FCC SAR TEST REPORT FCC ID : PY321300542 Equipment : Netgear 5G MHS Travel Router Brand Name : Netgear Model Name : MR6110 Applicant : Netgear Inc. 350 E. Plumeria Drive, San Jose, CA 95134, United States Standard : FCC 47 CFR Part 2 (2.1093) The product was received on Dec. 21, 2021 and testing was started from Jan. 03, 2022 and completed on Jan. 05, 2022. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Cona Huang / Deputy Manager Qua Grang. ilac-MRA Report No.: FA190614-01B Sporton International Inc. EMC & Wireless Communications Laboratory No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan TEL: 886-3-327-3456 Page 1 of 29 FAX: 886-3-328-4978 Template version: 211220 Issued Date : Jan. 28, 2022 # **Table of Contents** | 1. Statement of Compliance | | |---|----| | 2. Data Reuse Approach | | | 3. Model Difference Information | 5 | | 4. Reference detail Section | | | 5. Guidance Applied | | | 6. Equipment Under Test (EUT) Information | | | 6.1 General Information | | | 7. RF Exposure Limits | | | 7.1 Uncontrolled Environment | | | 7.2 Controlled Environment | | | 8. Specific Absorption Rate (SAR) | | | 8.1 Introduction | _ | | 8.2 SAR Definition | | | 9. System Description and Setup | | | 9.1 Test Site Location | | | 9.2 E-Field Probe | | | 9.3 Data Acquisition Electronics (DAE) | | | 9.4 Phantom | | | 9.5 Device Holder | | | 10. Measurement Procedures | | | 10.1 Spatial Peak SAR Evaluation | 13 | | 10.2 Power Reference Measurement | | | 10.3 Area Scan | | | 10.4 Zoom Scan | | | 10.5 Volume Scan Procedures | | | 10.6 Power Drift Monitoring | | | 11. Test Equipment List | | | 12. System Verification | | | 12.1 Tissue Verification | | | 12.2 System Performance Check Results | | | 13. Antenna Location | | | 14. Spot Check SAR Results | | | 15. Simultaneous Transmission Analysis | | | 16. Uncertainty Assessment | | | 17. References | 29 | | Appendix A. Plots of SAR System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos | | # History of this test report Report No.: FA190614-01B | Report No. | Version | Description | Issued Date | |--------------|---------|-------------------------|---------------| | FA190614-01B | 01 | Initial issue of report | Jan. 28, 2022 | TEL: 886-3-327-3456 Page 3 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for Netgear Inc., Netgear 5G MHS Travel Router, MR6110, are as follows. Report No.: FA190614-01B | Equipment
Class | Frequency
Band | | Highest SAR Summary Hotspot (Separation 10mm) 1g SAR (W/kg) | Highest Simultaneous
Transmission
1g SAR (W/kg) | |--------------------|-------------------|-----------------|---|---| | | | LTE Band 2 | 1.17 | | | | | LTE Band 5 | 0.87 | | | | | LTE Band 7 | 1.29 | | | | LTE | LTE Band 12 | 0.80 | | | | LIE | LTE Band 14 | 0.98 | | | | Licensed | LTE Band 30 | 1.29 | | | | | LTE Band 4 / 66 | 1.08 | | | Licensed | | LTE Band 48 | 0.91 | 1.44 | | | | FR1 n2 | 1.13 | | | | | FR1 n5 | 0.92 | | | | | FR1 n12 | 0.68 | | | | FR1 | FR1 n14 | 0.98 | | | | | FR1 n30 | 1.24 | | | | | FR1 n66 | 0.95 | | | | | FR1 n77 | 1.29 | | | DTS | WLAN | 2.4GHz WLAN | 0.09 | 1.42 | | NII | VVLAIN | 5GHz WLAN | 0.10 | 1.44 | | | Date of Testing | | 2022/1/3 - | - 2022/1/5 | Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No.TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) and power density for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093), and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. Reviewed by: <u>Jason Wang</u> Report Producer: Paula Chen # 2. Data Reuse Approach FCC ID: PY321100529 (parent model) and FCC ID: PY321300542 (variant model) use the same identical internal printed circuit board layouts, while the variant model depopulates mmWave related components and SW , details are available in the operational description Due to the same design of the antenna 1/2/3/4/5/6, SAR data reuse is requested and spot check data in this report is used to justify the SAR data reuse. The applicant should take full responsibility that the test data as referenced in this report represent compliance for this FCC ID: PY321300542 TEL: 886-3-327-3456 Page 4 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 ## 3. Model Difference Information PY321100529 and PY321300542 use the identical internal printed circuit board layout, and the major differences which may relate to RF are listed below: Report No.: FA190614-01B - Removal of FR2 related components. - Less CA combination supported. - Smaller size of the display. - Software implementation does not support WiFi 6E. The details of similarity and difference can be found in the confidential documents. # 4. Reference detail Section | Rule Part | Equipment
Class | Wireless
Technology | Frequency
Band
(MHz) | Reference
FCC ID
(Parent) | Type
Grant/
Permissive
Change | Reference
Title | FCC ID
Filling
(Variant) | Spot Check
Required | |-----------------------|--------------------|------------------------|--|---------------------------------|--|--------------------|--------------------------------|---| | | DTS | Wi-Fi | 2400~2483.5 | PY321100529 | Original
Grant | FA190614D | PY321300542 | Spot check Ant 3 / 4 | | | NII | Wi-Fi | 5150~5250
5250~5350
5470~5725
5725~5850 | PY321100529 | Original
Grant | FA190614D | PY321300542 | Spot check Ant 3 / 4 | | Part
2.1093
SAR | | LTE | B2 /4 /5 /7 /12 /14
/30 /48 /66 | PY321100529 | Original
Grant | FA190614D | PY321300542 | Spot check at Ant 1 for LTE 2/5/12/14/48/66 Spot check at Ant 2 for LTE 2/4/7/30/66 | | | PCB
CBE | 5G FR1 | n2/ 5/ 12/ 14/ 30/
66/ 77 | PY321100529 | Original
Grant | FA190614D | PY321300542 | Spot check at Ant 1 for NR n2/5/12/14/66/77 Spot Check at Ant 2 for NR n2/5/30/66/77 Spot Check at Ant 5 / 6 NR n77 | # 5. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation. - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - · IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 - FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02 - FCC KDB 941225 D06 Hotspot Mode SAR v02r01 TEL: 886-3-327-3456 Page 5 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 6. Equipment Under Test (EUT) Information # 6.1 General Information | | Product Feature & Specification | |--|--| | Equipment Name | Netgear 5G MHS Travel Router | | Brand Name | Netgear | | Model Name | MR6110 | | FCC ID | PY321300542 | | Wireless Technology and
