TEST REPORT Applicant: ZHEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD Address: No.19 XinTao Road, Provincial High Tech Park, XinChang county, ZheJiang Province, China 312500 FCC ID: 2ANKDJCP35W2 **Product Name: JCP35W2** Model Number: JCP35W2 Standard(s): 47 CFR Part 15, Subpart C ANSI C63.10-2013 The above equipment has been tested and found compliance with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan) Report Number: CR21100027-00 Date Of Issue: 2021-11-25 Reviewed By: Sun Zhong Sun 2hong Title: Manager Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888 #### **Test Facility** The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China. The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123. #### **Declarations** China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\Lambda \)". Customer model name, addresses, names, trademarks etc. are not considered data. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★". # **CONTENTS** | DECLARATIONS | | |--|----| | 1. GENERAL INFORMATION | 4 | | 1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) | 4 | | 1.2 DESCRIPTION OF TEST CONFIGURATION | | | 1.2.2 Support Equipment List and Details | | | 1.2.3 Support Cable List and Details | | | 1.2.4 Block Diagram of Test Setup | | | 1.3 MEASUREMENT UNCERTAINTY | 7 | | 2. SUMMARY OF TEST RESULTS | 8 | | 3. REQUIREMENTS AND TEST PROCEDURES | 9 | | 3.1 AC Line Conducted Emissions | | | 3.1.1 Applicable Standard | | | 3.1.2 EUT Setup | | | 3.1.3 EMI Test Receiver Setup | 10 | | 3.1.4 Test Procedure | | | 3.1.5 Corrected Amplitude & Margin Calculation | | | 3.2 RADIATION SPURIOUS EMISSIONS | | | 3.2.1 Applicable Standard | | | 3.2.2 EUT Setup | | | 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup | | | 3.2.4 Corrected Amplitude & Margin Calculation | 13 | | 3.3 ANTENNA REQUIREMENT | 13 | | 3.3.1 Applicable Standard | 13 | | 3.3.2 Judgment | 13 | | 4. TEST DATA AND RESULTS | 14 | | 4.1 AC LINE CONDUCTED EMISSIONS | 14 | | 4.2 RADIATION SPURIOUS EMISSIONS | 19 | | 5 MAXIMUM PERMISSIBLE EXPOSURE (MPE) | 24 | | 5.1 Applicable Standard | 24 | | 5.2 Block Diagram of Test Setup | | | e i | 26 | ## 1. GENERAL INFORMATION ## 1.1 Product Description for Equipment under Test (EUT) | EUT Name: | JCP35W2 | |-----------------------------|--| | EUT Model: | JCP35W2 | | Operation Frequency: | 110-150 kHz | | RF Power Output: | 10W | | Rated Input Voltage: | DC 24~33V | | Serial Number: | CR21100027-RF-S2(2pin)
CR21100027-RF-S3(4pin) | | EUT Received Date: | 2021.10.14 | | EUT Received Status: | Good | ## **Antenna Information Detail▲**: | 3.5 | Antenna | input impedance | Antenna Gain | §15.203 | |---|---------|-----------------|------------------|-------------| | Antenna Manufacturer | Type | (Ohm) | /Frequency Range | Requirement | | ZHEJIANG JIECANG | | | | | | LINEAR MOTION | Coil | 50 | Unknown | Compliance | | TECHNOLOGY CO., | Con | 30 | Chkhown | Comphance | | LTD | | | | | | The Method of §15.203 Compliance: | | | | | | ☐Antenna must be permanently attached to the unit. ☐ Antenna must be permanently attached to the unit. | | | | | | Antenna must use a unique type of connector to attach to the EUT. | | | | | | Unit must be professionally installed, and installer shall be responsible for verifying that the | | | | | | correct antenna is employed with the unit. | | | | | ## **Accessory Information:** No Accessory. ## 1.2 Description of Test Configuration ## 1.2.1 EUT Operation Condition: | EUT Operation Mode: | The system was configured for testing in Engineering Mode, which was provided by the manufacturer. | |------------------------------|--| | Equipment Modifications: | No | | EUT Exercise Software: | No | | Engineering Mode was provide | d by manufacturer A The maximum nower was configured default | Engineering Mode was provided by manufacturer ▲. The maximum power was configured default setting. ### 1.2.2 Support Equipment List and Details | Manufacturer | er Description Mo | | Serial Number | |--------------|-------------------|------------------|------------------| | Powertron | Adapter | PA1090-240T1A400 | PA1090-240T1A400 | | YBZ | Wireless Load | Wireless Load | Wireless Load-1 | 1.2.3 Support Cable List and Details | Cable Description | Shielding
