

FCC Test Report

Report No.: AGC01040240402FR02

FCC ID : 2ACN7HRM812S

PRODUCT DESIGNATION: Heart rate Monitor

BRAND NAME : N/A

HRM812S, HRM812, HRM813, HRM814, HRM816,

MODEL NAME: HRM817, HRM803, HRM804, HRM805, HRM806, HRM807,

HRM803S, HRM804S, HR6, HR7, HR8, H6M, PSHR300

APPLICANT: ShenZhen Fitcare Electronics Co., Ltd.

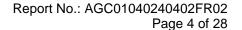
DATE OF ISSUE : Apr. 17, 2024

STANDARD(S) : FCC Part 15 Subpart C §15.249

REPORT VERSION: V 1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

Page 2 of 28


REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Apr. 17, 2024	Valid	Initial Release

TABLE OF CONTENTS

1. GENERAL INFORMATION	
2. PRODUCT INFORMATION	5
2.1 PRODUCT TECHNICAL DESCRIPTION	5
2.2 TEST FREQUENCY LIST	5
2.3 RELATED SUBMITTAL(S) / GRANT (S)	6
2.4 TEST METHODOLOGY	6
2.5 SPECIAL ACCESSORIES	6
2.6 EQUIPMENT MODIFICATIONS	6
2.7 ANTENNA REQUIREMENT	6
2.8 DUTY CYCLE	
3. TEST ENVIRONMENT	ε
3.1 ADDRESS OF THE TEST LABORATORY	8
3.2 TEST FACILITY	8
3.3 ENVIRONMENTAL CONDITIONS	9
3.4 MEASUREMENT UNCERTAINTY	g
3.5 LIST OF EQUIPMENTS USED	
4. SYSTEM TEST CONFIGURATION	11
4.1 EUT CONFIGURATION	
4.2 EUT EXERCISE	11
4.3 CONFIGURATION OF TESTED SYSTEM	11
4.4 EQUIPMENT USED IN TESTED SYSTEM	11
4.5 SUMMARY OF TEST RESULTS	
5. DESCRIPTION OF TEST MODES	13
6. 20 DB BANDWIDTH	14
6.1 MEASUREMENT PROCEDURE	14
6.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	14
6.3 MEASUREMENT RESULTS	15
7. RADIATED EMISSION	16
7.1 LIMITS OF RADIATED EMISSION TEST	16
7.2 MEASUREMENT PROCEDURE	17
7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)	19
7.4 MEASUREMENT RESULT	20
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	28
APPENDIX R. PHOTOGRAPHS OF TEST FUT	28

1. GENERAL INFORMATION

Applicant	ShenZhen Fitcare Electronics Co., Ltd.	
Address	6th floor(south), Building A, Dingxin Science Park Honglang North 2nd Road, Bao'an, Shenzhen 518100, China	
Manufacturer	ShenZhen Fitcare Electronics Co., Ltd.	
Address	6th floor(south), Building A, Dingxin Science Park Honglang North 2nd Road, Bao'an, Shenzhen 518100, China	
Factory	ShenZhen Fitcare Electronics Co., Ltd.	
Address	6th floor(south), Building A, Dingxin Science Park Honglang North 2nd Road, Bao'an, Shenzhen 518100, China	
Product Designation	Heart rate Monitor	
Brand Name	N/A	
Test Model	HRM812S	
Series Model	HRM812, HRM813, HRM814, HRM816, HRM817, HRM803, HRM804, HRM805, HRM806, HRM807, HRM803S, HRM804S, HR6, HR7, HR8, H6M, PSHR300	
Declaration of Difference	All the same except for the model name.	
Date of receipt of test item	Apr. 10, 2024	
Date of test	Apr. 10, 2024 to Apr. 17, 2024	
Deviation	None	
Condition of Test Sample	Normal	
Report Template	AGCRT-JP-SRD/RF	

Note: The test results of this report relate only to the tested sample identified in this report.

