# FCC Test Report

Shot Scope Technologies Ltd GPS + Performance tracking watch, Model: V3 SS03

# In accordance with FCC 47 CFR Part 15C

Prepared for: Shot Scope Technologies Ltd Unit 27 Castlebrae Business Centre 40 Peffer Place Edinburgh EH16 4BB UNITED KINGDOM



Add value. Inspire trust.

FCC ID: 2AHWR-SS04

# COMMERCIAL-IN-CONFIDENCE

Document 75947856-06 Issue 01

| SIGNATURE      |                 |                      |             |
|----------------|-----------------|----------------------|-------------|
| 5 MM           |                 |                      |             |
| NAME           | JOB TITLE       | RESPONSIBLE FOR      | ISSUE DATE  |
| Steve Marshall | Senior Engineer | Authorised Signatory | 11 May 2020 |

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.

## **ENGINEERING STATEMENT**

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15C. The sample tested was found to comply with the requirements defined in the applied rules.

| RESPONSIBLE FOR | NAME                | DATE        | SIGNATURE |
|-----------------|---------------------|-------------|-----------|
| Testing         | Graeme Lawler       | 11 May 2020 | GAMawler. |
| Testing         | Nandhini Mathivanan | 11 May 2020 | Knud      |

FCC Accreditation

90987 Octagon House, Fareham Test Laboratory

#### **EXECUTIVE SUMMARY**

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15C: 2019 for the tests detailed in section 1.3.



#### DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2020 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom





# Contents

| 1   | Report Summary                    | 2  |
|-----|-----------------------------------|----|
| 1.1 | Report Modification Record        | 2  |
| 1.2 | Introduction                      | 2  |
| 1.3 | Brief Summary of Results          | 3  |
| 1.4 | Application Form                  | 4  |
| 1.5 | Product Information               | 6  |
| 1.6 | Deviations from the Standard      | 6  |
| 1.7 | EUT Modification Record           | 6  |
| 1.8 | Test Location                     | 6  |
| 2   | Test Details                      | 7  |
| 2.1 | Authorised Band Edges             | 7  |
| 2.2 | Spurious Radiated Emissions       | 9  |
| 2.3 | Restricted Band Edges             |    |
| 2.4 | AC Power Line Conducted Emissions |    |
| 2.5 | Emission Bandwidth                |    |
| 2.6 | Power Spectral Density            |    |
| 2.7 | Maximum Conducted Output Power    |    |
| 2   | •• • • • • •                      | 50 |



# 1 Report Summary

# 1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue | Description of Change | Date of Issue |
|-------|-----------------------|---------------|
| 1     | First Issue           | 11 May 2020   |

# Table 1

#### 1.2 Introduction

| Applicant                     | Shot Scope Technologies Ltd                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Manufacturer                  | Shot Scope Technologies Ltd                                                                                       |
| Model Number(s)               | V3 SS03                                                                                                           |
| Serial Number(s)              | Not serialised (0075947856-TSR0004)<br>Not serialised (0075947856-TSR0001)<br>Not serialised (0075947856-TSR0013) |
| Hardware Version(s)           | 1.0                                                                                                               |
| Software Version(s)           | 1.0                                                                                                               |
| Number of Samples Tested      | 3                                                                                                                 |
| Test Specification/Issue/Date | FCC 47 CFR Part 15C: 2019                                                                                         |
| Order Number<br>Date          | 2019-0069 TUV<br>06-January-2020                                                                                  |
| Date of Receipt of EUT        | 18-March-2020 and 01-April-2020                                                                                   |
| Start of Test                 | 23-March-2020                                                                                                     |
| Finish of Test                | 03-April-2020                                                                                                     |
| Name of Engineer(s)           | Graeme Lawler and Nandhini Mathivanan                                                                             |
| Related Document(s)           | ANSI C63.10 (2013)                                                                                                |



# 1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15C is shown below.

| Section      | Specification Clause     | Test Description                  | Result | Comments/Base Standard |
|--------------|--------------------------|-----------------------------------|--------|------------------------|
| Configuratio | n and Mode: Bluetooth Lo | w Energy                          |        |                        |
| 2.1          | 15.247 (d)               | Authorised Band Edges             | Pass   | ANSI C63.10 (2013)     |
| 2.2          | 15.247 (d) and 15.205    | Spurious Radiated Emissions       | Pass   | ANSI C63.10 (2013)     |
| 2.3          | 15.205                   | Restricted Band Edges             | Pass   | ANSI C63.10 (2013)     |
| 2.4          | 15.207                   | AC Power Line Conducted Emissions | Pass   | ANSI C63.10 (2013)     |
| 2.5          | 15.247 (a)(2)            | Emission Bandwidth                | Pass   | ANSI C63.10 (2013)     |
| 2.6          | 15.247 (e)               | Power Spectral Density            | Pass   | ANSI C63.10 (2013)     |
| 2.7          | 15.247 (b)               | Maximum Conducted Output Power    | Pass   | ANSI C63.10 (2013)     |

Table 2



# 1.4 Application Form

# **Equipment Description**

| Technical Description:<br>(Please provide a brief description of the<br>intended use of the equipment) | Shot Scope V3 is a watch worn by golfers to provide distance information from their position to their target. It also tracks how far each golf shot is hit and what golf club was used. |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manufacturer:                                                                                          | Shot Scope                                                                                                                                                                              |
| Model:                                                                                                 | SS03                                                                                                                                                                                    |
| Part Number:                                                                                           | V3                                                                                                                                                                                      |
| Hardware Version:                                                                                      | 1.0                                                                                                                                                                                     |
| Software Version:                                                                                      | 1.0                                                                                                                                                                                     |
| FCC ID (if applicable)                                                                                 | 2AHWR-SS04                                                                                                                                                                              |
| IC ID (if applicable)                                                                                  | Not Applicable                                                                                                                                                                          |