Type | Ferrite Core | Length (m) | From Port | То | |-------------------|-------------------|--------------|------------|-----------|-----| | DC Power Cable | No | No | 1.2 | Adapter | EUT | ## 1.2.4 Block Diagram of Test Setup AC Line Conducted Emission: ## Radiated Emission: ## 1.3 Measurement Uncertainty Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. | Parameter | Measurement Uncertainty | |--------------------------------------|--| | | 9kHz~30MHz: 4.12dB | | radiated Emissions | 30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, | | | 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB | | Temperature | ±1 ℃ | | Humidity | ±5% | | DC and low frequency voltages | ±0.4% | | Duty Cycle | 1% | | AC Power Lines Conducted
Emission | 2.8 dB (150 kHz to 30 MHz) | # 2. SUMMARY OF TEST RESULTS | Standard(s) Section | Description of Test | Result | |----------------------|------------------------------------|------------| | FCC§15.207 | AC Line Conducted Emission | Compliance | | §15.209 §15.205 | Radiated Emission Test | Compliance | | FCC§15.203 | Antenna Requirement | Compliance | | FCC §1.1310, §2.1091 | Maximum Permissible Exposure (MPE) | Compliance | ## 3. REQUIREMENTS AND TEST PROCEDURES #### 3.1 AC Line Conducted Emissions ### 3.1.1 Applicable Standard FCC§15.207(a). (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges. | | Conducted limit (dBµV) | | |-----------------------------|------------------------|-----------| | Frequency of emission (MHz) | Quasi-peak | Average | | 0.15-0.5 | 66 to 56* | 56 to 46* | | 0.5-5 | 56 | 46 | | 5-30 | 60 | 50 | ^{*}Decreases with the logarithm of the frequency. - (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards: - (1) For carrier current system containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions. - (2) For all other carrier current systems: $1000~\mu V$ within the frequency band 535-1705~kHz, as measured using a $50~\mu H/50$ ohms LISN. - (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits in §15.205, §15.209, §15.221, §15.223, or §15.227, as appropriate. - (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provisions for, the use of battery chargers which permit operating while charging, AC adapters or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits. ## **3.1.2 EUT Setup** Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units. The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits. The spacing between the peripherals was 10 cm. The adapter or EUT was connected to the main LISN with a 120 V/60 Hz AC power source. ## 3.1.3 EMI Test Receiver Setup The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz. During the conducted emission test, the EMI test receiver was set with the following configurations: | Frequency Range | IF B/W | | |------------------|--------|--| | 150 kHz – 30 MHz | 9 kHz | | #### 3.1.4 Test Procedure The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor identified with the emission. The six highest emissions should be reported for each of the current-carrying conductors, or the six highest emissions may be reported over all the current-carrying conductors. #### 3.1.5 Corrected Amplitude & Margin Calculation The basic equation is as follows: Result = Reading + Factor Factor = attenuation caused by cable loss + voltage division factor of AMN The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows: Margin = Limit - Result ### 3.2 Radiation Spurious Emissions ## 3.2.1 Applicable Standard FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | |-----------------|-----------------------------------|-------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100** | 