Prepared By	Thea Huang	
	Thea Huang (Project Engineer)	Apr. 17, 2024
Reviewed By	Calvin Liu	
	Calvin Liu (Reviewer)	Apr. 17, 2024
Approved By	Max Zhang	
•	Max Zhang (Authorized Officer)	Apr. 17, 2024

Page 5 of 28

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION

Hardware Version	1.1
Software Version	1.1
Equipment Specification	ANT+
Frequency Band	2400MHz-2483.5MHz
Operation Frequency	2457MHz
Modulation Type	GFSK
Number of channels	1 Channel
Field Strength of Fundamental	93.58dBuV/m(Average)@3m
Antenna Designation	PCB Antenna
Antenna Gain	0.3dBi
Power Supply	DC 3.0V by battery

2.2 TEST FREQUENCY LIST

Frequency Band	Channel Number	Frequency
2400~2483.5MHz	01	2457MHz

Page 6 of 28

2.3 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2ACN7HRM812S** filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 TEST METHODOLOGY

The tests were performed according to following standards:

No.	Identity	Document Title	
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations	
2	FCC 47 CFR Part 15	Radio Frequency Devices	
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices	

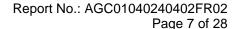
2.5 SPECIAL ACCESSORIES

Not available for this EUT intended for grant.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

2.7 ANTENNA REQUIREMENT

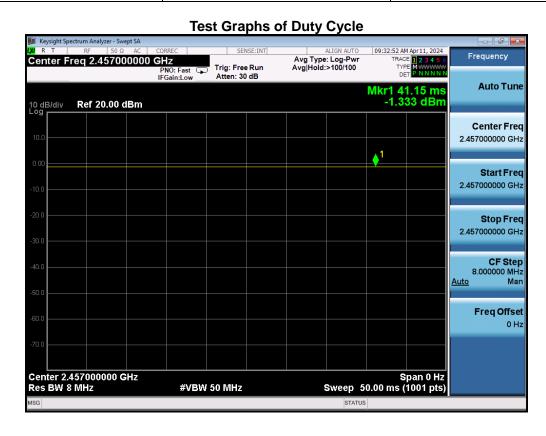

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0.3dBi.



2.8 DUTY CYCLE

The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW=8MHz, VBW=50MHz. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Frequency	Duty Cycle
TX	2457MHz	100%

Page 8 of 28

3. TEST ENVIRONMENT

3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 9 of 28

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS	EXTREME CONDITIONS
Temperature range (°C)	15 - 35	-10 - 45
Relative humidty range	20 % - 75 %	20 % - 75 %
Pressure range (kPa)	86 - 106	86 - 106
Power supply		

Note: The Extreme Temperature and Extreme Voltages declared by the manufacturer.

3.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$
Uncertainty of Occupied Channel Bandwidth	U _c = ±2 %

Page 10 of 28

3.5 LIST OF EQUIPMENTS USED

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
Test Receiver	R&S	ESCI	10096	Feb. 01, 2024	Jan. 31, 2025
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Jun. 01, 2023	May 31, 2024
2.4G Band Fliter	EM Electronics	2400-2500	N/A	Jun. 01, 2023	May 31, 2024
Attenuator	ZHINAN	E-002	N/A	Aug. 04, 2022	Aug. 03, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	#768	Sep. 24, 2023	Sep. 23, 2025
Active Loop Antenna (9K-30Mhz)	ZHINAN	ZN30900C	18051	Mar. 05, 2024	Mar. 04, 2026
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	Mar. 23, 2023	Mar. 22, 2025
Preamplifier Assembly	ETS	3117PA	00225134	Sep. 02, 2022	Sep. 01, 2024
Wideband Antenna	SCHWARZBECK	VULB9168	VULB9168-49 4	Jan. 05, 2023	Jan. 04, 2025
Test Software	FARA	EZ-EMC(Ver.RA-0 3A)	N/A	N/A	N/A

Page 11 of 28

4. SYSTEM TEST CONFIGURATION

4.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT EXERCISE

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 CONFIGURATION OF TESTED SYSTEM

Radiate	d Emission Configure:
	EUT

4.4 EQUIPMENT USED IN TESTED SYSTEM

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

☐ Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1	Heart rate Monitor	ShenZhen Fitcare Electronics Co., Ltd.	HRM812S	-	