Frequency Range | LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 30: 2305 MHz ~ 2315 MHz LTE Band 48: 3550 MHz ~ 3700 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 66: 1710 MHz ~ 1780 MHz 5G NR n2: 1850 MHz ~ 1910 MHz 5G NR n5: 824 MHz ~ 849 MHz 5G NR n12: 699 MHz ~ 716 MHz 5G NR n11: 699 MHz ~ 716 MHz 5G NR n30: 2305 MHz ~ 2315 MHz 5G NR n30: 2305 MHz ~ 2315 MHz 5G NR n77: 3700 MHz ~ 3980 MHz 5G NR n77: 3700 MHz ~ 3980 MHz, 3450MHz ~ 3550MHz WLAN 2.4 GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.2 GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.3 GHz Band: 5470 MHz ~ 5725 MHz WLAN 5.8 GHz Band: 5775 MHz ~ 5850 MHz WLAN 5.8 GHz Band: 5775 MHz ~ 5850 MHz LTE: QPSK, 16QAM, 64QAM, 256QAM | | Mode | 5G NR:
DFT-s-OFDM/CP-OFDM, Pi/2 BPSK/QPSK/16QAM/64QAM/256QAM WLAN: 802.11a/b/g/n/ac/ax HT20/HT40/VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160 | | EUT Stage | Identical Prototype | Report No.: FA190614-01B TEL: 886-3-327-3456 Page 6 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 7. RF Exposure Limits #### 7.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA190614-01B #### 7.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: 886-3-327-3456 Page 7 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 8. Specific Absorption Rate (SAR) ### 8.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA190614-01B #### 8.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 Page 8 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 9. System Description and Setup #### The DASY system used for performing compliance tests consists of the following items: Report No.: FA190614-01B - The DASY system in DASY6/DASY5 V5.2 SAR Configuration is shown above - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running windows software and the DASY5/DASY6 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### 9.1 Test Site Location The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No.TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. | Test Site | EMC & Wireless Comm | nunications Laboratory | V | Vensan Laborator | ry | |--------------------|-------------------------|------------------------|---------------|-------------------------------|-----------------| | | TW1190 | | | TW3786 | | | Test Site Location | No.52, Huaya 1st Rd., C | Guishan Dist., Taoyuan | No.58, Aly. 7 | ⁷ 5, Ln. 564, Wenl | nua 3rd, Rd., | | | City 333, | Taiwan | Guishan Dist. | , Taoyuan City 33 | 33010, Taiwan _ | | | SAR01-HY | SAR03-HY | SAR08-HY | SAR09-HY | SAR15-HY | | Test Site No. | SAR04-HY | SAR05-HY | SAR11-HY | SAR12-HY | | | | SAR06-HY | SAR10-HY | SAR13-HY | SAR14-HY | | TEL: 886-3-327-3456 Page 9 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 9.2 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core | |---------------|---| | | Interleaved sensors | | | Built-in shielding against static charges | | | PEEK enclosure material (resistant to organic solvents, | | | e.g., DGBE) | | Frequency | 10 MHz – 4 GHz; | | | Linearity: ±0.2 dB (30 MHz – 4 GHz) | | Directivity | ±0.2 dB in TSL (rotation around probe axis) | | | ± 0.3 dB in TSL (rotation normal to probe axis) | | Dynamic Range | $5 \mu W/g - >100 \text{ mW/g};$ | | | Linearity: ±0.2 dB | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 3.9 mm (body: 12 mm) | | | Distance from probe tip to dipole centers: 3.0 mm | Report No.: FA190614-01B #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core | |---------------|--| | | Built-in shielding against static charges | | | PEEK enclosure material (resistant to organic solvents, | | | e.g., DGBE) | | Frequency | 10 MHz – >6 GHz | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | $10 \mu\text{W/g} - > 100 \text{mW/g}$ | | | Linearity: ± 0.2 dB (noise: typically $<1 \mu W/g$) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 mm | #### 9.3 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. **Fig 5.1** Photo of DAE TEL: 886-3-327-3456 Page 10 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 ### 9.4 Phantom #### <SAM Twin Phantom> | 107111111111111111111111111111111111111 | | | |---|---|---| | Shell Thickness | $2 \pm 0.2 \text{ mm};$ | | | | Center ear point: $6 \pm 0.2 \text{ mm}$ | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable feet | 7 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA190614-01B The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the
phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | TEEL I Hallollis | | | |------------------|----------------------------|---| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm | | | | Minor axis: 400 mm | | | | | 1 | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. TEL: 886-3-327-3456 Page 11 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 #### 9.5 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA190614-01B Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 Page 12 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 ### 10. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA190614-01B - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN power measurement, use engineering software to configure EUT WLAN continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 10.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g TEL: 886-3-327-3456 Page 13 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 #### 10.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA190614-01B ### 10.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution of x or y dimension of the test of measurement point on the test | on, is smaller than the above, must be \leq the corresponding levice with at least one | TEL: 886-3-327-3456 Page 14 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 #### 10.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA190614-01B Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|--------------|---|--|--| | Maximum zoom scan s | spatial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 10.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume
scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 10.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 Page 15 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ## 11. Test Equipment List | Manufacturer | Name of Equipment | Type/Model | Serial Number | Calib | ration | |---------------|--|-----------------|---------------|---------------|---------------| | Manuracturer | Name or Equipment | i ype/wodei | Serial Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit ⁽²⁾ | D750V3 | 1107 | Mar. 08, 2019 | Mar. 05, 2022 | | SPEAG | 835MHz System Validation Kit ⁽²⁾ | D835V2 | 4d167 | Nov. 25, 2019 | Nov. 22, 2022 | | SPEAG | 1750MHz System Validation Kit ⁽²⁾ | D1750V2 | 1112 | Mar. 07, 2019 | Mar. 04, 2022 | | SPEAG | 1900MHz System Validation Kit ⁽²⁾ | D1900V2 | 5d185 | Mar. 07, 2019 | Mar. 04, 2022 | | SPEAG | 2300MHz System Validation Kit | D2300V2 | 1088 | Jul. 13, 2021 | Jul. 12, 2022 | | SPEAG | 2450MHz System Validation Kit ⁽²⁾ | D2450V2 | 929 | Nov. 21, 2019 | Nov. 18, 2022 | | SPEAG | 2600MHz System Validation Kit ⁽²⁾ | D2600V2 | 1078 | Mar. 06, 2019 | Mar. 03, 2022 | | SPEAG | 3500MHz System Validation Kit ⁽²⁾ | D3500V2 | 1014 | Jan. 29, 2019 | Jan. 26, 2022 | | SPEAG | 3900MHz System Validation Kit ⁽²⁾ | D3900V2 | 1017 | Apr. 29, 2019 | Apr. 26, 2022 | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1171 | Apr. 20, 2021 | Apr. 19, 2022 | | SPEAG | Data Acquisition Electronics | DAE3 | 528 | Jul. 26, 2021 | Jul. 25, 2022 | | SPEAG | Data Acquisition Electronics | DAE4 | 376 | Nov. 22, 2021 | Nov. 21, 2022 | | SPEAG | Data Acquisition Electronics | DAE4 | 778 | May. 21, 2021 | May. 20, 2022 | | SPEAG | Dosimetric E-Field Probe | ES3DV3 | 3115 | Nov. 23, 2021 | Nov. 22, 2022 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3578 | Jun. 23, 2021 | Jun. 22, 2022 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3925 | Apr. 23, 2021 | Apr. 22, 2022 | | RCPTWN | Thermometer | HTC-1 | TM685-1 | Oct. 28, 2021 | Oct. 27, 2022 | | RCPTWN | Thermometer | HTC-1 | TM560-2 | Oct. 28, 2021 | Oct. 27, 2022 | | Anritsu | Radio Communication Analyzer | MT8821C | 6201341950 | Oct. 21, 2021 | Oct. 20, 2022 | | Keysight | Wireless Communication Test Set | E5515C | MY50267236 | Mar. 21, 2021 | Mar. 20, 2022 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | Anritsu | Signal Generator | MG3710A | 6201502524 | Oct. 24, 2021 | Oct. 23, 2022 | | Keysight | ENA Network Analyzer | E5071C | MY46104758 | Sep. 07, 2021 | Sep. 06, 2022 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Sep. 24, 2021 | Sep. 23, 2022 | | LINE SEIKI | Digital Thermometer | DTM3000-spezial | 2942 | Oct. 26, 2021 | Oct. 25, 2022 | | Anritsu | Power Meter | ML2495A | 1419002 | Aug. 18, 2021 | Aug. 17, 2022 | | Anritsu | Power Sensor | MA2411B | 1911176 | Aug. 18, 2021 | Aug. 17, 2022 | | Anritsu | Power Meter | ML2496A | 2119003 | Jun. 09, 2021 | Jun. 08, 2022 | | Anritsu | Power Sensor | MA2411B | 1726150 | Oct. 09, 2021 | Oct. 08, 2022 | | Anritsu | Spectrum Analyzer | MS2830A | 6201396378 | Jul. 16, 2021 | Jul. 15, 2022 | | Anritsu | Spectrum Analyzer | N9010A | MY53470118 | Jan. 15, 2021 | Jan. 14, 2022 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 321501827 | Sep. 06, 2021 | Sep. 05, 2022 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | 715701915 | May. 11, 2021 | May. 10, 2022 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | No | te 1 | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | PE | Attenuator 2 | PE7005-10 | N/A | No | te 1 | | PE | Attenuator 3 | PE7005- 3 | N/A | No | | Report No.: FA190614-01B #### **General Note:** - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole. TEL: 886-3-327-3456 Page 16 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 12. System Verification ### 12.1 Tissue Verification The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. Report No.: FA190614-01B The liquid tissue depth was at least 15cm in the phantom for all SAR testing. #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------------|------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|----------| | 750 | 22.6 | 0.890 | 43.137 | 0.89 | 41.90 | 0.00 | 2.95 | ±5 | 2022/1/3 | | 835 | 22.6 | 0.920 | 42.721 | 0.90 | 41.50 | 2.22 | 2.94 | ±5 | 2022/1/3 | | 1750 | 22.6 | 1.358 | 40.513 | 1.37 | 40.10 | -0.88 | 1.03 | ±5 | 2022/1/3 | | 1900 | 22.6 | 1.372 | 40.260 | 1.40 | 40.00 | -2.00 | 0.65 | ±5 | 2022/1/3 | | 2300 | 22.6 | 1.646 | 40.055 | 1.67 | 39.50 | -1.44 | 1.41 | ±5 | 2022/1/3 | | 2450 | 22.6 | 1.804 | 39.726 | 1.80 | 39.20 | 0.22 | 1.34 | ±5 | 2022/1/3 | | 2600 | 22.6 | 1.948 | 39.271 | 1.96 | 39.00 | -0.61 | 0.69 | ±5 | 2022/1/3 | | 3500 | 22.5 | 2.990 | 38.420 | 2.91 | 37.90 | 2.75 | 1.37 | ±5 | 2022/1/4 | | 3500 | 22.2 | 3.004 | 38.497 | 2.91 | 37.90 | 3.23 | 1.58 | ±5 | 2022/1/5 | | 3900 | 22.5 | 3.416 | 38.030 | 3.33 | 37.51 | 2.58 | 1.39 | ±5 | 2022/1/4 | | 3900 | 22.2 | 3.439 | 38.117 | 3.33 | 37.51 | 3.27 | 1.62 | ±5 | 2022/1/5 | | 5250 | 22.2 | 4.632 | 36.213 | 4.71 | 35.95 | -1.66 | 0.73 | ±5 | 2022/1/5 | | 5600 | 22.2 | 4.964 | 35.773 | 5.07 | 35.50 | -2.09 | 0.77 | ±5 | 2022/1/5 | | 5750 | 22.2 | 5.132 | 35.491 | 5.22 | 35.35 | -1.69 | 0.40 | ±5 | 2022/1/5 | TEL: 886-3-327-3456 Page 17 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 CC SAR TEST REPORT Report No.: FA190614-01B ### 12.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Test Site | Date | Frequency
(MHz) | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|----------|--------------------|------------------------|-------------------|-----------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | SAR04 | 2022/1/3 | 750 | 50 | D750V3-1107 | ES3DV3 - SN3115 | DAE4 Sn376 | 0.378 | 8.32 | 7.56 | -9.13 | | SAR04 | 2022/1/3 | 835 | 50 | D835V2-4d167 | ES3DV3 - SN3115 | DAE4 Sn376 | 0.508 | 9.55 | 10.16 | 6.39 | | SAR04 | 2022/1/3 | 1750 | 50 | D1750V2-1112 | ES3DV3 - SN3115 | DAE4 Sn376 | 1.91 | 36.70 | 38.2 | 4.09 | | SAR04 | 2022/1/3 | 1900 | 250 | D1900V2-5d185 | ES3DV3 - SN3115 | DAE4 Sn376 | 9.87 | 39.40 | 39.48 | 0.20 | | SAR04 | 2022/1/3 | 2300 | 50 | D2300V2-1088 | ES3DV3 - SN3115 | DAE4 Sn376 | 2.25 | 49.70 | 45 | -9.46 | | SAR04 | 2022/1/3 | 2450 | 250 | D2450V2-929 | ES3DV3 - SN3115 | DAE4 Sn376 | 12.20 | 53.10 | 48.8 | -8.10 | | SAR04 | 2022/1/3 | 2600 | 250 | D2600V2-1078 | ES3DV3 - SN3115 | DAE4 Sn376 | 13.00 | 57.60 | 52 | -9.72 | | SAR05 | 2022/1/4 | 3500 | 50 | D3500V2-1014 | EX3DV4 - SN3578 | DAE3 Sn528 | 3.26 | 67.90 | 65.2 |
-3.98 | | SAR06 | 2022/1/5 | 3500 | 50 | D3500V2-1014 | EX3DV4 - SN3925 | DAE4 Sn778 | 3.47 | 67.90 | 69.4 | 2.21 | | SAR05 | 2022/1/4 | 3900 | 50 | D3900V2-1017-3900 | EX3DV4 - SN3578 | DAE3 Sn528 | 3.64 | 69.50 | 72.8 | 4.75 | | SAR06 | 2022/1/5 | 3900 | 50 | D3900V2-1017-3900 | EX3DV4 - SN3925 | DAE4 Sn778 | 3.42 | 69.50 | 68.4 | -1.58 | | SAR06 | 2022/1/5 | 5250 | 50 | D5GHzV2-1171-5250 | EX3DV4 - SN3925 | DAE4 Sn778 | 3.81 | 80.30 | 76.2 | -5.11 | | SAR06 | 2022/1/5 | 5600 | 50 | D5GHzV2-1171-5600 | EX3DV4 - SN3925 | DAE4 Sn778 | 4.17 | 83.40 | 83.4 | 0.00 | | SAR06 | 2022/1/5 | 5750 | 50 | D5GHzV2-1171-5750 | EX3DV4 - SN3925 | DAE4 Sn778 | 3.89 | 80.40 | 77.8 | -3.23 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo TEL: 886-3-327-3456 Page 18 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # Report No. : FA190614-01B # 13. Antenna Location | Antenna | Support Band | |---------|--| | Ant 1 | Ant. Tx:
LTE:2/5/12/14/48/66
FR1:2/5/12/14/66/77 | | Ant 2 | Ant. Tx:
LTE 2/4/7/30/66
FR1:2/5/30/66/77 | | Ant 3 | WLAN2.4G & WLAN5G & 6E | | Ant 4 | WLAN2.4G & WLAN5G & 6E | | Ant 5 | FR1:n77(SRS only) | | Ant 6 | FR1:n77(SRS only) | TEL: 886-3-327-3456 Page 19 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 14. Spot Check SAR Results #### **General Note:** SAR spot check verification on the worst cases from the original model was performed to demonstrate the test data from original model remains representative for the variant model. Report No.: FA190614-01B - 2. If the 1-g SAR spot check result "does not exceed 30%, but larger than 1.2 W/kg", more spot check on the next-higher exposure position until the spot check result does not exceed 1.2 W/kg. - 3. The spot check results don't show the SAR increase more than 30%, therefore referring to the guidance in the KDB inquiry, SAR data reuse is justified. 1st as parent model 2nd as variant model #### <FDD LTE SAR> | Plot
No. | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Deviation
% | |-------------|-----|-------------------|-------------|------------|------------|--------------|------------------|-------------|--------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|----------------| | | 1st | LTE Band 2_Ant 1 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 18900 | 1880 | 23.48 | 23.50 | 1.005 | -0.11 | 0.899 | 0.903 | -10.39% | | | 2nd | LTE Band 2_Ant 1 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 18900 | 1880 | 22.78 | 23.50 | 1.180 | 0.16 | 0.693 | 0.818 | -10.39% | | | 1st | LTE Band 2_Ant 2 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 19100 | 1900 | 23.13 | 24.00 | 1.222 | -0.19 | 0.956 | 1.168 | 0.040/ | | 01 | 2nd | LTE Band 2_Ant 2 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 19100 | 1900 | 22.51 | 24.00 | 1.409 | -0.03 | 0.800 | 1.127 | -3.64% | | | 1st | LTE Band 5_Ant 1 | 10M | QPSK | 1 | 0 | Top Surface | 10mm | 20525 | 836.5 | 23.27 | 24.00 | 1.183 | -0.13 | 0.607 | 0.718 | 47.400/ | | 02 | 2nd | LTE Band 5_Ant 1 | 10M | QPSK | 1 | 0 | Top Surface | 10mm | 20525 | 836.5 | 23.04 | 24.00 | 1.247 | -0.05 | 0.695 | 0.867 | 17.19% | | | 1st | LTE Band 7_Ant 2 | 20M | QPSK | 1 | 49 | Right Side | 10mm | 21100 | 2535 | 22.94 | 23.50 | 1.138 | 0.07 | 1.020 | 1.160 | | | 03 | 2nd | LTE Band 7_Ant 2 | 20M | QPSK | 1 | 49 | Right Side | 10mm | 21100 | 2535 | 22.97 | 23.50 | 1.130 | -0.14 | 1.140 | 1.288 | 9.94% | | | 2nd | LTE Band 7_Ant 2 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 21350 | 2560 | 22.88 | 23.50 | 1.153 | -0.01 | 0.386 | 0.445 | | | | 1st | LTE Band 12_Ant 1 | 10M | QPSK | 1 | 25 | Top Surface | 10mm | 23095 | 707.5 | 23.07 | 24.00 | 1.239 | 0.13 | 0.575 | 0.712 | 10.89% | | 04 | 2nd | LTE Band 12_Ant 1 | 10M | QPSK | 1 | 25 | Top Surface | 10mm | 23095 | 707.5 | 22.51 | 24.00 | 1.409 | -0.06 | 0.567 | 0.799 | 10.89% | | | 1st | LTE Band 14_Ant 1 | 10M | QPSK | 1 | 0 | Top Surface | 10mm | 23330 | 793 | 23.09 | 24.00 | 1.233 | -0.18 | 0.632 | 0.779 | 00.400/ | | 05 | 2nd | LTE Band 14_Ant 1 | 10M | QPSK | 1 | 0 | Top Surface | 10mm | 23330 | 793 | 22.92 | 24.00 | 1.282 | -0.04 | 0.761 | 0.976 | 20.18% | | | 1st | LTE Band 30_Ant 2 | 10M | QPSK | 1 | 0 | Right Side | 10mm | 27710 | 2310 | 21.97 | 23.00 | 1.268 | -0.18 | 1.020 | 1.293 | | | 06 | 2nd | LTE Band 30_Ant 2 | 10M | QPSK | 1 | 0 | Right Side | 10mm | 27710 | 2310 | 21.98 | 23.00 | 1.265 | -0.11 | 0.998 | 1.262 | -2.46% | | | 2nd | LTE Band 30_Ant 2 | 10M | QPSK | 1 | 0 | Bottom Surface | 10mm | 27710 | 2310 | 21.98 | 23.00 | 1.265 | -0.04 | 0.971 | 1.228 | | | | 1st | LTE Band 66_Ant 1 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 132072 | 1720 | 23.63 | 24.00 | 1.089 | -0.11 | 0.797 | 0.868 | 0.57% | | | 2nd | LTE Band 66_Ant 1 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 132072 | 1720 | 23.08 | 24.00 | 1.236 | -0.05 | 0.706 | 0.873 | 0.57% | | | 1st | LTE Band 66_Ant 2 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 132572 | 1770 | 23.22 | 24.00 | 1.197 | -0.09 | 0.830 | 0.993 | 7.070/ | | 07 | 2nd | LTE Band 66_Ant 2 | 20M | QPSK | 1 | 0 | Top Surface | 10mm | 132572 | 1770 | 22.93 | 24.00 | 1.279 | -0.04 | 0.843 | 1.079 | 7.97% | #### <TDD LTE SAR> | Plot
No. | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | /MHz/ | Power | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Deviation
% | |-------------|-----|-------------------|-------------|------------|------------|--------------|------------------|-------------|-------|-------|-------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------|----------------| | | 1st | LTE Band 48_Ant 1 | 20M | QPSK | 1 | 49 | Top Surface | 10mm | 55340 | 3560 | 22.48 | 23.00 | 1.127 | 62.9 | 1.006 | 0.07 | 0.799 | 0.906 | -25.66% | | 08 | 2nd | LTE Band 48_Ant 1 | 20M | QPSK | 1 | 49 | Top Surface | 10mm | 55340 | 3560 | 21.55 | 23.00 | 1.396 | 62.9 | 1.006 | -0.03 | 0.513 | 0.721 | -23.00% | TEL: 886-3-327-3456 Page 20 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 ### <5G NR SAR> | Plot
No. | No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Deviation
% | |-------------|-----|---------------|-------------|------------|------------|--------------|------------------|-------------|--------|----------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------|----------------| | | 1st | FR1 n2_Ant 1 | 20M | BPSK | 50 | 28 | Top Surface | 10mm | 380000 | 1900 | 23.25 | 23.50 | 1.059 | 0.05 | 0.876 | 0.928 | -0.32% | | | 2nd | FR1 n2_Ant 1 | 20M | BPSK | 50 | 28 | Top Surface | 10mm | 380000 | 1900 | 22.72 | 23.50 | 1.197 | 0.05 | 0.773 | 0.925 | 0.0270 | | | 1st | FR1 n2_Ant 2 | 20M | BPSK | 1 | 1 | Top Surface | 10mm | 380000 | 1900 | 23.41 | 24.00 | 1.146 | -0.04 | 0.984 | 1.127 | 0.0% | | 09 | 2nd | FR1 n2_Ant 2 | 20M | BPSK | 1 | 1 | Top Surface | 10mm | 380000 | 1900 | 23.32 | 24.00 | 1.169 | -0.07 | 0.964 | 1.127 | 0.078 | | | 1st | FR1 n5_Ant 1 | 20M | BPSK | 50 | 28 | Top Surface | 10mm | 167300 | 836.5 | 23.50 | 24.00 | 1.122 | -0.17 | 0.673 | 0.755 | 18.02% | | 10 | 2nd | FR1 n5_Ant 1 | 20M | BPSK | 50 | 28 | Top Surface | 10mm | 167300 | 836.5 | 23.40 | 24.00 | 1.148 | -0.03 | 0.802 | 0.921 | 10.02 /6 | | | 1st | FR1 n5_Ant 2 | 20M | BPSK | 1 | 1 | Top Surface | 10mm | 167300 | 836.5 | 23.60 | 24.00 | 1.096 | -0.1 | 0.541 | 0.593 | 13.30% | | | 2nd | FR1 n5_Ant 2 | 20M | BPSK | 1 | 1 | Top Surface | 