3 | | 88-216 | 150** | 3 | | 216-960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241. ### 3.2.2 EUT Setup The radiated emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 limits. The spacing between the peripherals was 10 cm. #### 3.2.3 EMI Test Receiver & Spectrum Analyzer Setup The system was investigated from 9 kHz to 1 GHz. During the radiated emission test, the EMI test Receiver was set with the following configurations: | Frequency Range | RBW | Video B/W | Measurement | |-------------------|---------|-----------|-------------| | 9 kHz – 150 kHz | 200 Hz | 1 kHz | QP/Average | | 150 kHz – 30 MHz | 9 kHz | 30 kHz | QP/Average | | 30 MHz – 1000 MHz | 120 kHz | 300 kHz | QP | The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement #### 3.2.4 Corrected Amplitude & Margin Calculation The basic equation is as follows: Result = Reading + Factor Factor = Antenna Factor + Cable Loss- Amplifier Gain The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. The equation for margin calculation is as follows: Margin = Limit - Result #### 3.3 Antenna Requirement #### 3.3.1 Applicable Standard FCC §15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §§15.211, 15.213, 15.217, 15.219, 15.221, or §15.236. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded. #### 3.3.2 Judgment Please refer to the Antenna Information detail in Section 1. ## 4. Test DATA AND RESULTS ## **4.1 AC Line Conducted Emissions** | Serial Number: | CR21100027-RF-S2
CR21100027-RF-S3 | Test Date: | 2021-11-25 | |----------------|--------------------------------------|--------------|------------| | Test Site: | CE | Test Mode: | Charging | | Tester: | Allen Wu | Test Result: | Pass | | Environmental Conditions: | | | | | | | | |-------------------------------------|----|------------------------------|----|---------------------|-------|--|--| | Temperature: $(^{\circ}\mathbb{C})$ | 24 | Relative
Humidity:
(%) | 63 | ATM Pressure: (kPa) | 100.9 | | | ### **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due
Date | |--------------|----------------------|---------|------------------|---------------------|-------------------------| | R&S | LISN | ENV216 | 101132 | 2021-04-25 | 2022-04-24 | | R&S | LISN | ENV216 | 101134 | 2021-04-25 | 2022-04-24 | | R&S | EMI Test
Receiver | ESR3 | 102726 | 2021-07-22 | 2022-07-21 | | MICRO-COAX | Coaxial Cable | UTIFLEX | C-0200-01 | 2021-08-08 | 2022-08-07 | | Audix | Test Software | E3 | 190306 (V9) | N/A | N/A | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). 2PIN-Charging Line | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|--------|--------|--------|----------| | | (MHz) | (dBµV) | (dB) | (dBµV) | (dBµV) | (dB) | | | 1 | 0.504 | 16.93 | 9.61 | 26.54 | 46.00 | 19.46 | Average | | 2 | 0.504 | 31.76 | 9.61 | 41.37 | 56.00 | 14.63 | QP | | 3 | 1.166 | 16.85 | 9.62 | 26.48 | 46.00 | 19.52 | Average | | 4 | 1.166 | 24.91 | 9.62 | 34.53 | 56.00 | 21.47 | QP | | 5 | 15.318 | 38.94 | 9.70 | 48.63 | 50.00 | 1.37 | Average | | 6 | 15.318 | 43.00 | 9.70 | 52.69 | 60.00 | 7.31 | QP | | 7 | 16.559 | 39.11 | 9.72 | 48.83 | 50.00 | 1.17 | Average | | 8 | 16.559 | 46.03 | 9.72 | 55.75 | 60.00 | 4.25 | QP | | 9 | 19.553 | 38.02 | 9.79 | 47.81 | 50.00 | 2.19 | Average | | 10 | 19.553 | 46.77 | 9.79 | 56.56 | 60.00 | 3.44 | QP | | 11 | 23.605 | 38.35 | 9.81 | 48.16 | 50.00 | 1.84 | Average | | 12 | 23,605 | 44.21 | 9.81 | 54.02 | 60.00 | 5.98 | OP | ## Neutral | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|--------|--------|--------|----------| | | (MHz) | (dBµV) | (dB) | (dBµV) | (dBµV) | (dB) | | | 1 | 0.504 | 18.52 | 9.61 | 28.13 | 46.00 | 17.87 | Average | | 2 | 0.504 | 30.93 | 9.61 | 40.54 | 56.00 | 15.46 | QP | | 3 | 1.214 | 17.34 | 9.62 | 26.96 | 46.00 | 19.04 | Average | | 4 | 1.214 | 25.31 | 9.62 | 34.93 | 56.00 | 21.07 | QP | | 5 | 14.811 | 