# Intentional Radiators

| Technology                            | BLE         |
|---------------------------------------|-------------|
| Frequency Band (MHz)                  | 2402 – 2480 |
| Conducted Declared Output Power (dBm) | -2          |
| Antenna Gain (dBi)                    | 1.7         |
| Supported Bandwidth(s) (MHz)          | 2           |
| Modulation Scheme(s)                  | GFSK        |
| ITU Emission Designator               | 1M05F1D     |
| Bottom Frequency (MHz)                | 2402        |
| Middle Frequency (MHz)                | 2440        |
| Top Frequency (MHz)                   | 2480        |

# Un-intentional Radiators

| Highest frequency generated or used in the device or on which the device operates or tunes | 2480 MHz   |  |
|--------------------------------------------------------------------------------------------|------------|--|
| Lowest frequency generated or used in the device or on which the device operates or tunes  | 32.768 kHz |  |
| Class A Digital Device (Use in commercial, industrial or business environment)             |            |  |
| Class B Digital Device (Use in residential environment only)                               |            |  |

### AC Power Source

| AC supply frequency:      | Hz |
|---------------------------|----|
| Voltage                   | V  |
| Max current:              | A  |
| Single Phase  Three Phase |    |



# DC Power Source

| Nominal voltage:       | 5   | V |
|------------------------|-----|---|
| Extreme upper voltage: | 5.5 | V |
| Extreme lower voltage: | 4.5 | V |
| Max current:           | 0.1 | А |

### **Battery Power Source**

| Voltage:                                                                                                          | 3.0 – 4.2 |  | V                                             |
|-------------------------------------------------------------------------------------------------------------------|-----------|--|-----------------------------------------------|
| End-point voltage:                                                                                                | 3.0       |  | V (Point at which the battery will terminate) |
| Alkaline $\Box$ Leclanche $\Box$ Lithium $\boxtimes$ Nickel Cadmium $\Box$ Lead Acid* $\Box$ *(Vehicle regulated) |           |  | ulated)                                       |
| Other D Please detail:                                                                                            |           |  |                                               |

## Charging

| Can the EUT transmit whilst being charged | Yes 🗆 No 🛛 |
|-------------------------------------------|------------|
|-------------------------------------------|------------|

#### Temperature

| Minimum temperature: | 0  | °C |
|----------------------|----|----|
| Maximum temperature: | 50 | °C |

## Antenna Characteristics

| Antenna connector                                                                                                                                   |            |               | State impedance |     | Ohm |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|-----------------|-----|-----|--|
| Temporary antenna connector                                                                                                                         |            |               | State impedance |     | Ohm |  |
| Integral antenna 🖂                                                                                                                                  | Type:      | Chip          | Gain            | 1.7 | dBi |  |
| External antenna 🗆                                                                                                                                  | Type:      |               | Gain            |     | dBi |  |
| For external antenna only:<br>Standard Antenna Jack  If yes, describe how user is prohibited from changing antenna (if not professional installed): |            |               |                 |     |     |  |
| Equipment is only ever p                                                                                                                            | rofessiona | lly installed |                 |     |     |  |
| New standard Artenna, Jack 🗆                                                                                                                        |            |               |                 |     |     |  |

Non-standard Antenna Jack

# Ancillaries (if applicable)

| Manufacturer: | Part Number:       |  |
|---------------|--------------------|--|
| Model:        | Country of Origin: |  |

I hereby declare that the information supplied is correct and complete.

Name: Lewis Allison Position held: Chief Technology Officer Date: 20/03/20



#### 1.5 Product Information

#### 1.5.1 Technical Description

Shot Scope V3 is a watch worn by golfers to provide distance information from their position to their target. It also tracks how far each golf shot is hit and what golf club was used.

#### 1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

#### 1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

| Modification State                                                 | Description of Modification still fitted to EUT                    | ription of Modification still fitted to EUT Modification Fitted By |                |  |  |  |  |
|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------|--|--|--|--|
| Model: V3 SS03, Serial Number: Not serialised (0075947856-TSR0001) |                                                                    |                                                                    |                |  |  |  |  |
| 0                                                                  | 0 As supplied by the customer Not Applicable                       |                                                                    |                |  |  |  |  |
| Model: V3 SS03, Se                                                 | Model: V3 SS03, Serial Number: Not serialised (0075947856-TSR0004) |                                                                    |                |  |  |  |  |
| 0 As supplied by the customer Not Applicable Not Applicable        |                                                                    |                                                                    |                |  |  |  |  |
| Model: V3 SS03, Serial Number: Not serialised (0075947856-TSR0013) |                                                                    |                                                                    |                |  |  |  |  |
| 0                                                                  | As supplied by the customer                                        | Not Applicable                                                     | Not Applicable |  |  |  |  |

## Table 3

## 1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

| Test Name                                    | Name of Engineer(s) | Accreditation |  |  |  |  |
|----------------------------------------------|---------------------|---------------|--|--|--|--|
| Configuration and Mode: Bluetooth Low Energy |                     |               |  |  |  |  |
| Authorised Band Edges                        | Graeme Lawler       | UKAS          |  |  |  |  |
| Spurious Radiated Emissions                  | Graeme Lawler       | UKAS          |  |  |  |  |
| Restricted Band Edges                        | Graeme Lawler       | UKAS          |  |  |  |  |
| AC Power Line Conducted Emissions            | Graeme Lawler       | UKAS          |  |  |  |  |
| Emission Bandwidth                           | Nandhini Mathivanan | UKAS          |  |  |  |  |
| Power Spectral Density                       | Nandhini Mathivanan | UKAS          |  |  |  |  |
| Maximum Conducted Output Power               | Nandhini Mathivanan | UKAS          |  |  |  |  |

### Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom



# 2 Test Details

2.1 Authorised Band Edges

# 2.1.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d)

## 2.1.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0004) - Modification State 0

#### 2.1.3 Date of Test

23-March-2020

#### 2.1.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.10.4.

# 2.1.5 Environmental Conditions

| Ambient Temperature | 20.1 °C |
|---------------------|---------|
| Relative Humidity   | 27.1 %  |

#### 2.1.6 Test Results

Bluetooth Low Energy

| Modulation | Frequency (MHz) | Measured Frequency (MHz) | Level (dBc) |
|------------|-----------------|--------------------------|-------------|
| GFSK       | 2402            | 2400                     | -38.35      |



Table 5

Figure 1 - GFSK - 2402 MHz - Measured Frequency 2400 MHz



# FCC 47 CFR Part 15, Limit Clause 15.247 (d)

20 dB below the fundamental measured in a 100 kHz bandwidth using a peak detector. If the transmitter complies with the conducted power limits, based on the use of RMS averaging over a time interval, the attenuation required shall be 30 dB below the fundamental instead of 20 dB.

## 2.1.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument                             | Manufacturer    | Туре No               | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|----------------------------------------|-----------------|-----------------------|-------|-----------------------------------|-----------------|
| Screened Room (5)                      | Rainford        | Rainford              | 1545  | 36                                | 23-Jan-2021     |
| Turntable Controller                   | Inn-Co GmbH     | CO 1000               | 1606  | -                                 | TU              |
| Cable (Yellow, Rx, Km-Km<br>2m)        | Scott Cables    | KPS-1501-2000-<br>KPS | 4527  | 6                                 | 09-Jun-2020     |
| Mast Controller                        | Maturo Gmbh     | NCD                   | 4810  | -                                 | TU              |
| Tilt Antenna Mast                      | Maturo Gmbh     | TAM 4.0-P             | 4811  | -                                 | TU              |
| Double Ridge Broadband<br>Horn Antenna | Schwarzbeck     | BBHA 9120 B           | 4848  | 12                                | 10-Mar-2021     |
| Hygrometer                             | Rotronic        | HP21                  | 4989  | 12                                | 02-May-2020     |
| EmX Emissions Software                 | TUV SUD         | EmX<br>V.V1.5.8       | 5125  | -                                 | Software        |
| 8 Meter Cable                          | Teledyne        | PR90-088-8MTR         | 5212  | 12                                | 30-Aug-2020     |
| EMI Test Receiver                      | Rohde & Schwarz | ESW44                 | 5527  | 12                                | 06-Feb-2021     |

Table 6

TU – Traceability Unscheduled



## 2.2 Spurious Radiated Emissions

## 2.2.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (d) and 15.205

## 2.2.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0004) - Modification State 0

#### 2.2.3 Date of Test

23-March-2020 to 24-March-2020

#### 2.2.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.3, 6.5 and 6.6.

The EUT was placed on the non-conducting platform. The EUT can be used in multiple planes, therefore pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

For frequencies > 1 GHz, plots for average measurements were taken in accordance with ANSI C63.10, clause 4.1.4.2.5 to characterize the EUT. Where emissions were detected, final average measurements were taken in accordance with ANSI C63.10 clause 4.1.4.2.2.

The plots shown are the characterization of the EUT. The limits on the plots represent the most stringent case for restricted bands, (74/54 dBuV/m) when compared to 20 dBc outside restricted bands. The limits shown have been used as a threshold to determine where further measurements are necessary. Where results are within 10 dB of the limits shown on the plots, further investigation was carried out and reported in results tables.

The following conversion can be applied to convert from  $dB\mu V/m$  to  $\mu V/m$ : 10^(Field Strength in  $dB\mu V/m/20$ ).

Above 18 GHz, the measurement distance was reduced to 1 meter and the limit line increased by 20\*LOG(3/1) = 9.54 dB.





# Figure 2 - Test Setup Diagram

# 2.2.5 Environmental Conditions

Ambient Temperature19.7 - 20.8 °CRelative Humidity27.1 %

## 2.2.6 Test Results

Bluetooth Low Energy

| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

#### Table 7 - 2402 MHz, 30 MHz to 1 GHz









Figure 4 - 2402 MHz, 30 MHz to 1 GHz, Horizontal, X Orientation









Figure 6 - 2402 MHz, 30 MHz to 1 GHz, Horizontal, Y Orientation









Figure 8 - 2402 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation



| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

# Table 8 - 2402 MHz, 1 GHz to 25 GHz



Figure 9 - 2402 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Peak



Figure 10 - 2402 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Average





Figure 11 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, X Orientation, Peak



Figure 12 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, X Orientation, Average





Figure 13 - 2402 MHz , 1 GHz to 25 GHz, Vertical, Y Orientation, Peak



Figure 14 - 2402 MHz , 1 GHz to 25 GHz, Vertical, Y Orientation, Average





Figure 15 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, Y Orientation, Peak



Figure 16 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, Y Orientation, Average





Figure 17 - 2402 MHz , 1 GHz to 25 GHz, Vertical, Z Orientation, Peak



Figure 18 - 2402 MHz , 1 GHz to 25 GHz, Vertical, Z Orientation, Average





Figure 19 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, Z Orientation, Peak



