

RF Test Report

FCC ID		2AYHY-EM410
EUT	:	Radar Distance/Level Sensor
MODEL	:	EM410-RDL-868M/915M
BRAND NAME	:	Milesight
APPLICANT	:	Xiamen Milesight IoT Co., Ltd.
Classification of Test	:	N/A

CVC Testing Technology (Shenzhen) Co., Ltd.

Page 2 of 46

		Name: Xiamen I	Milesight	loT Co., Ltd.			
Applicant		Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China					
Manufacturer		Name: Xiamen I	Milesight	loT Co., Ltd.			
		Address: Building C09, Software Park Phase III, Xiamen 361024, Fujian, China					
		Name: Radar I	Distance	/Level Sensor			
		Model/Type: El	M410-RD	L-868M/915M			
Equipment Under Test		Additional Model: NB410-RDL-868M/915M,EM410-RDL- 868M,NB410-RDL-868M, EM410-RDL-915M,NB410-RDL- 915M,EM410,NB410					
		Serial NO.: N/A					
		Sample NO.: N/A					
Date of Receipt.	2024.07.18		Date o	f Testing	2024.07.18-2025.01.08		
Tes	st Specificat	tion		1	Test Result		
FCC Part 15, Subpart C,		Section 15.247			PASS		
		The equ	ipment	under test was f	found to comply with		
		the requirements of the standards applied.					
Evaluation of Test Re	esult				Seal of CVC		
					Issue Date: 2025 01 08		
					Approved by:		
Compiled by:		Reviewed by:		y:	Approvea by:		
Liong Jia tag		Mo Xianbiao		iao	r ab		
Liang Jiatong		<u>Mo Xianbiao</u>		2	<u>Dong Sanbi</u>		
Name Signat	Name	Signa	ture	Name Signature			
Abbreviations:OK, Pass= pass	ed Fail = fa	ailed N/A= not app	licable	EUT= equipment, sample	e(s) under tested		

This test report relates only to the EUT, and shall not be reproduced except in full, without written approval of CVC.

(cvc)

CVC Testing Technology (Shenzhen) Co., Ltd.

Test Report No.: FCCSZ2024-0055-RF3

Page 3 of 46

TABLE OF CONTENTS

1	SU	MMARY OF TEST RESULTS	5
	1.1	LIST OF TEST AND MEASUREMENT INSTRUMENTS	6
	1.2	MEASUREMENT UNCERTAINTY	7
	1.3	TEST LOCATION	
2	GE	NERAL INFORMATION	9
	2.1	GENERAL PRODUCT INFORMATION	9
	2.2	OTHER INFORMATION	
	2.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
	2.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	
	2.5	DESCRIPTION OF SUPPORT UNITS	
3	TES	ST TYPES AND RESULTS	
	3.1	RADIATED EMISSIONS	
	3.2	NUMBER OF HOPPING FREQUENCY USED	27
	3.3	DWELL TIME ON EACH CHANNEL	
	3.4	20db EMISSION BANDWIDTH	
	3.5	HOPPING CHANNEL SEPARATION	
	3.6	CONDUCTED OUTPUT POWER	
	3.7	POWER SPECTRAL DENSITY MEASUREMENT	
	3.8	OUT OF BAND EMISSION MEASUREMENT	
	3.9	ANTENNA REQUIREMENT	
4	PH	OTOGRAPHS OF TEST SETUP	
5	PH	OTOGRAPHS OF THE EUT	

Page 4 of 46

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
FCCSZ2024-0055-RF3	Original release	2025.01.08

Page 5 of 46

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15 Subpart C							
STANDARD SECTION TEST TYPE AND LIMIT RESULT REMARK							
15.247(a)(1)	Number of Hopping Frequency Used	PASS	See section 3.2				
15.247(a)(1)	Hopping Channel Separation	PASS	See section 3.5				
15.247(a)(1)	Dwell Time of Each Channel	PASS	See section 3.3				
15.247(a)(1)	20dB Emissions Bandwidth	PASS	See section 3.4				
15.247(b)	Conducted Output Power	PASS	See section 3.6				
15.247(d), 15.209,15.205	Radiated Emissions	PASS	See section 3.1				
15.247(d)	Out of band Emission Measurement	PASS	See section 3.8				
FCC 15.247(e)	C 15.247(e) Power Spectral Density		See section 3.7				
15.203 15.247(b)	Antenna Requirement	PASS	See section 3.9				