10mm | 167300 | 836.5 | 23.50 | 24.00 | 1.122 | -0.02 | 0.610 | 0.684 | 13.30% | | | 1st | FR1 n12_Ant 1 | 15M | BPSK | 36 | 22 | Top Surface | 10mm | 141500 | 707.5 | 23.42 | 24.00 | 1.143 | 0.02 | 0.591 | 0.675 | 0.88% | | 11 | 2nd | FR1 n12_Ant 1 | 15M | BPSK | 36 | 22 | Top Surface | 10mm | 141500 | 707.5 | 23.30 | 24.00 | 1.175 | -0.03 | 0.580 | 0.681 | 0.88% | | | 1st | FR1 n14_Ant 1 | 10M | BPSK | 1 | 1 | Top Surface | 10mm | 158600 | 793 | 23.17 | 24.00 | 1.211 | 0.16 | 0.680 | 0.823 | 1E 0E0/ | | 12 | 2nd | FR1 n14_Ant 1 | 10M | BPSK | 1 | 1 | Top Surface | 10mm | 158600 | 793 | 23.10 | 24.00 | 1.230 | -0.15 | 0.795 | 0.978 | 15.85% | | | 1st | FR1 n30_Ant 2 | 10M | BPSK | 25 | 14 | Right Side | 10mm | 462000 | 2310 | 22.21 | 23.00 | 1.199 | -0.16 | 0.986 | 1.183 | | | 13 | 2nd | FR1 n30_Ant 2 | 10M | BPSK | 25 | 14 | Right Side | 10mm | 462000 | 2310 | 22.31 | 23.00 | 1.172 | 0.03 | 1.060 | 1.243 | 4.83% | | | 2nd | FR1 n30_Ant 2 | 10M | BPSK | 25 | 14 | Bottom Surface | 10mm | 462000 | 2310 | 22.31 | 23.00 | 1.172 | 0.01 | 0.897 | 1.051 | | | | 1st | FR1 n66_Ant 1 | 40M | BPSK | 1 | 1 | Top Surface | 10mm | 349000 | 1745 | 23.88 | 24.00 | 1.028 | -0.17 | 0.897 | 0.922 | 0.400/ | | 14 | 2nd | FR1 n66_Ant 1 | 40M | BPSK | 1 | 1 | Top Surface | 10mm | 349000 | 1745 | 23.20 | 24.00 | 1.202 | 0.04 | 0.786 | 0.945 | 2.43% | | | 1st | FR1 n66_Ant 2 | 40M | BPSK | 1 | 1 | Top Surface | 10mm | 349000 | 1745 | 23.75 | 24.00 | 1.059 | 0.02 | 0.643 | 0.681 | 40.750/ | | | 2nd | FR1 n66_Ant 2 | 40M | BPSK | 1 | 1 | Top Surface | 10mm | 349000 |
1745 | 22.05 | 24.00 | 1.567 | 0.04 | 0.522 | 0.818 | 16.75% | | | 1st | FR1 n77_Ant 1 | 100M | BPSK | 1 | 1 | Top Surface | 10mm | 656000 | 3840 | 21.38 | 22.30 | 1.236 | -0.12 | 0.766 | 0.947 | 4.4.000/ | | | 2nd | FR1 n77_Ant 1 | 100M | BPSK | 1 | 1 | Top Surface | 10mm | 656000 | 3840 | 21.69 | 22.30 | 1.151 | -0.15 | 0.961 | 1.106 | 14.38% | | | 1st | FR1 n77_Ant 1 | 100M | BPSK | 1 | 1 | Top Surface | 10mm | 633332 | 3499.98 | 21.48 | 22.30 | 1.208 | -0.12 | 0.954 | 1.152 | | | | 2nd | FR1 n77_Ant 1 | 100M | BPSK | 1 | 1 | Top Surface | 10mm | 633332 | 3499.98 | 22.08 | 22.30 | 1.052 | -0.19 | 1.180 | 1.241 | 7.17% | | | 2nd | FR1 n77_Ant 1 | 100M | BPSK | 1 | 1 | Bottom Surface | 10mm | 633332 | 3499.98 | 22.08 | 22.30 | 1.052 | 0 | 0.395 | 0.416 | | | | 1st | FR1 n77_Ant 2 | 100M | BPSK | 135 | 69 | Top Surface | 10mm | 656000 | 3840 | 21.66 | 22.20 | 1.132 | -0.19 | 0.724 | 0.820 | 40.770/ | | | 2nd | FR1 n77_Ant 2 | 100M | BPSK | 135 | 69 | Top Surface | 10mm | 656000 | 3840 | 22.20 | 22.20 | 1.000 | -0.15 | 0.951 | 0.951 | 13.77% | | | 1st | FR1 n77_Ant 2 | 100M | BPSK | 135 | 69 | Top Surface | 10mm | 633332 | 3499.98 | 21.18 | 22.20 | 1.265 | -0.14 | 0.991 | 1.253 | | | 15 | 2nd | FR1 n77_Ant 2 | 100M | BPSK | 135 | 69 | Top Surface | 10mm | 633332 | 3499.98 | 22.18 | 22.20 | 1.005 | -0.16 | 1.250 | 1.256 | 0.24% | | | 2nd | FR1 n77_Ant 2 | 100M | BPSK | 135 | 69 | Bottom Surface | 10mm | 633332 | 3499.98 | 22.18 | 22.20 | 1.005 | -0.01 | 0.649 | 0.652 | | | | 1st | FR1 n77_Ant 5 | - | CW | - | - | Top Surface | 10mm | 656000 | 3840 | 20.33 | 21.50 | 1.309 | -0.13 | 0.723 | 0.947 | 14.07% | | | 2nd | FR1 n77_Ant 5 | - | CW | - | - | Top Surface | 10mm | 656000 | 3840 | 20.87 | 21.50 | 1.156 | 0.02 | 0.953 | 1.102 | 14.07% | | | 1st | FR1 n77_Ant 5 | - | CW | - | - | Top Surface | 10mm | 633332 | 3499.98 | 21.12 | 21.50 | 1.091 | -0.11 | 0.569 | 0.621 | E 0E0/ | | | 2nd | FR1 n77_Ant 5 | - | CW | - | - | Top Surface | 10mm | 633332 | 3499.98 | 21.34 | 21.50 | 1.038 | -0.06 | 0.630 | 0.654 | 5.05% | | | 1st | FR1 n77_Ant 6 | - | CW | - | - | Back Side | 10mm | 656000 | 3840 | 19.08 | 20.50 | 1.387 | -0.15 | 0.932 | 1.292 | | | | 2nd | FR1 n77_Ant 6 | - | CW | - | - | Back Side | 10mm | 656000 | 3840 | 19.22 | 20.50 | 1.343 | -0.05 | 0.907 | 1.218 | -6.08% | | | 2nd | FR1 n77_Ant 6 | - | CW | - | - | Top Surface | 10mm | 656000 | 3840 | 19.22 | 20.50 | 1.343 | 0.08 | 0.586 | 0.787 | | | | 1st | FR1 n77_Ant 6 | - | CW | - | - | Top Surface | 10mm | 633332 | 3499.98 | 20.06 | 20.50 | 1.107 | -0.03 | 1.160 | 1.284 | | | | 2nd | FR1 n77_Ant 6 | - | CW | - | 1 | Top Surface | 10mm | 633332 | 3499.98 | 19.60 | 20.50 | 1.230 | -0.09 | 1.010 | 1.243 | -3.30% | | | 2nd | FR1 n77_Ant 6 | - | CW | - | - | Back Side | 10mm | 633332 | 3499.98 | 19.60 | 20.50 | 1.230 | 0.04 | 0.538 | 0.662 | | Report No.: FA190614-01B TEL: 886-3-327-3456 Page 21 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 ### <WLAN SAR> | Plot
No. | No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | Deviation
% | |-------------|-----|------------------|----------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|------|------------------------------------|------------------------|------------------------------|------------------------------|----------------| | | 1st | WLAN2.4GHz_Ant 3 | 802.11b 1Mbps | Left Side | 10mm | 6 | 2437 | 9.90 | 10.00 | 1.023 | 98.2 | 1.018 | -0.19 | 0.087 | 0.091 | -15.19% | | 16 | 2nd | WLAN2.4GHz_Ant 3 | 802.11b 1Mbps | Left Side | 10mm | 6 | 2437 | 9.80 | 10.00 | 1.047 | 98.3 | 1.017 | 0.05 | 0.074 | 0.079 | -13.1976 | | | 1st | WLAN2.4GHz_Ant 4 | 802.11b 1Mbps | Top Surface | 10mm | 6 | 2437 | 9.50 | 10.00 | 1.122 | 98.2 | 1.018 | -0.06 | 0.056 | 0.064 | -12.28% | | | 2nd | WLAN2.4GHz_Ant 4 | 802.11b 1Mbps | Top Surface | 10mm | 6 | 2437 | 9.20 | 10.00 | 1.202 | 98.3 | 1.017 | 0.1 | 0.047 | 0.057 | -12.20% | | | 1st | WLAN5GHz_Ant 3 | 802.11ac-VHT160 MCS0 | Left Side | 10mm | 50 | 5250 | 9.70 | 10.00 | 1.072 | 99.5 | 1.005 | -0.13 | 0.075 | 0.081 | -12.50% | | 17 | 2nd | WLAN5GHz_Ant 3 | 802.11ac-VHT160 MCS0 | Left Side | 10mm | 50 | 5250 | 9.30 | 10.00 | 1.175 | 99.3 | 1.007 | 0.15 | 0.061 | 0.072 | -12.50% | | | 1st | WLAN5GHz_Ant 4 | 802.11ac-VHT160 MCS0 | Right Side | 10mm | 50 | 5250 | 9.60 | 10.00 | 1.096 | 99.3 | 1.007 | -0.02 | 0.039 | 0.043 | 14% | | | 2nd | WLAN5GHz_Ant 4 | 802.11ac-VHT160 MCS0 | Right Side | 10mm | 50 | 5250 | 9.30 | 10.00 | 1.175 | 99.3 | 1.007 | -0.02 | 0.042 | 0.050 | 14% | | | 1st | WLAN5GHz_Ant 3 | 802.11ac-VHT160 MCS0 | Left Side | 10mm | 114 | 5570 | 9.70 | 10.00 | 1.072 | 99.3 | 1.007 | -0.03 | 0.063 | 0.068 | 0.0% | | | 2nd | WLAN5GHz_Ant 3 | 802.11ac-VHT160 MCS0 | Left Side | 10mm | 114 | 5570 | 9.40 | 10.00 | 1.148 | 99.3 | 1.007 | 0.03 | 0.059 | 0.068 | 0.0% | | | 1st | WLAN5GHz_Ant 4 | 802.11ac-VHT160 MCS0 | Back Side | 10mm | 114 | 5570 | 9.50 | 10.00 | 1.122 | 99.3 | 1.007 | -0.17 | 0.073 | 0.082 | 44.000/ | | 18 | 