Figure 20 - 2402 MHz , 1 GHz to 25 GHz, Horizontal, Z Orientation, Average



| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

# Table 9 - 2440 MHz, 30 MHz to 1 GHz







Figure 22 - 2440 MHz, 30 MHz to 1 GHz, Horizontal, X Orientation









Figure 24 - 2440 MHz, 30 MHz to 1 GHz, Horizontal, Y Orientation









Figure 26 - 2440 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation



| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

# Table 10 - 2440 MHz, 1 GHz to 25 GHz



Figure 27 - 2440 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Peak



Figure 28 - 2440 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Average





Figure 29 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, X Orientation, Peak



Figure 30 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, X Orientation, Average





Figure 31 - 2440 MHz, 1 GHz to 25 GHz, Vertical, Y Orientation, Peak



Figure 32 - 2440 MHz, 1 GHz to 25 GHz, Vertical, Y Orientation, Average





Figure 33 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, Y Orientation, Peak



Figure 34 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, Y Orientation, Average





Figure 35 - 2440 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Peak



Figure 36 - 2440 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Average





Figure 37 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation, Peak



Figure 38 - 2440 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation, Average



| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

# Table 11 - 2480 MHz, 30 MHz to 1 GHz







Figure 40 – 2480 MHz, 30 MHz to 1 GHz, Horizontal, X Orientation









Figure 42 – 2480 MHz, 30 MHz to 1 GHz, Horizontal, Y Orientation









Figure 44 – 2480 MHz, 30 MHz to 1 GHz, Horizontal, Z Orientation



| Frequency<br>(MHz) | Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Angle (°) | Height<br>(cm) | Polarisation | Orientation |
|--------------------|-------------------|-------------------|----------------|----------|-----------|----------------|--------------|-------------|
| *                  |                   |                   |                |          |           |                |              |             |

# Table 12 - 2480 MHz , 1 GHz to 25 GHz



Figure 45 - 2480 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Peak



Figure 46 - 2480 MHz, 1 GHz to 25 GHz, Vertical, X Orientation, Average





Figure 47 - 2480 MHz, 1 GHz to 25 GHz, Horizontal, X Orientation, Peak



Figure 48 - 2480 MHz , 1 GHz to 25 GHz, Horizontal, X Orientation, Average





Figure 49 - 2480 MHz, 1 GHz to 25 GHz, Vertical, Y Orientation, Peak



Figure 50 - 2480 MHz, 1 GHz to 25 GHz, Vertical, Y Orientation, Average





Figure 51 - 2480 MHz, 1 GHz to 25 GHz, Horizontal, Y Orientation, Peak



Figure 52 - 2480 MHz, 1 GHz to 25 GHz, Horizontal, Y Orientation, Average





Figure 53 - 2480 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Peak



Figure 54 - 2480 MHz, 1 GHz to 25 GHz, Vertical, Z Orientation, Average





Figure 55 - 2480 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation, Peak



Figure 56 - 2480 MHz, 1 GHz to 25 GHz, Horizontal, Z Orientation, Average





Figure 57 - Test Setup - 30 MHz to 1 GHz





Figure 58 - Test Setup - 1 GHz to 8 GHz





Figure 59 - Test Setup - 8 GHz to 18 GHz





Figure 60 - Test Setup - 18 GHz to 25 GHz

# FCC 47 CFR Part 15, Limit Clause 15.247 (d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)



# 2.2.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument                                | Manufacturer        | Туре No                         | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|-------------------------------------------|---------------------|---------------------------------|-------|-----------------------------------|-----------------|
| Antenna 18-40GHz<br>(Double Ridge Guide)  | Link Microtek Ltd   | AM180HA-K-TU2                   | 230   | 24                                | 02-May-2020     |
| 18GHz - 40GHz Pre-<br>Amplifier           | Phase One           | PSO4-0087                       | 1534  | 12                                | 18-Feb-2021     |
| Screened Room (5)                         | Rainford            | Rainford                        | 1545  | 36                                | 23-Jan-2021     |
| Turntable Controller                      | Inn-Co GmbH         | CO 1000                         | 1606  | -                                 | TU              |
| Antenna with permanent attenuator (Bilog) | Chase               | CBL6143                         | 2904  | 24                                | 30-Sep-2021     |
| Network Analyser                          | Rohde & Schwarz     | ZVA 40                          | 3548  | 12                                | 11-Dec-2020     |
| '2.92mm' - '2.92mm' RF<br>Cable (2m)      | Rhophase            | KPS-1503-2000-<br>KPS           | 3695  | 12                                | 11-Jun-2020     |
| Cable 1503 2M 2.92(P)m<br>2.92(P)m        | Rhophase            | KPS-1503A-2000-<br>KPS          | 4293  | 12                                | 08-Nov-2020     |
| Mast Controller                           | Maturo Gmbh         | NCD                             | 4810  | -                                 | TU              |
| Tilt Antenna Mast                         | Maturo Gmbh         | TAM 4.0-P                       | 4811  | -                                 | TU              |
| Double Ridge Broadband<br>Horn Antenna    | Schwarzbeck         | BBHA 9120 B                     | 4848  | 12                                | 10-Mar-2021     |
| 4dB Attenuator                            | Pasternack          | PE7047-4                        | 4935  | 24                                | 30-Sep-2021     |
| 8 GHz to 18 GHz Pre-<br>Amplifier         | Wright Technologies | PS06-0061                       | 4971  | 12                                | 23-Jan-2021     |
| Hygrometer                                | Rotronic            | HP21                            | 4989  | 12                                | 02-May-2020     |
| EmX Emissions Software                    | TUV SUD             | EmX<br>V.V1.5.8                 | 5125  | -                                 | Software        |
| 8 Meter Cable                             | Teledyne            | PR90-088-8MTR                   | 5212  | 12                                | 30-Aug-2020     |
| 3 GHz High Pass Filter                    | Wainright           | WHKX12-2580-<br>3000-18000-80SS | 5220  | 12                                | O/P Mon         |
| Antenna (DRG Horn 7.5-<br>18GHz)          | Schwarzbeck         | HWRD750                         | 5348  | 12                                | 04-Sep-2020     |
| 1 GHz to 18 GHz Pre-<br>Amplifier         | Schwarzbeck         | BBV 9718 C                      | 5350  | 12                                | 21-August-2020  |
| EMI Test Receiver                         | Rohde & Schwarz     | ESW44                           | 5527  | 12                                | 06-Feb-2021     |