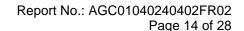
Page 12 of 28

4.5 SUMMARY OF TEST RESULTS

Item	FCC Rules	Description Of Test	Result
1	§15.203	Antenna Equipment	Pass
2	§15.249(a)	Field Strength of Fundamental	Pass
3	§15.209, §15.249	Radiated Emission& Band Edge	Pass
4	§15.215	20dB Bandwidth	Pass
9	§15.207	AC Power Line Conducted Emission	Not applicable

Note: 1.N/A means not applicable

2. The device under test is battery-powered and does not require evaluation of AC Power Line Conducted Emission.

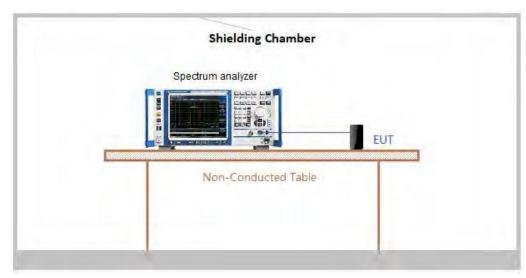

Page 13 of 28

5. DESCRIPTION OF TEST MODES

Summary table of Test Cases					
Test Item	Data Rate / Modulation				
rest item	ANT+ / GFSK				
Radiated&Conducted Test Cases	Mode 1: ANT+ Tx_2457MHz				
AC Conducted Emission	Not applicable				

Note:

- 1. Only the result of the worst case was recorded in the report, if no other cases.
- 2. The battery is full-charged during the test.
- 3. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 4. For Conducted Test method, a temporary antenna connector is provided by the manufacture.
- This device does not need software control, the manufacturer has written the program into the chip, and it can be launched after power-on.

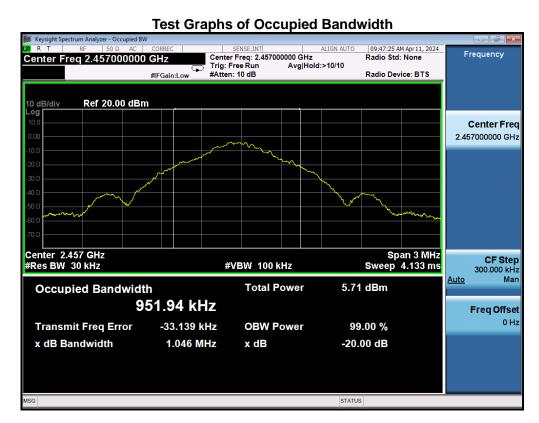


6. 20 DB BANDWIDTH

6.1 MEASUREMENT PROCEDURE

- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss
 was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 30 kHz. Set the Video bandwidth (VBW) = 100 kHz. In order to make an accurate measurement.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Measure and record the results in the test report.

6.2 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)



Page 15 of 28

6.3 MEASUREMENT RESULTS

Test Data of Occupied Bandwidth and -20dB Bandwidth							
Test Mode	-20dB Bandwidth (MHz)	Limits (MHz)	Pass or Fail				
GFSK	2457	0.952	1.046	N/A	Pass		

Page 16 of 28

7. RADIATED EMISSION

7.1 LIMITS OF RADIATED EMISSION TEST

15.249 Limit in the below table has to be followed:

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics	
	(millivolts/meter)	(microvolts/meter)	
900-928MHz	50	500	
2400-2483.5MHz	50	500	
5725-5875MHz	50	500	
24.0-24.25GHz	250	2500	

15.209 Limit in the below table has to be followed:

Frequency	Distance	Field	Strengths Limit	
(MHz)	Meters	μ V/m	dB(μV)/m	
0.009 ~ 0.490	300	2400/F(kHz)		
0.490 ~ 1.705	30	24000/F(kHz)		
1.705 ~ 30	30	30		
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
960 ~ 1000	3	500	54.0	
Above 1000	3	Other:74.0 dB(µV)/m	n (Peak) 54.0 dB(µV)/m	
		(Average)	(Average)	