Page 6 of 46

1.1 LIST OF TEST AND MEASUREMENT INSTRUMENTS

Equipment Manufacturer		Model No.	Serial Number	Cal. interval	Cal. Due	
Antenna Port Conducted Tes	t					
Signal&Spectrum Analyzer Rohd		Rohde&Schwarz	FSV 30	104408	1 year	2025.5.22
#4Shielding room		MORI	443	N/A	3 year	2026.5.16
Wideband radio communication tester		Rohde&Schwarz	CMW 500	168588	1 year	2025.5.24
Analog signal Generator(100 \sim 12.75GHz))kHz	Rohde&Schwarz	SMB 100A	181882	1 year	2025.4.27
Vector signal Generator(8kH 6GHz)	lz∼	Rohde&Schwarz	SMBV 100B	101846	1 year	2025.4.28
DC power supply		Rohde&Schwarz	HMC8041-G	101203	1 year	2025.4.29
RF control unit(2/3/4/5G))	Tonscend	JS0806-1	CS0300027	1 year	2025.4.28
Automatic filter bank(2/3/4	G)	Tonscend	JS0806-F	CS0300028	1 year	2025.4.28
Automatic filter bank(5G))	Tonscend	JS0806-F-5G NR	N/A	1 year	2025.4.28
Temperature and humidity m	neter	UNI-T	A10T	C193561464	1 year	2025.4.27
Radio Communication Analy	/zer	Anritsu	MT8821C	6272374548	1 year	2025.1.09
Constant temperature humic chamber	dity	TEELONG	TL-HW-225B	20220518-01	1 year	2025.5.24
Radio Communication Test		Anritsu	MT8000A	6272354169	1 year	2025.1.09
Radiation Spurious	1					1
Signal&Spectrum Analyzer		Rohde&Schwarz	FSV 40	101898	1 vear	2025.4.28
EMI Test Receiver	51	Rohde&Schwarz	ESR3	102693	1 year	2025 5 24
Antenna(30MHz~1001MHz)		SCHWARZBECK	VULB 9168	1133	1 year	2025.2.21
Horn antenna(1GHz-18GHz)		FTS	3117	227611	1 vear	2025.3.24
Horn antenna(18GHz-40GHz)		QMS	QMS-00880	22051	1 vear	2025.3.24
3m anechoic chamber		MORI	966	CS0300011	3 year	2026.5.18
Filter group(RSE-BT/WiFi	i)	Rohde&Schwarz	WiFi /BT Variant 1	100820	1 year	2025.4.28
Filter group(RSE-Cellular	·)	Rohde&Schwarz	Cellular Variant 1	100768	1 year	2025.4.28
Preamplifier(1GHz-18GHz	ź)	Rohde&Schwarz	SCU-18F	100799	1 year	2025.4.28
Preamplifier(1GHz-18GHz	z)	Rohde&Schwarz	SCU-18F	100801	1 year	2025.4.28
Preamplifier(18Gz-40GHz	<u>z</u>)	Rohde&Schwarz	SCU-40A	101209	1 year	2025.4.28
#2 control room		MORI	433	CS0200059	3 year	2026.5.16
Temperature and humidity m	neter	/	C193561517	C193561517	1 year	2025.4.27
Conducted emission						
EMI Test Receiver		Rohde&Schwarz	ESR3	102693	1 year	2025/5/24
limiter (10 dB)		Rohde&Schwarz	ESH3-Z2	102824	1 year	2025/5/15
Voltage probe		Rohde&Schwarz	CVP9222C	28	1 year	2025/4/27
Current probe		Rohde&Schwarz	EZ-17	101442	1 year	2025/4/28
ISN network		Rohde&Schwarz	ENV 81	100401	1 year	2025/4/28
ISN network		Rohde&Schwarz	ENV 81 Cat6	101896	1 year	2025/4/28
#1Shielding room		MORI	854	N/A	3 year	2026/5/16
LISN		SCHWARZBECK	NSLK 8129	5021	1 year	2025/4/27
Temperature and humidity meter		1	C193561430	C193561430	1 year	2025/4/27