38.67 | 9.69 | 48.36 | 50.00 | 1.64 | Average | | 6 | 14.811 | 41.86 | 9.69 | 51.55 | 60.00 | 8.45 | QP | | 7 | 16.400 | 39.12 | 9.69 | 48.81 | 50.00 | 1.19 | Average | | 8 | 16.400 | 43.61 | 9.69 | 53.30 | 60.00 | 6.70 | QP | | 9 | 19.390 | 38.71 | 9.69 | 48.40 | 50.00 | 1.60 | Average | | 10 | 19.390 | 42.55 | 9.69 | 52.25 | 60.00 | 7.75 | QP | | 11 | 24.331 | 39.07 | 9.75 | 48.83 | 50.00 | 1.17 | Average | | 12 | 24.331 | 43.71 | 9.75 | 53.47 | 60.00 | 6.53 | QP | 4PIN Line | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|--------|--------|--------|----------| | | (MHz) | (dBµV) | (dB) | (dBµV) | (dBµV) | (dB) | | | 1 | 0.514 | 29.26 | 9.61 | 38.88 | 46.00 | 7.12 | Average | | 2 | 0.514 | 35.24 | 9.61 | 44.85 | 56.00 | 11.15 | QP | | 3 | 1.217 | 16.97 | 9.62 | 26.60 | 46.00 | 19.40 | Average | | 4 | 1.217 | 26.62 | 9.62 | 36.24 | 56.00 | 19.76 | QP | | 5 | 16.540 | 30.97 | 9.72 | 40.69 | 50.00 | 9.31 | Average | | 6 | 16.540 | 36.81 | 9.72 | 46.53 | 60.00 | 13.47 | QP | | 7 | 18.201 | 30.70 | 9.75 | 40.45 | 50.00 | 9.55 | Average | | 8 | 18.201 | 42.86 | 9.75 | 52.61 | 60.00 | 7.39 | QP | | 9 | 21.900 | 34.47 | 9.81 | 44.28 | 50.00 | 5.72 | Average | | 10 | 21.900 | 44.19 | 9.81 | 54.00 | 60.00 | 6.00 | QP | | 11 | 23.899 | 36.35 | 9.81 | 46.16 | 50.00 | 3.84 | Average | | 12 | 23.899 | 43.01 | 9.81 | 52.82 | 60.00 | 7.18 | QP | ## Neutral | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|--------|--------|--------|----------| | | (MHz) | (dBµV) | (dB) | (dBµV) | (dBµV) | (dB) | | | 1 | 0.507 | 26.36 | 9.61 | 35.97 | 46.00 | 10.03 | Average | | 2 | 0.507 | 34.20 | 9.61 | 43.81 | 56.00 | 12.19 | QP | | 3 | 1.160 | 15.51 | 9.62 | 25.13 | 46.00 | 20.87 | Average | | 4 | 1.160 | 23.16 | 9.62 | 32.78 | 56.00 | 23.22 | QP | | 5 | 16.223 | 36.87 | 9.69 | 46.56 | 50.00 | 3.44 | Average | | 6 | 16.223 | 40.75 | 9.69 | 50.44 | 60.00 | 9.56 | QP | | 7 | 17.733 | 39.03 | 9.69 | 48.72 | 50.00 | 1.28 | Average | | 8 | 17.733 | 45.88 | 9.69 | 55.57 | 60.00 | 4.43 | QP | | 9 | 19.729 | 38.39 | 9.70 | 48.09 | 50.00 | 1.91 | Average | | 10 | 19.729 | 45.41 | 9.70 | 55.11 | 60.00 | 4.89 | QP | | 11 | 22.906 | 38.61 | 9.74 | 48.35 | 50.00 | 1.65 | Average | | 12 | 22.906 | 44.18 | 9.74 | 53.92 | 60.00 | 6.08 | QP | ## 4.2 Radiation Spurious Emissions | Serial Number: | CR21100027-RF-S2
CR21100027-RF-S3 | Test Date: | 2021-10-15 | |----------------|--------------------------------------|--------------|--------------| | Test Site: | | Test Mode: | Transmitting | | Tester: | Great Qiao | Test Result: | Pass | | Environmental Conditions: | | | | | | | | | |---------------------------|------|------------------------------|----|---------------------|-------|--|--|--| | Temperature: (°C) | 25.9 | Relative
Humidity:
(%) | 63 | ATM Pressure: (kPa) | 100.9 | | | | ## **Test Equipment List and Details:** | Test Equipment List and Details. | | | | | | | | | |----------------------------------|----------------------|-----------------------|------------------|---------------------|-------------------------|--|--|--| | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due
Date | | | | | TESEQ | HF Loop
Antenna | HLA6120 | 33561 | 2021-02-03 | 2024-02-02 | | | | | Sunol Sciences | Antenna | ЈВ6 | A082520-5 | 2020-10-19 | 2023-10-18 | | | | | R&S | EMI Test
Receiver | ESR3 | 102724 | 2021-07-22 | 2022-07-21 | | | | | TIMES
MICROWAVE | Coaxial Cable | LMR-600-
UltraFlex | C-0470-02 | 2021-07-18 | 2022-07-17 | | | | | TIMES
MICROWAVE | Coaxial Cable | LMR-600-