2nd | WLAN5GHz_Ant 4 | 802.11ac-VHT160 MCS0 | Back Side | 10mm | 114 | 5570 | 9.20 | 10.00 | 1.202 | 99.3 | 1.007 | 0.04 | 0.077 | 0.093 | 11.83% | | | 1st | WLAN5GHz_Ant 3 | 802.11ac-VHT80 MCS0 | Left Side | 10mm | 155 | 5775 | 9.70 | 10.00 | 1.072 | 99.5 | 1.005 | 0.13 | 0.070 | 0.075 | 44.040/ | | | 2nd | WLAN5GHz_Ant 3 | 802.11ac-VHT80 MCS0 | Left Side | 10mm | 155 | 5775 | 9.60 | 10.00 | 1.096 | 99.5 | 1.005 | -0.06 | 0.061 | 0.067 | -11.94% | | | 1st | WLAN5GHz_Ant 4 | 802.11ac-VHT80 MCS0 | Back Side | 10mm | 155 | 5775 | 9.30 | 10.00 | 1.175 | 99.5 | 1.005 | -0.11 | 0.072 | 0.085 | 40.070/ | | 19 | 2nd | WLAN5GHz_Ant 4 | 802.11ac-VHT80 MCS0 | Back Side | 10mm | 155 | 5775 | 9.20 | 10.00 | 1.202 | 99.5 | 1.005 | 0.1 | 0.080 | 0.097 | 12.37% | Report No.: FA190614-01B TEL: 886-3-327-3456 Page 22 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 # 15. Simultaneous Transmission Analysis | Exposure condition | NO. | Simultaneous Transmission Configurations | Support | |--------------------|-------------------|--|---------| | | 1 | WWAN + 2.4GHz Ant3 + 2.4GHz Ant4 | V | | | 2 | WWAN + 5GHz Ant3 + 5GHz Ant4 | V | | | 3 | WWAN + 2.4GHz Ant3 + 5GHz Ant4 | V | | | 4 | WWAN + 2.4GHz Ant4 + 5GHz Ant3 | V | | Body | 5 | LTE + FR1 + 2.4GHz Ant3 + 2.4GHz Ant4 | V | | condition | 6 | LTE + FR1+ 5GHz Ant3 + 5GHz Ant4 | V | | | 7 | LTE + FR1+ 2.4GHz Ant3 + 5GHz Ant4 | V | | | 8 | LTE + FR1+ 2.4GHz Ant4 + 5GHz Ant3 | V | | | 9 ⁽¹⁾ | 2.4GHz Ant3 (client) + 5GHz Ant4(AP) | V | | | 10 ⁽¹⁾ | 5GHz Ant3 (Client) + 2.4GHz Ant4 (AP) | V | Report No.: FA190614-01B #### **General Note:** - 1. When the WWAN operation is offloading which the WiFi 2.4GHz/5GHz at ant3 only operate client and WiFi 2.4GHz/5GHz ant4 operate AP mode. - 2. The data reuse results from FCC ID: PY321100529 are used for Sim-Tx analysis, if the spot check result for FCC ID: PY321300542 is higher than original result, for that exposure configuration will using the worst SAR to be evaluation. - 3. The 1g SAR summation is calculated based on the same configuration and test position. - 4. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) 1g SAR summation SAR summation < 1.6W/kg. - ii) SPLSR = $(SAR1 + SAR2)^1.5 / (min. separation distance, mm)$, and the peak separation distance is determined from the square root of $[(x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2]$, where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. | | | | 2 | 3 | 4 | 5 | | | | | |--------------|----------------------|------------------|-------------------------|-------------------------|--------------------|------------------|---------------------------|---------------------------|---------------------------|---------------------------| | WWAN
Band | Exposure
Position | WWAN | 2.4GHz
WLAN
Ant 3 | 2.4GHz
WLAN
Ant 4 | 5GHz WLAN
Ant 3 | Ant 4 | 1+2+3
Summed
1g SAR | 1+4+5
Summed
1g SAR | 1+2+5
Summed
1g SAR | 1+3+4
Summed
1g SAR | | | | 1g SAR
(W/kg) | (W/kg) | (W/kg) | (W/kg) | (W/kg) | | | Top Surface | 0.903 | 0.041 | 0.064 | 0.071 | 0.066 | 1.008 | 1.040 | 1.010 | 1.038 | | | Bottom Surface | 0.677 | 0.052 | 0.035 | 0.058 | 0.062 | 0.764 | 0.797 | 0.791 | 0.770 | | LTE Band | Left Side | 0.656 | 0.091 | | 0.081 | | 0.747 | 0.737 | 0.747 | 0.737 | | 2_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.400 | | | | | 0.400 | 0.400 | 0.400 | 0.400 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.867 | 0.041 | 0.064 | 0.071 | 0.066 | 0.972 | 1.004 | 0.974 | 1.002 | | | Bottom Surface | 0.687 | 0.052 | 0.035 | 0.058 | 0.062 | 0.774 | 0.807 | 0.801 | 0.780 | | LTE Band | Left Side | 0.334 | 0.091 | | 0.081 | | 0.425 | 0.415 | 0.425 | 0.415 | | 5_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.182 | | | | | 0.182 | 0.182 | 0.182 | 0.182 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.799 | 0.041 | 0.064 | 0.071 | 0.066 | 0.904 | 0.936 | 0.906 | 0.934 | | | Bottom Surface | 0.508 | 0.052 | 0.035 | 0.058 | 0.062 | 0.595 | 0.628 | 0.622 | 0.601 | | LTE Band | Left Side | 0.344 | 0.091 | | 0.081 | | 0.435 | 0.425 | 0.435 | 0.425 | | 12_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.263 | | | | | 0.263 | 0.263 | 0.263 | 0.263
 | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.976 | 0.041 | 0.064 | 0.071 | 0.066 | 1.081 | 1.113 | 1.083 | 1.111 | | | Bottom Surface | 0.769 | 0.052 | 0.035 | 0.058 | 0.062 | 0.856 | 0.889 | 0.883 | 0.862 | | LTE Band | Left Side | 0.292 | 0.091 | | 0.081 | | 0.383 | 0.373 | 0.383 | 0.373 | | 14_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.291 | | | | | 0.291 | 0.291 | 0.291 | 0.291 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.906 | 0.041 | 0.064 | 0.071 | 0.066 | 1.011 | 1.043 | 1.013 | 1.041 | | LTE Band | Bottom Surface | 0.423 | 0.052 | 0.035 | 0.058 | 0.062 | 0.510 | 0.543 | 0.537 | 0.516 | | 48_Ant 1 | Left Side | 0.432 | 0.091 | | 0.081 | | 0.523 | 0.513 | 0.523 | 0.513 | | | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | TEL: 886-3-327-3456 Page 23 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 | Report | No. | : FA1 | 90614 | I-01B | |--------|-----|-------|-------|-------| |--------|-----|-------|-------|-------| | | Front Side | 0.160 | | | | | 0.160 | 0.160 | 0.160 | 0.160 | |------------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.868 | 0.041 | 0.064 | 0.071 | 0.066 | 0.973 | 1.005 | 0.975 | 1.003 | | | Bottom Surface | 0.700 | 0.052 | 0.035 | 0.058 | 0.062 | 0.787 | 0.820 | 0.814 | 0.793 | | LTE Band | Left Side | 0.524 | 0.091 | | 0.081 | | 0.615 | 0.605 | 0.615 | 0.605 | | 66_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.403 | | | | | 0.403 | 0.403 | 0.403 | 0.403 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.928 | 0.041 | 0.064 | 0.071 | 0.066 | 1.033 | 1.065 | 1.035 | 1.063 | | | Bottom Surface | 0.671 | 0.052 | 0.035 | 0.058 | 0.062 | 0.758 | 0.791 | 0.785 | 0.764 | | FR1 n2_Ant | Left Side | 0.663 | 0.091 | | 0.081 | | 0.754 | 0.744 | 0.754 | 0.744 | | 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.405 | | | | | 0.405 | 0.405 | 0.405 | 0.405 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.921 | 0.041 | 0.064 | 0.071 | 0.066 | 1.026 | 1.058 | 1.028 | 1.056 | | | Bottom Surface | 0.741 | 0.052 | 0.035 | 0.058 | 0.062 | 0.828 | 0.861 | 0.855 | 0.834 | | FR1 n5_Ant | Left Side | 0.349 | 0.091 | | 0.081 | | 0.440 | 0.430 | 0.440 | 0.430 | | 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.184 | | | | | 0.184 | 0.184 | 0.184 | 0.184 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.681 | 0.041 | 0.064 | 0.071 | 0.066 | 0.786 | 0.818 | 0.788 | 0.816 | | | Bottom Surface | 0.513 | 0.052 | 0.035 | 0.058 | 0.062 | 0.600 | 0.633 | 0.627 | 0.606 | | FR1 | Left Side | 0.358 | 0.091 | | 0.081 | | 0.449 | 0.439 | 0.449 | 0.439 | | n12_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.255 | | | | | 0.255 | 0.255 | 0.255 | 0.255 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.978 | 0.041 | 0.064 | 0.071 | 0.066 | 1.083 | 1.115 | 1.085 | 1.113 | | | Bottom Surface | 0.722 | 0.052 | 0.035 | 0.058 | 0.062 | 0.809 | 0.842 | 0.836 | 0.815 | | FR1 | Left Side | 0.305 | 0.091 | | 0.081 | | 0.396 | 0.386 | 0.396 | 0.386 | | n14_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.301 | | | | | 0.301 | 0.301 | 0.301 | 0.301 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.945 | 0.041 | 0.064 | 0.071 | 0.066 | 1.050 | 1.082 | 1.052 | 1.080 | | | Bottom Surface | 0.790 | 0.052 | 0.035 | 0.058 | 0.062 | 0.877 | 0.910 | 0.904 | 0.883 | | FR1 | Left Side | 0.591 | 0.091 | | 0.081 | | 0.682 | 0.672 | 0.682 | 0.672 | | n66_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.472 | | | | | 0.472 | 0.472 | 0.472 | 0.472 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 1.241 | 0.041 | 0.064 | 0.071 | 0.066 | 1.346 | 1.378 | 1.348 | 1.376 | | | Bottom Surface | 0.724 | 0.052 | 0.035 | 0.058 | 0.062 | 0.811 | 0.844 | 0.838 | 0.817 | | FR1 | Left Side | 0.596 | 0.091 | | 0.081 | | 0.687 | 0.677 | 0.687 | 0.677 | | n77_Ant 1 | Right Side | | | 0.042 | | 0.073 | 0.042 | 0.073 | 0.073 | 0.042 | | | Front Side | 0.284 | | | | | 0.284 | 0.284 | 0.284 | 0.284 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | TEL: 886-3-327-3456 Page 24 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 | | | | 2 | 2 | 4 | F | | | | | |------------------|--------------------------|-----------------|-----------------|-----------------|-----------------|--------------------|------------------|------------------|------------------|------------------| | | | 1 | 2.4GHz | 3
2.4GHz | | 5 | 1+2+3 | 1+4+5 | 1+2+5 | 1+3+4 | | WWAN
Band | Exposure
Position | WWAN | WLAN
Ant 3 | WLAN
Ant 4 | Ant 3 | 5GHz WLAN
Ant 4 | Summed
1g SAR | Summed
1g SAR | Summed
1g SAR | Summed
1g SAR | | | | 1g SAR | (W/kg) | (W/kg) | (W/kg) | (W/kg) | | | Top Surface | (W/kg)
1.168 | (W/kg)
0.041 | (W/kg)
0.064 | (W/kg)
0.071 | (W/kg)
0.066 | 1.273 | 1.305 | 1.275 | 1.303 | | | Bottom Surface | 1.156 | 0.052 | 0.035 | 0.058 | 0.062 | 1.243 | 1.276 | 1.270 | 1.249 | | LTE Band | Left Side | 1.100 | 0.091 | 0.000 | 0.081 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | 2_Ant 2 | Right Side | 1.024 | 0.001 | 0.042 | 0.001 | 0.073 | 1.066 | 1.097 | 1.097 | 1.066 | | _ | Front Side | 0.550 | | 0.012 | | 0.010 | 0.550 | 0.550 | 0.550 | 0.550 | | | Back Side | 0.000 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.665 | 0.041 | 0.064 | 0.071 | 0.066 | 0.770 | 0.802 | 0.772 | 0.800 | | | Bottom Surface | 0.419 | 0.052 | 0.035 | 0.058 | 0.062 | 0.506 | 0.539 | 0.533 | 0.512 | | LTE Band | Left Side | 00 | 0.091 | 0.000 | 0.081 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | 7_Ant 2 | Right Side | 1.288 | 0.001 | 0.042 | 0.00 | 0.073 | 1.330 | 1.361 | 1.361 | 1.330 | | _ | Front Side | 0.309 | | 0.012 | | 0.010 | 0.309 | 0.309 | 0.309 | 0.309 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 0.924 | 0.041 | 0.064 | 0.071 | 0.066 | 1.029 | 1.061 | 1.031 | 1.059 | | | Bottom Surface | 1.066 | 0.052 | 0.035 | 0.058 | 0.062 | 1.153 | 1.186 | 1.180 | 1.159 | | LTE Band | Left Side | 11000 | 0.091 | 0.000 | 0.081 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | 30_Ant 2 | Right Side | 1.293 | 0.001 | 0.042 | 0.00 | 0.073 | 1.335 | 1.366 | 1.366 | 1.335 | | | Front Side | 0.389 | | 0.0.12 | | 0.010 | 0.389 | 0.389 | 0.389 | 0.389 | | | Back Side | 0.000 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 1.079 | 0.041 | 0.064 | 0.071 | 0.066 | 1.184 | 1.216 | 1.186 | 1.214 | | | Bottom Surface | 0.895 | 0.052 | 0.035 | 0.058 | 0.062 | 0.982 | 1.015 | 1.009 | 0.988 | | LTE Band | Left Side | 0.000 | 0.091 | 0.000 | 0.081 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | 66_Ant 2 | Right Side | 0.689 | 0.031 | 0.042 | 0.001 | 0.073 | 0.731 | 0.762 | 0.762 | 0.731 | | 1 | Front Side | 0.410 | | 0.042 | | 0.070 | 0.410 | 0.410 | 0.410 | 0.410 | | | Back Side | 0.410 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.410 | 0.076 | | | Top Surface | 1.127 | 0.041 | 0.024 | 0.032 | 0.066 | 1.232 | 1.264 | 1.234 | 1.262 | | | Bottom Surface | 1.105 | 0.052 | 0.035 | 0.071 | 0.062 | 1.192 | 1.225 | 1.219 | 1.198 | | ED4 = 0 A=+ | Left Side | 1.100 | 0.032 | 0.055 | 0.030 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | FR1 n2_Ant
2 | Right Side | 0.710 | 0.001 | 0.042 | 0.001 | 0.073 | 0.752 | 0.783 | 0.783 | 0.752 | | | Front Side | 0.419 | | 0.042 | | 0.073 | 0.419 | 0.419 | 0.419 | 0.419 | | | Back Side | 0.413 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.415 | 0.076 | | | Top Surface | 0.684 | 0.018 | 0.024 | 0.032 | 0.097 | 0.789 | 0.149 | 0.791 | 0.819 | | | Bottom Surface | 0.568 | 0.052 | 0.035 | 0.058 | 0.062 | 0.655 | 0.688 | 0.682 | 0.661 | | ED4 = 5 A=4 | Left Side | 0.500 | 0.032 | 0.055 | 0.030 | 0.002 | 0.091 | 0.081 | 0.002 | 0.081 | | FR1 n5_Ant
2 | Right Side | 0.255 | 0.091 | 0.042 | 0.001 | 0.073 | 0.091 | 0.328 | 0.328 | 0.001 | | _ | Front Side | 0.204 | | 0.042 | | 0.073 | 0.297 | 0.204 | 0.328 | 0.297 | | | Back Side | 0.204 | 0.018 | 0.024 | 0.052 | 0.097 | 0.204 | 0.149 | 0.204 | 0.204 | | | Top Surface | 0.848 | 0.018 | 0.024 | 0.032 | 0.097 | 0.953 | 0.149 | 0.113 | 0.983 | | | Bottom Surface | 0.991 | 0.052 | 0.035 | 0.058 | 0.062 | 1.078 | 1.111 | 1.105 | 1.084 | | === | Left Side | 0.551 | 0.032 | 0.033 | 0.038 | 0.002 | 0.091 | 0.081 | 0.091 | 0.081 | | FR1
n30_Ant 2 | Right Side | 1.243 | 0.031 | 0.042 | 0.001 | 0.073 | 1.285 | 1.316 | 1.316 | 1.285 | | | Front Side | 0.363 | | 0.042 | | 0.073 | 0.363 | 0.363 | 0.363 | 0.363 | | | Back Side | 0.303 | 0.018 | 0.024 | 0.052 | 0.097 | 0.363 | 0.363 | 0.363 | 0.363 | | | Top Surface | 0.818 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Bottom Surface | 0.616 | 0.041 | 0.064 | 0.071 | 0.062 | 0.923 | 0.955 | 0.925 | 0.953 | | F5. | Left Side | 0.010 | 0.052 | 0.000 | 0.058 | 0.002 | 0.703 | 0.736 | 0.730 | 0.709 | | FR1
n66_Ant 2 | - | 0.540 | 0.091 | 0.042 | 0.001 | 0.072 | 0.091 | | 0.091 | 0.582 | | | Right Side
Front Side | 0.540 | | 0.042 | | 0.073 | 0.582 | 0.613
0.373 | 0.613 | | | | - | 0.373 | 0.010 | 0.024 | 0.050 | 0.007 | | | | 0.373 | | | Back Side | 1.056 | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 1.256 | 0.041 | 0.064 | 0.071 | 0.066 | 1.361
