M_OBW_Mid_BPSK_FullRB

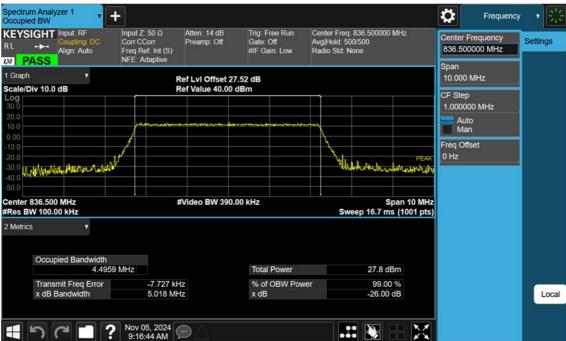
F-TP22-03 (Rev. 06) Page 61 of 117

NR26_5 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 62 of 117

NR26_5 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 63 of 117



NR26_5 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 64 of 117

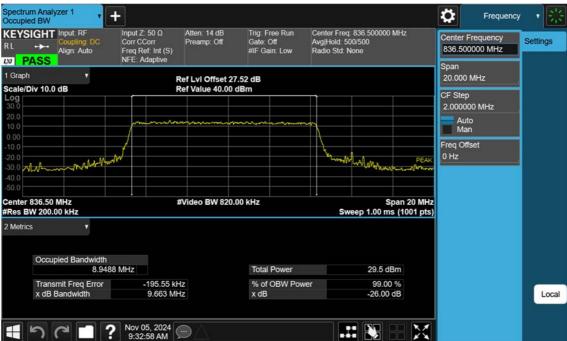
NR26_5 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 65 of 117

Spectrum Analyzer 1 Occupied BW ø + Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Atten: 14 dB Preamp: Off Center Freq: 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto 1 Graph 20.000 MHz Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 200.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) #Video BW 820.00 kHz 2 Metrics Occupied Bandwidth 8.9684 MHz Total Power 31.0 dBm % of OBW Power x dB 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth -192.70 kHz Local ? Nov 05, 2024 9:32:14 AM 1 5 6 ... 💸

NR26_10 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 66 of 117



spectrum Analyzer 1 Occupied BW ø Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Atten: 14 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto 1 Graph 20.000 MHz Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz Marsh Center 836.50 MHz #Res BW 200.00 kHz #Video BW 820.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 8.9822 MHz Total Power 30.4 dBm % of OBW Power x dB -180.74 kHz 9.730 MHz 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth Local ? Nov 05, 2024 9:32:36 AM ... 💸 476

NR26_10 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 67 of 117

NR26_10 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 68 of 117

spectrum Analyzer 1 Occupied BW + ٥ Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Atten: 14 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto 1 Graph 20.000 MHz Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 2.000000 MHz Auto Man Freq Offset 0 Hz who when when Center 836.50 MHz #Res BW 200.00 kHz #Video BW 820.00 kHz Span 20 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 8.9592 MHz Total Power 29.1 dBm % of OBW Power x dB 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth -198.05 kHz 9.645 MHz Local ? Nov 05, 2024 9:33:20 AM 1 7 6 ... 💸

NR26_10 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 69 of 117

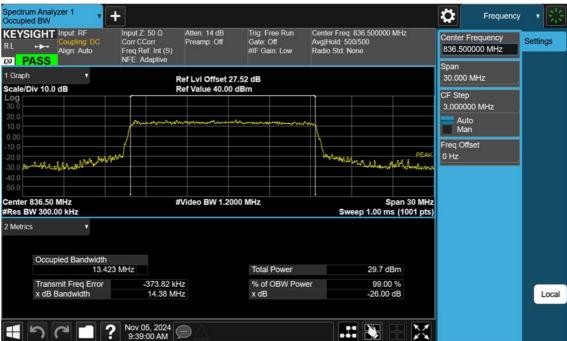
NR26_10 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 70 of 117

Spectrum Analyzer 1 Occupied BW ø + Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Atten: 14 dB Preamp: Off Center Freq: 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto Span 30.000 MHz 1 Graph Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.454 MHz Total Power 31.0 dBm % of OBW Power x dB -368.71 kHz 14.36 MHz 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth Local ? Nov 05, 2024 9:38:17 AM 1 7 6 ... 💸

NR26_15 M_OBW_Mid_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 71 of 117