Remark:

- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

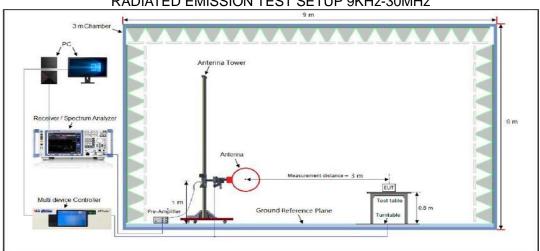
Page 17 of 28

7.2 MEASUREMENT PROCEDURE

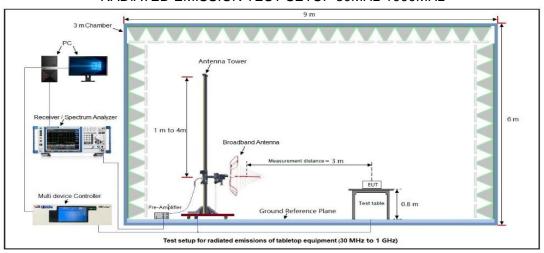
- The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Page 18 of 28

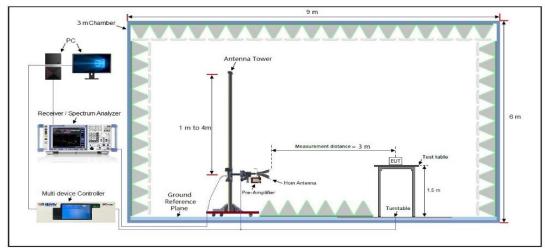
The following table is the setting of spectrum analyzer and receiver.


Spectrum Parameter	Setting		
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP		
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP		
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP		
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average		

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



7.3 MEASUREMENT SETUP (BLOCK DIAGRAM OF CONFIGURATION)


RADIATED EMISSION TEST SETUP 9KHz-30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Web: http://www.agccert.com/

Page 20 of 28

7.4 MEASUREMENT RESULT

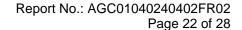
FIELD STRENGTH OF FUNDAMENTAL

EUT	Heart rate Monitor	Model Name	HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Modulation	GFSK	Polarization	Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
2457	44.64	49.05	93.69	114.00	-20.31	peak	
2457	44.51	49.05	93.56	94.00	-0.44	AVG	
Remark:							
Factor = Ante	Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	Heart rate Monitor		HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Modulation	GFSK	Polarization	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
2457	44.65	49.05	93.70	114.00	-20.30	peak
2457	44.53	49.05	93.58	94.00	-0.42	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						


Page 21 of 28

RADIATED EMISSION BELOW 30MHZ

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

	RADIATED EMISSION FROM 30MHZ TO 1000MHZ								
EU.	Т		Heart rat	e Monitor		Model Na	me	HRM8	12S
Ten	npera	ture	22.4° C	22.4° C		Relative I	Relative Humidity		
Pre	ssure		985hPa			Test Volta	ige	Norma	l Voltage
Tes	t Mod	e	Mode 1			Antenna		Horizoi	ntal
		130			FCC Part 1	5C			·
		120							
		110							
		90							
		80							
	uV//m]	70							
	Level[dBµV/m]	50							
	Le	40							
		30	*	— • 3	**			June 5	, may to provide the same of t
		20		~~~	- Marine Marine		and the second of the second	And I have been a	
		10							
		-10		40014					
		30M		100M	Frequency[Hz]			1G
		QP LimitQP Detector	Horizontal PK			,			
	NO.	Freq. [MHz]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
	1	35.82	27.14	11.52	40.00	12.86	100	270	Horizontal
	2	54.25	27.91	16.35	40.00	12.09	100	320	Horizontal
	3	102.75	30.23	16.93	43.50	13.27	100	210	Horizontal
	4	141.55	27.09	16.13	43.50	16.41	100	120	Horizontal
	5	613.94	30.42	25.25	46.00	15.58	100	260	Horizontal
	6	874.87	34.82	29.51	46.00	11.18	100	300	Horizontal