| 1.393 | 1.363 | 1.391 | | | Bottom Surface | 0.911 | 0.052 | 0.035 | 0.058 | 0.062 | 0.998 | 1.031 | 1.025 | 1.004 | | FR1
n77_Ant 2 | Left Side | 0.044 | 0.091 | 0.040 | 0.081 | 0.070 | 0.091 | 0.081 | 0.091 | 0.081 | | III I _AIIL Z | Right Side | 0.641 | | 0.042 | | 0.073 | 0.683 | 0.714 | 0.714 | 0.683 | | | Front Side | 0.195 | 0.040 | 0.00: | 0.050 | 0.00= | 0.195 | 0.195 | 0.195 | 0.195 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Template version: 211220 Page 25 of 29 Issued Date : Jan. 28, 2022 Report No.: FA190614-01B Report No. : FA190614-01B | | Top Surface | 1.102 | 0.041 | 0.064 | 0.071 | 0.066 | 1.207 | 1.239 | 1.209 | 1.237 | |-----------|----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Bottom Surface | 0.496 | 0.052 | 0.035 | 0.058 | 0.062 | 0.583 | 0.616 | 0.610 | 0.589 | | FR1 | Left Side | 0.052 | 0.091 | | 0.081 | | 0.143 | 0.133 | 0.143 | 0.133 | | n77_Ant 5 | Right Side | 0.107 | | 0.042 | | 0.073 | 0.149 | 0.180 | 0.180 | 0.149 | | | Front Side | 0.628 | | | | | 0.628 | 0.628 | 0.628 | 0.628 | | | Back Side | | 0.018 | 0.024 | 0.052 | 0.097 | 0.042 | 0.149 | 0.115 | 0.076 | | | Top Surface | 1.284 | 0.041 | 0.064 | 0.071 | 0.066 | 1.389 | 1.421 | 1.391 | 1.419 | | | Bottom Surface | 0.397 | 0.052 | 0.035 | 0.058 | 0.062 | 0.484 | 0.517 | 0.511 | 0.490 | | FR1 | Left Side | 0.164 | 0.091 | | 0.081 | | 0.255 | 0.245 | 0.255 | 0.245 | | n77_Ant 6 | Right Side | 0.033 | | 0.042 | | 0.073 | 0.075 | 0.106 | 0.106 | 0.075 | | | Front Side | | | | | | 0.000 | 0.000 | 0.000 | 0.000 | | | Back Side | 1.292 | 0.018 | 0.024 | 0.052 | 0.097 | 1.334 | 1.441 | 1.407 | 1.368 | <WWAN is offloading> | | 2 | 3 | 4 | 5 | | | |-------------------|----------------------|----------------------|--------------------|--------------------|---------------|---------------| | Exposure Position | 2.4GHz WLAN
Ant 3 | 2.4GHz WLAN
Ant 4 | 5GHz WLAN
Ant 3 | 5GHz WLAN
Ant 4 | 2+5
Summed | 3+4
Summed | | | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR (W/kg) | 1g SAR (W/kg) | | Top Surface | 0.041 | 0.064 | 0.071 | 0.066 | 0.107 | 0.135 | | Bottom Surface | 0.052 | 0.035 | 0.058 | 0.062 | 0.114 | 0.093 | | Left Side | 0.091 | | 0.081 | | 0.091 | 0.081 | | Right Side | | 0.042 | | 0.073 | 0.073 | 0.042 | | Front Side | | | | | 0.000 | 0.000 | | Back Side | 0.018 | 0.024 | 0.052 | 0.097 | 0.115 | 0.076 | Test Engineer: Charles Shen and Jordar Jhuang TEL: 886-3-327-3456 Page 26 of 29 FAX: 886-3-328-4978 Issued Date : Jan. 28, 2022 ### 16. <u>Uncertainty Assessment</u> Declaration of Conformity: The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers. Report No.: FA190614-01B Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor ### **Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty. TEL: 886-3-327-3456 Page 27 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022 Report No.: FA190614-01B | Applicable for Sa | AR Measurements: | |-------------------|------------------| |-------------------|------------------| | Applicable for SAR Measurements | Uncertainty Budget (4 MHz - 10 GHz range) | | | | | | | | | | |-----------------------------------|---|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------|--|--|--| | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | | | | | Measurement System | | | | | | | | | | | | Probe Calibration | 18.60 | N | 2 | 1 | 1 | 9.3 | 9.3 | | | | | Axial Isotropy | 4.70 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | | | | Hemispherical Isotropy | 9.60 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | | | | Linearity | 4.70 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | | | | Modulation Response | 4.68 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | | | | System Detection Limits | 1.00 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | | | | Boundary Effects | 2.00 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | | | | Readout Electronics | 0.30 | N | 1 | 1 | 1 | 0.3 | 0.3 | | | | | Response Time | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | | | | Integration Time | 2.60 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | | | | RF Ambient Noise | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | | | | RF Ambient Reflections | 3.00 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | | | | Probe Positioner | 0.40 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | | | | Probe Positioning | 6.70 | R | 1.732 | 1 | 1 | 3.9 | 3.9 | | | | | Post-processing | 4.00 | R | 1.732 | 1 | 1 | 2.3 | 2.3 | | | | | Test Sample Related | | | | | | | | | | | | Device Holder | 3.60 | N | 1 | 1 | 1 | 3.6 | 3.6 | | | | | Test sample Positioning | 3.03 | N | 1 | 1 | 1 | 3.0 | 3.0 | | | | | Power Scaling | 0.00 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | | | | Power Drift | 5.00 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | | | | Phantom and Setup | | | | | | | | | | | | Phantom Uncertainty | 7.60 | R | 1.732 | 1 | 1 | 4.4 | 4.4 | | | | | SAR correction | 0.00 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | | | | Liquid Conductivity Repeatability | 0.03 | N | 1 | 0.78 | 0.77 | 0.0 | 0.0 | | | | | Liquid Conductivity (target) | 5.00 | R | 1.732 | 0.78 | 0.77 | 2.3 | 2.2 | | | | | Liquid Conductivity (mea.) | 2.50 | R | 1.732 | 0.78 | 0.77 | 1.1 | 1.1 | | | | | Temp. unc Conductivity | 3.68 | R | 1.732 | 0.78 | 0.77 | 1.7 | 1.6 | | | | | Liquid Permittivity Repeatability | 0.02 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | | | | Liquid Permittivity (target) | 5.00 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | | | | Liquid Permittivity (mea.) | 2.50 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | | | | Temp. unc Permittivity | 0.84 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | | | | Cor | nbined Std. Uncerta | inty | | | | 14.5% | 14.2% | | | | | Co | verage Factor for 95 | % | | | | K=2 | K=2 | | | | | Ехр | Expanded STD Uncertainty | | | | | | | | | | TEL: 886-3-327-3456 Page 28 of 29 FAX: 886-3-328-4978 Issued Date : Jan. 28, 2022 # 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" Report No.: FA190614-01B - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific
Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [8] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015 - [9] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015. - [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. TEL: 886-3-327-3456 Page 29 of 29 FAX: 886-3-328-4978 Issued Date: Jan. 28, 2022