#### Table 13

TU – Traceability Unscheduled

O/P Mon – Output Monitored using calibrated equipment



# 2.3 Restricted Band Edges

### 2.3.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.205

## 2.3.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0004) - Modification State 0

#### 2.3.3 Date of Test

23-March-2020

#### 2.3.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 6.10.5.

Plots for average measurements were taken in accordance with ANSI C63.10, clause 4.1.4.2.5. These are shown for information purposes and were used to determine the worst case measurement point. Final average measurements were then taken in accordance with ANSI C63.10, clause 11.12.2.5.2 to obtain the measurement result recorded in the test results tables.

The following conversion can be applied to convert from  $dB\mu V/m$  to  $\mu V/m$ : 10^(Field Strength in  $dB\mu V/m/20$ ).

#### 2.3.5 Environmental Conditions

| Ambient Temperature | 20.1 °C |
|---------------------|---------|
| Relative Humidity   | 27.1 %  |

#### 2.3.6 Test Results

#### Bluetooth Low Energy

| Modulation | Frequency (MHz) | Measured Frequency<br>(MHz) | Peak Level<br>(dBµV/m) | Average Level<br>(dBµV/m) |
|------------|-----------------|-----------------------------|------------------------|---------------------------|
| GFSK       | 2402            | 2400                        | 50.57                  | 38.96                     |
| GFSK       | 2480            | 2483.5                      | 54.50                  | 39.44                     |

Table 14





Figure 61 - GFSK - 2402 MHz - Measured Frequency 2400 MHz



Figure 62 - GFSK - 2480 MHz - Measured Frequency 2483.5 MHz



# FCC 47 CFR Part 15, Limit Clause 15.209

| Frequency (MHz) | Field Strength (µV/m at 3 m) |
|-----------------|------------------------------|
| 30 to 88        | 100                          |
| 88 to 216       | 150                          |
| 216 to 960      | 200                          |
| Above 960       | 500                          |

## Table 15

# 2.3.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument                             | Manufacturer    | Туре No               | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|----------------------------------------|-----------------|-----------------------|-------|-----------------------------------|-----------------|
| Screened Room (5)                      | Rainford        | Rainford              | 1545  | 36                                | 23-Jan-2021     |
| Turntable Controller                   | Inn-Co GmbH     | CO 1000               | 1606  | -                                 | TU              |
| Cable (Yellow, Rx, Km-Km<br>2m)        | Scott Cables    | KPS-1501-2000-<br>KPS | 4527  | 6                                 | 09-Jun-2020     |
| Mast Controller                        | Maturo Gmbh     | NCD                   | 4810  | -                                 | TU              |
| Tilt Antenna Mast                      | Maturo Gmbh     | TAM 4.0-P             | 4811  | -                                 | TU              |
| Double Ridge Broadband<br>Horn Antenna | Schwarzbeck     | BBHA 9120 B           | 4848  | 12                                | 10-Mar-2021     |
| Hygrometer                             | Rotronic        | HP21                  | 4989  | 12                                | 02-May-2020     |
| EmX Emissions Software                 | TUV SUD         | EmX<br>V.V1.5.8       | 5125  | -                                 | Software        |
| 8 Meter Cable                          | Teledyne        | PR90-088-8MTR         | 5212  | 12                                | 30-Aug-2020     |
| EMI Test Receiver                      | Rohde & Schwarz | ESW44                 | 5527  | 12                                | 06-Feb-2021     |

Table 16

TU - Traceability Unscheduled



# 2.4 AC Power Line Conducted Emissions

## 2.4.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.207

# 2.4.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0001) - Modification State 0

## 2.4.3 Date of Test

01-April-2020

## 2.4.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 6.2.

# 2.4.5 Environmental Conditions

Ambient Temperature21.4 °CRelative Humidity25.1 %



# 2.4.6 Test Results

## Bluetooth Low Energy

Applied supply Voltage: 60 Hz Applied supply frequency: 120 Vac

| Frequency<br>(MHz) | QP Level<br>(dBµV) | QP Limit<br>(dBµV) | QP Margin<br>(dB) | AV Level<br>(dBµV) | AV Limit<br>(dBµV) | AV Margin<br>(dB) |
|--------------------|--------------------|--------------------|-------------------|--------------------|--------------------|-------------------|
| 0.354              | 25.7               | 58.9               | -33.2             | 15.5               | 48.9               | -33.4             |
| 3.548              | 31.1               | 56.0               | -24.9             | 18.4               | 46.0               | -27.6             |
| 3.605              | 30.4               | 56.0               | -25.6             | 17.2               | 46.0               | -28.8             |
| 3.631              | 30.8               | 56.0               | -25.2             | 17.2               | 46.0               | -28.8             |
| 3.652              | 32.9               | 56.0               | -23.1             | 18.2               | 46.0               | -27.8             |
| 3.679              | 33.1               | 56.0               | -22.9             | 18.4               | 46.0               | -27.6             |