RESULT: PASS

EUT		Heart ra	Heart rate Monitor			ame	HRM8	312S
Temperat	ure	22.4° C	;		Relative	Relative Humidity))
Pressure		985hPa			Test Voltage		Norma	al Voltage
Test Mod	е	Mode 1			Antenna	Antenna		al
	130			FCC Part 1	5C			
	120							
	110							
	90							
E	70							
Level[dBµV/m]	60							
Level	50							
	30	"² "³	**				 5	### ⁶
	20		~~ \	hamman .		and the second second second second second	Myselvan production of the said	W
	10				an war of the same			
	-10							
	30M		100M	Francisco	nı-1			1G
	— QP Limit # QP Detector	Vertical PK		Frequency[[HZ]			
NO.	Freq.	Level	Factor	Limit	Margin	Height	Angle	Polarity
	[MHz]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[°]	,
1	35.82	24.29	11.52	40.00	15.71	100	0	Vertical
2	54.25	30.06	16.35	40.00	9.94	100	230	Vertical
3	67.83	30.00	15.36	40.00	10.00	100	230	Vertical
4	101.78	36.69	16.98	43.50	6.81	100	120	Vertical
5	620.73	29.97	25.82	46.00	16.03	100	90	Vertical
6	879.72	35.66	29.34	46.00	10.34	100	70	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Limit-Level.

Page 23 of 28

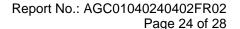
RADIATED EMISSION ABOVE 1GHZ

EUT	Heart rate Monitor	Model Name	HRM812S			
Temperature	22.4° C	Relative Humidity	56.3%			
Pressure	985hPa	Test Voltage	Normal Voltage			
Test Mode	Mode 1	Antenna	Horizontal			

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4914.000	46.89	0.08	46.97	74	-27.03	peak
4914.000	36.41	0.08	36.49	54	-17.51	AVG
7371.000	44.56	2.21	46.77	74	-27.23	peak
7371.000	35.32	2.21	37.53	54	-16.47	AVG
Remark:						
Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

EUT	Heart rate Monitor	Model Name	HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4914.000	47.54	0.08	47.62	74	-26.38	peak
4914.000	36.71	0.08	36.79	54	-17.21	AVG
7371.000	46.46	2.21	48.67	74	-25.33	peak
7371.000	33.92	2.21	36.13	54	-17.87	AVG
emark:						

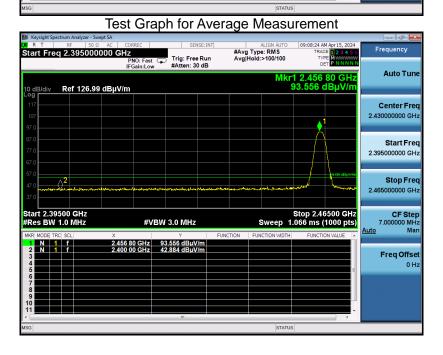

RESULT: PASS

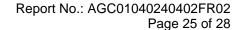
Note:

The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin=Emission Level-Limit.

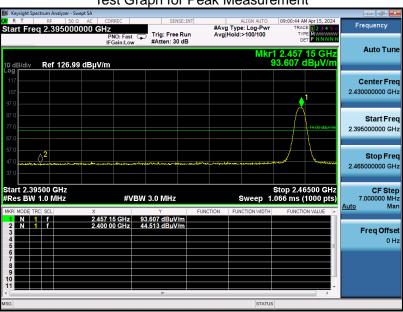
The "Factor" value can be calculated automatically by software of measurement system.