Page 7 of 46

1.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

No.	ltem	Measurement Uncertainty						
1	Radiated emission 9kHz-30MHz	+/-5.6 dB						
2	Radiated emission 30MHz-1GHz	+/-4.6 dB						
3	Radiated emission 1GHz-18GHz	+/-4.4 dB						
4	Radiated emission 18GHz-40GHz	+/-5.1 dB						
5	RF power	+/-0.9 dB						
6	Power Spectral Density	+/-0.8 dB						
7	Conducted spurious emissions	+/-2.7 dB						
8	Transmission Time	+/-0.27%						
9	Occupied Bandwidth	+/-1.86%						
Rema	Remark: 95% Confidence Levels, k=2.							

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed.

The measurement uncertainty is mentioned in this test report, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong.

Page 8 of 46

1.3 TEST LOCATION

The tests and measurements refer to this report were performed by EMC testing Lab. of CVC Testing Technology (Shenzhen) Co., Ltd.

Lab Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong,China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn FCC(Test firm designation number: CN1363) IC(Test firm CAB identifier number: CN0137) CNAS(Test firm designation number: L16091)

Test Report No.: FCCSZ2024-0055-RF3

Page 9 of 46

2 GENERAL INFORMATION

2.1 GENERAL PRODUCT INFORMATION

PRODUCT	Radar Distance/Level Sensor
BRAND	Milesight
MODEL	EM410-RDL-868M/915M
	NB410-RDL-868M/915M,EM410-RDL-868M,NB410-RDL-
ADDITIONAL MODEL	868M,EM410-RDL-915M,NB410-RDL-915M,EM410,NB410
POWER SUPPLY	DC 3.6V(3.6V*1*lithium battery D*ER34615) from battery
MODULATION TYPE	FHSS
OPERATING FREQUENCY	Hybrid 125kHz, 902.3MHz~927.6MHz
NUMBER OF CHANNEL	127
PEAK OUTPUT POWER	-5.89dBm (Max. Measured)
ANTENNA TYPE (Demokr 2)	-3.24dBi gain(Internal PCB antenna)
ANTENNA TYPE (Remakr 3)	0.83dBi gain(External antenna)
I/O PORTS	Refer to user's manual
CABLE SUPPLIED	N/A

Remark:

1. For more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

3. Since the above data and/or information is provided by the client, CVC is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

4. EUT photo refer to the report (Report NO.: FCCSZ2024-0055-EUT).

5. Only differences are the model no and appearance silkprint

Page 10 of 46

2.2 OTHER INFORMATION

Operation Frequency Each of Channel									
Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)		
0	902.3	32	908.7	64	915.2	96	921.6		
1	902.5	33	908.9	65	915.4	97	921.8		
2	902.7	34	909.1	66	915.6	98	922		
3	902.9	35	909.3	67	915.8	99	922.2		
4	903.1	36	909.5	68	916	100	922.4		
5	903.3	37	909.7	69	916.2	101	922.6		
6	903.5	38	909.9	70	916.4	102	922.8		
7	903.7	39	910.1	71	916.6	103	923		
8	903.9	40	910.3	72	916.8	104	923.2		
9	904.1	41	910.5	73	917	105	923.4		
10	904.3	42	910.7	74	917.2	106	923.6		
11	904.5	43	910.9	75	917.4	107	923.8		
12	904.7	44	911.1	76	917.6	108	924		
13	904.9	45	911.3	77	917.8	109	924.2		
14	905.1	46	911.5	78	918	110	924.4		
15	905.3	47	911.7	79	918.2	111	924.6		
16	905.5	48	911.9	80	918.4	112	924.8		
17	905.7	49	912.1	81	918.6	113	925		
18	905.9	50	912.3	82	918.8	114	925.2		
19	906.1	51	912.5	83	919	115	925.4		
20	906.3	52	912.7	84	919.2	116	925.6		
21	906.5	53	912.9	85	919.4	117	925.8		
22	906.7	54	913.1	86	919.6	118	926		
23	906.9	55	913.3	87	919.8	119	926.2		
24	907.1	56	913.5	88	920	120	926.4		
25	907.3	57	913.7	89	920.2	121	926.6		
26	907.5	58	913.9	90	920.4	122	926.8		
27	907.7	59	914.1	91	920.6	123	927		
28	907.9	60	914.3	92	920.8	124	927.2		
29	908.1	61	914.5	93	921	125	927.4		
30	908.3	62	914.7	94	921.2	126	927.6		
31	908.5	63	914.9	95	921.4				