Figure 63 - Neutral Line - 150 kHz to 30 MHz



| Frequency<br>(MHz) | QP Level<br>(dBµV) | QP Limit<br>(dBµV) | QP Margin<br>(dBµV) | AV Level<br>(dBµV) | AV Limit<br>(dBµV) | AV Margin<br>(dBµV) |
|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|
| 0.363              | 31.1               | 58.7               | -27.5               | 22.9               | 48.7               | -25.7               |
| 3.214              | 29.8               | 56.0               | -26.2               | 17.7               | 46.0               | -28.3               |
| 3.396              | 30.1               | 56.0               | -25.9               | 16.8               | 46.0               | -29.2               |
| 3.722              | 36.5               | 56.0               | -19.5               | 23.7               | 46.0               | -22.3               |
| 3.801              | 36.6               | 56.0               | -19.4               | 25.0               | 46.0               | -21.0               |
| 3.878              | 35.6               | 56.0               | -20.4               | 25.1               | 46.0               | -20.9               |



## Table 18 - Live Line

# Figure 64 - Live Line - 150 kHz to 30 MHz

# FCC 47 CFR Part 15, Limit Clause 15.207

| Frequency of Emission (MHz) | Conducted Limit (dBµV) |           |  |  |  |
|-----------------------------|------------------------|-----------|--|--|--|
|                             | Quasi-Peak             | Average   |  |  |  |
| 0.15 to 0.5                 | 66 to 56*              | 56 to 46* |  |  |  |
| 0.5 to 5                    | 56                     | 46        |  |  |  |
| 5 to 30                     | 60                     | 50        |  |  |  |

# Table 19

\*Decreases with the logarithm of the frequency.



# 2.4.7 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

| Instrument             | Manufacturer    | Туре No               | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|------------------------|-----------------|-----------------------|-------|-----------------------------------|-----------------|
| Transient Limiter      | Hewlett Packard | 11947A                | 15    | 12                                | 02-Oct-2020     |
| LISN                   | Rohde & Schwarz | ESH3-Z5               | 1390  | 12                                | 27-Jan-2021     |
| Screened Room (5)      | Rainford        | Rainford              | 1545  | 36                                | 23-Jan-2021     |
| Compliance 5 Emissions | Teseq           | V5.26.51<br>V.5.00.00 | 3275  | -                                 | Software        |
| EMI Test Receiver      | Rohde & Schwarz | ESU40                 | 3506  | 12                                | 03-Jan-2021     |
| 8 Meter Cable          | Teledyne        | PR90-088-8MTR         | 5212  | 12                                | 30-Aug-2020     |
| Thermo-Hygro-Barometer | PCE Instruments | OCE-THB-40            | 5470  | 12                                | 16-Mar-2021     |

Table 20



## 2.5 Emission Bandwidth

## 2.5.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (a)(2)

# 2.5.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0013) - Modification State 0

## 2.5.3 Date of Test

03-April-2020

### 2.5.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.8.2.

# 2.5.5 Environmental Conditions

Ambient Temperature25.7 °CRelative Humidity25.0 %

#### 2.5.6 Test Results

Bluetooth Low Energy

Modulation/Packet Type: GFSK/DH1

| Frequency (MHz) | 6 dB Bandwidth (MHz) | 99% Occupied Bandwidth (MHz |
|-----------------|----------------------|-----------------------------|
| 2402            | 0.672                | 1.049                       |
| 2440            | 0.680                | 1.050                       |
| 2480            | 0.696                | 1.053                       |

Table 21



| Spectrum Analy<br>Occupied BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /zer 1                                   | • +                                                                     |                            |                                              |                                                                     |                                 |                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------|----------------------------|----------------------------------------------|---------------------------------------------------------------------|---------------------------------|--------------------------------|
| L C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Input: RF<br>Coupling: AC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off<br>Freq Ref: Int (S)<br>NFE: Adaptive | Atten: 6 dB<br>Preamp: Off | Trig: Free Run<br>Gate: Off<br>#IF Gain: Low | Center Freq: 2.40200000 GHz<br>Avg Hold:>100/100<br>Radio Std: None |                                 |                                |
| 1 Graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dB.                                      |                                                                         |                            | Ref LvI Offset 12                            | .42 dB                                                              | Mkr1                            | 2.4020 GHz                     |
| 5.00<br>-5.00<br>-5.00<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0<br>-5.0 | BHZ<br>D0 kHZ                            |                                                                         |                            | #Video BW 300.0                              | 00 kHz                                                              | Sweep 1.                        | Span 4 MHz<br>00 ms (1001 pts) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Occupied B<br>Transmit Fra<br>x dB Bandw | andwidth<br>1.0485 MHz<br>eq Error -<br>ridth                           | 30.821 kHz<br>671.7 kHz    |                                              | Total Power<br>% of OBW Power<br>x dB                               | 2.20 dBm<br>99.00 %<br>-6.00 dB |                                |
| <b>1</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | Apr 03, 2020<br>11:30:39 AM                                             |                            |                                              |                                                                     |                                 |                                |