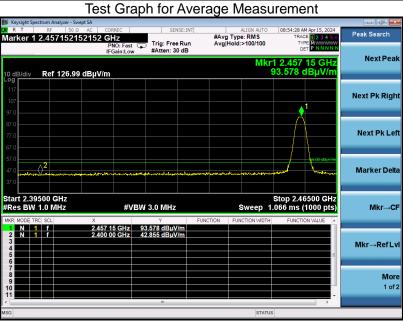


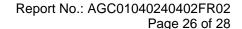

TEST RESULT FOR BAND EDGE EMISSION AT RESTRICTED BANDS

1201 (2002) 1 0(CD/MD 2002 200101/1 (2011/1012) D/MD0					
EUT	Heart rate Monitor	Model Name	HRM812S		
Temperature	22.4° C	Relative Humidity	56.3%		
Pressure	985hPa	Test Voltage	Normal Voltage		
Test Mode	Mode 1	Antenna	Horizontal		

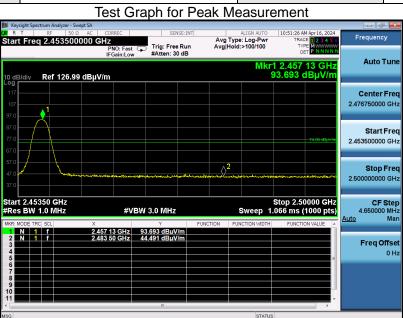
Test Graph for Peak Measurement #Avg Type: Log-Pwi Avg|Hold:>100/100 Start Freq 2.395000000 GHz PNO: Fast Trig: Free Run Auto Tun Ref 126.99 dBµV/m Center Fred Start Fred 2.395000000 GHz Stop Fred Stop 2.46500 GHz 1.066 ms (1000 pts) Start 2.39500 GHz #Res BW 1.0 MHz CF Step 7.000000 MHz Man #VBW 3.0 MHz 2.457 15 GHz 93.581 dBµV/m 2.400 00 GHz 45.037 dBµV/m Freq Offset

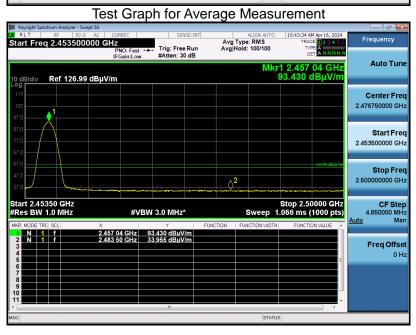

RESULT: PASS

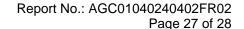



EUT	Heart rate Monitor	Model Name	HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

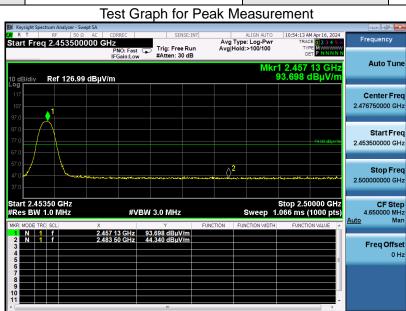
Test Graph for Peak Measurement

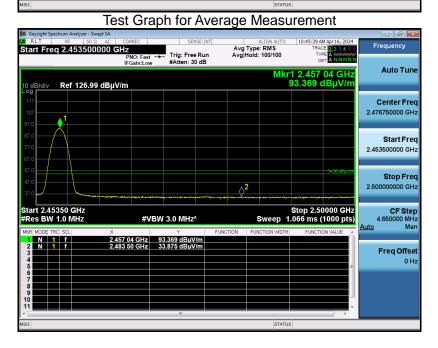



RESULT: PASS



EUT	Heart rate Monitor	Model Name	HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Horizontal




RESULT: PASS

EUT	Heart rate Monitor	Model Name	HRM812S
Temperature	22.4° C	Relative Humidity	56.3%
Pressure	985hPa	Test Voltage	Normal Voltage
Test Mode	Mode 1	Antenna	Vertical

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss - Amplifier gain. Field Strength=Factor + Reading level

2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer. So the Amplitude of test plots is equal to Reading level plus the Factor in dB. Use the A dB(μ V) to represent the Amplitude. Use the F dB(μ V/m) to represent the Field Strength. So A=F.

Page 28 of 28

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC01040240402AP02

APPENDIX B: PHOTOGRAPHS OF TEST EUT

Refer to the Report No.: AGC01040240402AP03

----END OF REPORT----

Conditions of Issuance of Test Reports

- 1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").
- 2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.
- 3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.
- 4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.
- 5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.
- 6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.
- 7.Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.
- 8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.
- 9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.