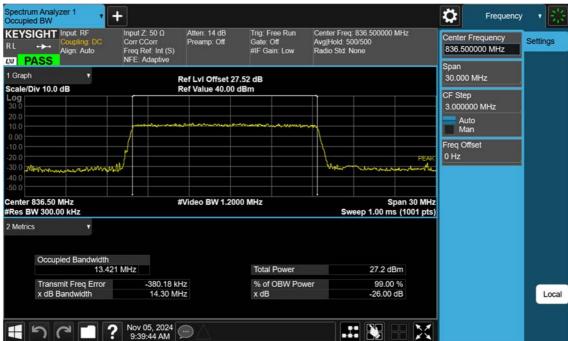
spectrum Analyzer 1 Occupied BW ٥ Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Atten: 14 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto Span 30.000 MHz 1 Graph Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 3.000000 MHz Auto Man Freq Offset 0 Hz Jehanstyn Manstoner morthmand Center 836.50 MHz #Res BW 300.00 kHz Span 30 MHz Sweep 1.00 ms (1001 pts) #Video BW 1.2000 MHz 2 Metrics Occupied Bandwidth 13.434 MHz Total Power 30.6 dBm % of OBW Power x dB 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth -375.20 kHz Local ? Nov 05, 2024 9:38:39 AM ... 💸 476

NR26_15 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 72 of 117

NR26_15 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 73 of 117



NR26_15 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 74 of 117

NR26_15 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 75 of 117

NR26_20 M_OBW_Mid_BPSK_FullRB Spectrum Analyzer 1 Occupied BW ø + Frequency Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Atten: 14 dB Preamp: Off Center Freq: 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto 1 Graph 40.000 MHz Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz Center 836.50 MHz #Res BW 390.00 kHz #Video BW 1.6000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 17.863 MHz Total Power 31.1 dBm % of OBW Power x dB 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth -573.36 kHz 19.00 MHz Local ? Nov 05, 2024 9:44:21 AM 1 5 6 ... 💸

F-TP22-03 (Rev. 06) Page 76 of 117

spectrum Analyzer 1 Occupied BW ø Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive Center Freq. 836.500000 MHz Avg|Hold: 500/500 Radio Std: None Atten: 14 dB Preamp: Off Trig: Free Run Gate: Off #IF Gain: Low KEYSIGHT Input RF Center Frequency 836.500000 MHz Settings RL --- Coupling: DAIgn: Auto 1 Graph 40.000 MHz Ref LvI Offset 27.52 dB Ref Value 40.00 dBm Scale/Div 10.0 dB CF Step 4.000000 MHz Auto Man Freq Offset 0 Hz shalalantha Center 836.50 MHz #Res BW 390.00 kHz #Video BW 1.6000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) 2 Metrics Occupied Bandwidth 17.870 MHz Total Power 30.9 dBm % of OBW Power x dB 99.00 % -26.00 dB Transmit Freq Error x dB Bandwidth -583.14 kHz Local ? Nov 05, 2024 9:44:43 AM ... 💸 476

NR26_20 M_OBW_Mid_QPSK_FullRB

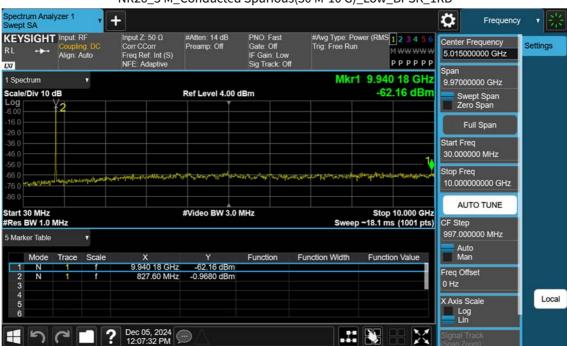
F-TP22-03 (Rev. 06) Page 77 of 117

NR26_20 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 78 of 117

NR26_20 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 79 of 117



NR26_20 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 80 of 117

NR26_5 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 81 of 117

NR26_5 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 82 of 117

NR26_5 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 83 of 117

NR26_10 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 84 of 117

NR26_10 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 85 of 117

NR26_10 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 86 of 117

NR26_15 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 87 of 117



NR26_15 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 88 of 117

NR26_15 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 89 of 117

NR26_20 M_Conducted Spurious(30 M-10 G)_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 90 of 117

NR26_20 M_Conducted Spurious(30 M-10 G)_Mid_BPSK_1RB

F-TP22-03 (Rev. 06) Page 91 of 117

NR26_20 M_Conducted Spurious(30 M-10 G)_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 92 of 117

NR26_5 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 93 of 117

NR26_5 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 94 of 117

NR26_5 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 95 of 117

NR26_5 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 96 of 117

NR26_5 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 97 of 117

NR26_5 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 98 of 117

NR26_10 M_Band Edge_Low_BPSK_1RB

F-TP22-03 (Rev. 06) Page 99 of 117

NR26_10 M_Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 100 of 117

NR26_10 M_Extended Band Edge_Low_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 101 of 117

NR26_10 M_Band Edge_High_BPSK_1RB

F-TP22-03 (Rev. 06) Page 102 of 117

NR26_10 M_Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 103 of 117

NR26_10 M_Extended Band Edge_High_BPSK_FullRB

F-TP22-03 (Rev. 06) Page 104 of 117