Figure 66 - 2440 MHz - 6 dB and 99% Occupied Bandwidth



| LV         Page           1 Graph         v           Scale/Div 10.0 dB         500           5 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NFE: Adaptive |             | Ref LvI Offset 12<br>Ref Value 15.00 | 2.42 dB<br>dBm | Mkr1      | 2.4800 GHz<br>-4.84 dBm |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|--------------------------------------|----------------|-----------|-------------------------|
| 1 Graph Y<br>Scale/Div 10.0 dB<br>5.00<br>7.50<br>7.50<br>7.50<br>7.50<br>Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             | Ref Lvi Offset 12<br>Ref Value 15.00 | 2.42 dB<br>dBm | Mkr1      | 2.4800 GHz<br>-4.84 dBm |
| Scale/Div 10.0 dB<br>5.00<br>5.00<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0    |               |             | Ref Value 15.00                      | dBm            |           | -4.84 aBm               |
| 5 00<br>5 00<br>25 0<br>25 0<br>45 0 |               |             |                                      |                |           |                         |
| 160<br>250<br>250<br>450<br>450<br>450<br>450<br>Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |             |                                      |                |           |                         |
| 230<br>350<br>450<br>-550<br>-660<br>-6750<br>Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |             |                                      |                |           |                         |
| 45.0<br>-55.0<br>-75.0<br>-75.0<br>Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |             |                                      |                |           |                         |
| -65.0<br>-75.0<br>Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |                                      |                |           |                         |
| Center 2.48 GHz<br>#Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |                                      |                |           |                         |
| #Res BW 100.00 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |             | #Video BW 300.                       | 00 kHz         |           | Span 4 MHz              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                                      |                | Sweep 1.0 | 00 ms (1001 pts)        |
| 2 Metrics v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |             |                                      |                |           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                                      |                |           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                                      |                |           |                         |
| Occupie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d Bandwidth   |             |                                      |                |           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0531 MHz    |             |                                      | Total Power    | 2.24 dBm  |                         |
| Transmit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Freg Error    | -33.157 kHz |                                      | % of OBW Power | 99.00 %   |                         |
| x dB Bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ndwidth       | 695.9 kHz   |                                      | x dB           | -6.00 dB  |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                                      |                |           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |                                      |                |           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Apr 03, 2020  |             |                                      |                |           |                         |

Figure 67 - 2480 MHz – 6 dB and 99% Occupied Bandwidth

FCC 47 CFR Part 15, Limit Clause 15.247(a)(2)

The minimum 6 dB Bandwidth shall be at least 500 kHz.



# 2.5.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                           | Manufacturer          | Туре No        | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|--------------------------------------|-----------------------|----------------|-------|-----------------------------------|-----------------|
| 10dB/1W SMA Attenuator<br>dc - 18GHz | Sealectro             | 60-674-1010-89 | 395   | -                                 | O/P Mon         |
| Hygrometer                           | Rotronic              | I-1000         | 3220  | 12                                | 25-Sep-2020     |
| EXA                                  | Keysight Technologies | N9010B         | 4968  | 24                                | 23-Dec-2021     |
| Network Analyser                     | Keysight Technologies | E5063A         | 5018  | 12                                | 20-May-2020     |
| Cable (18 GHz)                       | Rosenberger           | LU7-071-2000   | 5106  | 12                                | 09-Dec-2020     |
| Electronic Calibration<br>Module     | Keysight Technologies | 85093C         | 5188  | 12                                | 21-May-2020     |

## Table 22

O/P Mon – Output Monitored using calibrated equipment



# 2.6 Power Spectral Density

## 2.6.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (e)

# 2.6.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0013) - Modification State 0

#### 2.6.3 Date of Test

03-April-2020

### 2.6.4 Test Method

This test was performed in accordance with ANSI C63.10, clause 11.10.2.

# 2.6.5 Environmental Conditions

Ambient Temperature25.7 °CRelative Humidity25.0 %

#### 2.6.6 Test Results

Bluetooth Low Energy

Modulation/Packet Type: GFSK/DH1

| Frequency (MHz) | Power Spectral Density (dBm) |
|-----------------|------------------------------|
| 2402            | -4.74                        |
| 2440            | -4.87                        |
| 2480            | -4.95                        |

Table 23



| Spectrum Anal<br>Swept SA    | yzer 1         | • +               |              |                   |                     |   |   |     |          |                       |                    |
|------------------------------|----------------|-------------------|--------------|-------------------|---------------------|---|---|-----|----------|-----------------------|--------------------|
| <b>KEYSIGH</b> 1             | Input: RF      | Input Z: 50 Ω     | Atten: 18 dB | PNO: Best Wide    | Avg Type: Log-Power | 1 | 2 | 3   | 4        | 5                     | 6                  |
| $\Box$                       | Align: Auto    | Freq Ref: Int (S) | Preamp. Oil  | IF Gain: Low      | Trig: Free Run      | М |   |     |          |                       |                    |
| LXI                          |                | NFE: Adaptive     |              | Sig Track: Off    |                     | Р | Ν | N   | N        | N                     | N                  |
| 1 Spectrum                   | •              |                   |              | Ref LvI Offset 12 | 2.42 dB             |   |   | Mkr | 1 2.4    | 01 964                | GHz                |
| Scale/Div 10                 | dB             |                   |              | Ref Level 19.42   | dBm                 |   |   |     |          | -4.74                 | dBm                |
| Log                          |                |                   |              | Ţ                 |                     |   |   |     |          |                       |                    |
| 9.42                         |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -0.58                        |                |                   |              | 1                 |                     |   |   |     |          |                       |                    |
| -0.00                        |                |                   |              | '                 |                     |   |   |     |          |                       |                    |
| -10.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -20.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
|                              |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -30.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -40.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| 50.6                         |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -30.0                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -60.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| -70.6                        |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| 10.0                         |                |                   |              |                   |                     |   |   |     |          |                       |                    |
| Center 2.4020<br>#Res BW 100 | 000 GHz<br>kHz |                   |              | #Video BW 300     | ) kHz               |   |   | Sv  | veep 1.0 | Span 1.0<br>00 ms (10 | 00 MHz<br>001 pts) |
| 45                           | 6              | Apr 03, 2020      |              |                   |                     |   |   |     |          | ] []                  | X                  |