UltraFlex | C-0780-01 | 2021-07-18 | 2022-07-17 | | | | | Sonoma | Amplifier | 310N | 186165 | 2021-07-18 | 2022-07-17 | | | | | Audix | Test Software | E3 | 201021 (V9) | N/A | N/A | | | | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). ## Test Data(4Pin was the worst): ## 1) 9-150 kHz: | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|----------|----------|--------|----------| | | (MHz) | (dBµV) | (dB/m) | (dBµV/m) | (dBµV/m) | (dB) | | | 1 | 0.029 | 30.73 | 20.41 | 51.14 | 118.40 | 67.26 | Peak | | 2 | 0.040 | 26.76 | 20.41 | 47.17 | 115.67 | 68.50 | Peak | | 3 | 0.079 | 25.99 | 20.36 | 46.35 | 109.61 | 63.26 | Peak | | 4 | 0.093 | 22.19 | 20.27 | 42.46 | 108.24 | 65.78 | Peak | | 5 | 0.122 | 28.71 | 20.22 | 48.93 | 105.89 | 56.96 | Peak | | 6* | 0.150 | 56.66 | 20.22 | 76.88 | 104.08 | 27.20 | Peak | ## *: Fundamental ## 2) 150kHz-30 MHz: | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|----------|----------|--------|----------| | | (MHz) | (dBµV) | (dB/m) | (dBµV/m) | (dBµV/m) | (dB) | | | 1 | 0.150 | 66.35 | 20.22 | 86.57 | 104.08 | 17.51 | Peak | | 2 | 0.312 | 29.77 | 20.11 | 49.88 | 97.73 | 47.85 | Peak | | 3 | 0.449 | 45.47 | 20.05 | 65.52 | 94.56 | 29.04 | Peak | | 4 | 0.751 | 36.50 | 20.03 | 56.53 | 70.01 | 13.48 | Peak | | 5 | 1.049 | 29.47 | 20.02 | 49.49 | 67.05 | 17.56 | Peak | | 6 | 1.352 | 25.52 | 19.97 | 45.49 | 64.80 | 19.31 | Peak | ## 3)30MHz-1GHz ## Horizontal: | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|----------|----------|--------|----------| | | (MHz) | (dBµV) | (dB/m) | (dBµV/m) | (dBµV/m) | (dB) | | | 1 | 30.317 | 30.20 | -4.03 | 26.17 | 40.00 | 13.83 | Peak | | 2 | 46.666 | 39.60 | -15.46 | 24.14 | 40.00 | 15.86 | Peak | | 3 | 136.939 | 44.72 | -11.95 | 32.78 | 43.50 | 10.72 | Peak | | 4 | 211.527 | 47.35 | -12.66 | 34.69 | 43.50 | 8.81 | Peak | | 5 | 290.017 | 37.38 | -11.21 | 26.17 | 46.00 | 19.83 | Peak | | 6 | 860.035 | 30.36 | -1.48 | 28.88 | 46.00 | 17.12 | Peak | ## Vertical: | No. | Frequency | Reading | Factor | Result | Limit | Margin | Detector | |-----|-----------|---------|--------|----------|----------|--------|----------| | | (MHz) | (dBµV) | (dB/m) | (dBµV/m) | (dBµV/m) | (dB) | | | 1 | 30.424 | 36.40 | -4.12 | 32.28 | 40.00 | 7.72 | QP | | 2 | 45.855 | 48.50 | -14.98 | 33.52 | 40.00 | 6.48 | QP | | 3 | 58.613 | 51.38 | -17.60 | 33.78 | 40.00 | 6.22 | Peak | | 4 | 135.982 | 42.06 | -11.90 | 30.16 | 43.50 | 13.34 | Peak | | 5 | 211.527 | 46.58 | -12.66 | 33.92 | 43.50 | 9.58 | Peak | | 6 | 291.036 | 37.45 | -11.15 | 26.30 | 46.00 | 19.70 | Peak | ## **5 MAXIMUM PERMISSIBLE EXPOSURE (MPE)** #### 5.1 Applicable Standard According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091) | (B) Limits for General Population/Uncontrolled Exposure | | | | | | | | | |---|----------------------------------|----------------------------------|------------------------|--------------------------|--|--|--|--| | Frequency Range
(MHz) | Electric Field
Strength (V/m) | Magnetic Field
Strength (A/m) | Power Density (mW/cm²) | Averaging Time (minutes) | | | | | | 0.3-1.34 | 614 | 1.63 | *(100) | 30 | | | | | | 1.34–30 | 824/f | 2.19/f | *(180/f ²) | 30 | | | | | | 30–300 | 27.5 | 0.073 | 0.2 | 30 | | | | | | 300-1500 | / | / | f/1500 | 30 | | | | | | 1500-100,000 | / | / | 1.0 | 30 | | | | | f = frequency in MHz; * = Plane-wave equivalent power density; According with KDB 680106 D01 RF Exposure Wireless Charging Apps v03r01 clause 3 c) c) For devices designed for typical desktop applications, such a wireless charging pads, RF exposure evaluation should be conducted assuming a user separation distance of 15 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m. A KDB inquiry is required to determine the applicable exposure limits below 100 kHz. According to 680106 D01 RF Exposure Wireless Charging App v03r01 clause 5 b) - b) Inductive wireless power transfer applications with supporting field strength results and meeting all of the following requirements are not required to submit a KDB inquiry for devices approved using SDoC ²or a PAG³ for equipment approved using certification to address RF exposure compliance. However, the responsible party is required to keep a copy of the test report in accordance with KDB 865664 D02. A copy of the test report is to be submitted with the application if the device is