Figure 68 - 2402 MHz



Figure 69 - 2440 MHz



| KEYSIGHT Inpl                       | ut: RF                 | Input Z: 50 Ω                         | Atten: 18 dB | PNO: Best Wide                         | Avg Type: Log-Power                 | 1 | 2 |    | 4       |                      |                   |
|-------------------------------------|------------------------|---------------------------------------|--------------|----------------------------------------|-------------------------------------|---|---|----|---------|----------------------|-------------------|
| Alig                                | upling: AC<br>in: Auto | Corrections: Off<br>Freq Ref: Int (S) | Preamp: Off  | Gate: Off<br>IF Gain: Low              | Avg Hold:>100/100<br>Trig: Free Run | М |   |    |         |                      |                   |
| L)(I                                |                        | NFE: Adaptive                         |              | Sig Track: Off                         |                                     | P | N | N  | N       | N                    | N                 |
| 1 Spectrum<br>Scale/Div 10 dB       | V                      |                                       |              | Ref LvI Offset 12<br>Ref Level 19.42 o | .42 dB<br>IBm                       |   |   | Mk | r1 2.4  | 4.95 -44.95          | ) GH<br>i dBn     |
| Log                                 |                        |                                       |              | Ĭ                                      |                                     |   |   |    |         |                      |                   |
| 9.42                                |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              | <u>1</u>                               |                                     |   |   |    |         |                      |                   |
| -10.6                               |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
| 20.6                                |                        |                                       |              |                                        |                                     |   |   |    |         | _                    |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
| -30.6                               |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
|                                     |                        |                                       |              |                                        |                                     |   |   |    |         |                      |                   |
| Center 2.4800000<br>#Res BW 100 kHz | GHz                    |                                       |              | #Video BW 300                          | kHz                                 |   |   | s  | weep 1. | Span 1.0<br>00 ms (1 | 00 MH;<br>001 pts |

Figure 70 - 2480 MHz

# FCC 47 CFR Part 15, Limit Clause 15.247 (e)

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

# 2.6.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                           | Manufacturer          | Туре No        | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|--------------------------------------|-----------------------|----------------|-------|-----------------------------------|-----------------|
| 10dB/1W SMA Attenuator<br>dc - 18GHz | Sealectro             | 60-674-1010-89 | 395   | -                                 | O/P Mon         |
| Hygrometer                           | Rotronic              | I-1000         | 3220  | 12                                | 25-Sep-2020     |
| EXA                                  | Keysight Technologies | N9010B         | 4968  | 24                                | 23-Dec-2021     |
| Network Analyser                     | Keysight Technologies | E5063A         | 5018  | 12                                | 20-May-2020     |
| Cable (18 GHz)                       | Rosenberger           | LU7-071-2000   | 5106  | 12                                | 09-Dec-2020     |
| Electronic Calibration<br>Module     | Keysight Technologies | 85093C         | 5188  | 12                                | 21-May-2020     |

## Table 24

O/P Mon - Output Monitored using calibrated equipment



## 2.7 Maximum Conducted Output Power

## 2.7.1 Specification Reference

FCC 47 CFR Part 15C, Clause 15.247 (b)

# 2.7.2 Equipment Under Test and Modification State

V3 SS03, S/N: Not serialised (0075947856-TSR0013) - Modification State 0

#### 2.7.3 Date of Test

03-April-2020

### 2.7.4 Test Method

The test was performed in accordance with ANSI C63.10, clause 11.9.1.1.

# 2.7.5 Environmental Conditions

Ambient Temperature25.7 °CRelative Humidity25.0 %

#### 2.7.6 Test Results

Bluetooth Low Energy

| Frequency (MHz) | Maximum Output Power |       |  |  |  |
|-----------------|----------------------|-------|--|--|--|
|                 | dBm                  | mW    |  |  |  |
| 2402            | -4.56                | 0.350 |  |  |  |
| 2440            | -4.61                | 0.346 |  |  |  |
| 2480            | -4.64                | 0.344 |  |  |  |

#### Table 25

FCC 47 CFR Part 15, Limit Clause 15.247 (b)(3)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.



# 2.7.7 Test Location and Test Equipment Used

This test was carried out in RF Laboratory 1.

| Instrument                           | Manufacturer          | Туре No        | TE No | Calibration<br>Period<br>(months) | Calibration Due |
|--------------------------------------|-----------------------|----------------|-------|-----------------------------------|-----------------|
| 10dB/1W SMA Attenuator<br>dc - 18GHz | Sealectro             | 60-674-1010-89 | 395   | -                                 | O/P Mon         |
| Hygrometer                           | Rotronic              | I-1000         | 3220  | 12                                | 25-Sep-2020     |
| EXA                                  | Keysight Technologies | N9010B         | 4968  | 24                                | 23-Dec-2021     |
| Network Analyser                     | Keysight Technologies | E5063A         | 5018  | 12                                | 20-May-2020     |
| Cable (18 GHz)                       | Rosenberger           | LU7-071-2000   | 5106  | 12                                | 09-Dec-2020     |
| Electronic Calibration<br>Module     | Keysight Technologies | 85093C         | 5188  | 12                                | 21-May-2020     |

## Table 26

O/P Mon – Output Monitored using calibrated equipment



# 3 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

| Test Name                         | Measurement Uncertainty                                |
|-----------------------------------|--------------------------------------------------------|
| Maximum Conducted Output Power    | ± 3.2 dB                                               |
| Power Spectral Density            | ± 3.2 dB                                               |
| Emission Bandwidth                | ± 50.098 kHz                                           |
| AC Power Line Conducted Emissions | 150 kHz to 30 MHz, LISN, ±3.7 dB                       |
| Restricted Band Edges             | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Spurious Radiated Emissions       | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |
| Authorised Band Edges             | 30 MHz to 1 GHz: ± 5.2 dB<br>1 GHz to 40 GHz: ± 6.3 dB |

## Table 27

#### Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.