approved using certification. - (1) Power transfer frequency is less than 1 MHz - (2) Output power from each primary coil is less than or equal to 15 watts. - (3) The system may consist of more than one source primary coils, charging one or more clients. If more than one primary coil is present, the coil pairs may be powered on at the same time. - (4) Client device is placed directly in contact with the transmitter. - (5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion). - (6) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the surface from all coils that by design can simultaneously transmit, and while those coils are simultaneously energized, are demonstrated to be less than 50% of the applicable MPE limit. ## **5.2 Block Diagram of Test Setup** Note: 20 cm for Top test. #### 5.3 Test Data: | Serial Number: | CR21100027-RF-S2
CR21100027-RF-S3 | Test Date: | 2021-10-21 | |----------------|--------------------------------------|--------------|--------------| | Test Site: | | Test Mode: | Transmitting | | Tester: | Mark Wang | Test Result: | Pass | | Environmental Conditions: | | | | | | | | | | | |-------------------------------------|------|------------------------------|----|---------------------|-------|--|--|--|--|--| | Temperature: $(^{\circ}\mathbb{C})$ | 27.2 | Relative
Humidity:
(%) | 65 | ATM Pressure: (kPa) | 100.8 | | | | | | ## **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due
Date | |--------------|--|-----------|------------------|---------------------|-------------------------| | Narda | Electric and
Magnetic Field
Probe-Analyzer | EHP-200AC | 180ZX10204 | 2021-06-07 | 2024-06-06 | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). ## **Test Data(4Pin was the worst):** ### **H-Filed Strength** | Frequency Range
(kHz) | Position
A
(A/m) | Position
B
(A/m) | Position
C
(A/m) | Position
D
(A/m) | Position
E
(A/m) | 50% Limit
(A/m) | Limit
(A/m) | |--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------|----------------| | 110-150 | 0.1836 | 0.1914 | 0.1866 | 0.1886 | 0.2711 | 0.815 | 1.63 | Note: Test with 15cm distance from the center of the probe(s) to the edge of the device, 20 cm for top test. ## **E-Filed Strength** | Frequency Range
(kHz) | Position
A
(V/m) | Position
B
(V/m) | Position
C
(V/m) | Position
D
(V/m) | Position
E
(V/m) | 50% Limit
(V/m) | Limit
(V/m) | |--------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------|----------------| | 110-150 | 0.9884 | 1.0381 | 1.4244 | 0.9307 | 2.3658 | 307 | 614 | Note: Test with 15cm distance from the center of the probe(s) to the edge of the device, 20 cm for top test. Result: Compliance ## Considerations of compliance 680106 D01 RF Exposure Wireless Charging App v03r01 clause 5 b: (1) Power transfer frequency is less than 1 MHz Yes, the operation frequency is 110-150 kHz. (2) Output power from each primary coil is less than or equal to 15 watts. Yes, the maximum output power of primary coil is 10 Watts. (3) The system may consist of more than one source primary coils, charging one or more clients. If more than one primary coil is present, the coil pairs may be powered on at the same time. The transfer system includes only single primary coil, and system detect and allow coupling only between individual pairs of coils. (4) Client device is placed directly in contact with the transmitter. Yes, client device is placed directly in contact with the transmitter (5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion). Yes, mobile exposure conditions only. (6) The aggregate H-field strengths anywhere at or beyond 15 cm surrounding the device, and 20 cm away from the surface from all coils that by design can simultaneously transmit, and while those coils are simultaneously energized, are demonstrated to be less than 50% of the applicable MPE limit. Yes, the test result for H and E-field strength less than 50% of the MPE limit. ***** END OF REPORT *****