Test Report No.: FCCSZ2024-0055-RF3

Page 11 of 46

2.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, xyz axis and antenna ports

The worst case was found when positioned on xaxis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT	APF	PLICABLE	TEST ITE	EMS			
CONFIGURE MODE	RSE<1G	RSE≥1G	PLC	АРСМ	DESCRIPTION		
Α	\checkmark	\checkmark	\checkmark	\checkmark	Lora Link		

Where **RSE<1G:** Radiated Emission below 1GHz. **PLC:** Power Line Conducted Emission. **RSE**≥**1G:** Radiated Emission above 1GHz. **APCM:** Antenna Port Conducted Measurement.

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	TESTED CONDITION
А	Lora Link

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 126	0	FHSS	DR0

For the test results, only the worst case was shown in test report.

Test Report No.: FCCSZ2024-0055-RF3

Page 12 of 46

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
A	0 to 126	0,63,126	FHSS	DR0

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- Following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	PACKET TYPE
А	0 to 126	0,63,126	FHSS	DR0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY
RSE<1G	25.2deg. C, 55%RH	AC 120V/60Hz	Wang Zhiming
RSE≥1G	25.2deg. C, 55%RH	AC 120V/60Hz	Wang Zhiming
PLC	25.2deg. C, 55%RH	AC 120V/60Hz	Zhou Ye
APCM	26.2deg. C, 58%RH	AC 120V/60Hz	Cai Jianyu

Test Report No.: FCCSZ2024-0055-RF3

Page 13 of 46

2.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product, according to the specifications of the manufacturers. It must comply with the requirements of the following standards:

FCC PART 15, Subpart C. Section 15.247 KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2020

All test items have been performed and recorded as per the above standards

2.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

	Support Equipment											
NO	Descriptior	n Bi	rand	Model No.	Serial N	umber	Supplied by					
1	N/A	1	N/A	N/A	N/A	4		N/A				
	_		Si	upport Cable		_						
NO	Description	Quantity (Number)	Length (m)	Detachable (Yes/ No)	Shielded (Yes/ No)	Cores (Numbe	s er)	Supplied by				
1	N/A	N/A	N/A	N/A	N/A	N/A		N/A				

Page 14 of 46

3 TEST TYPES AND RESULTS

3.1 RADIATED EMISSIONS

3.1.1 Limits

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FIELD STRENGTH (Microvolts/Meter)	MEASUREMENT DISTANCE (Meters)
2400/F(kHz)	300
24000/F(kHz)	30
30	30
100	3
150	3
200	3
500	3
	(Microvolts/Meter) 2400/F(kHz) 24000/F(kHz) 30 100 150 200 500

NOTE: 1. The lower limit shall apply at the transition frequencies.

NOTE: 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

NOTE: 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.1.2 Measurement procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters(above 1GHz) and 0.8 meters(below 1GHz) above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. For below 1GHz was used bilog antenna, and above 1GHz was used horn antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f.For below 30MHz, a loop antenna with its vertical plane is place 3m from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. And the centre of the loop shall be 1m above the ground.
- g. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

Test Report No.: FCCSZ2024-0055-RF3

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.
- 5. The testing of the EUT was performed on all 3 orthogonal axes; the worst-case test configuration was reported on the file test setup photo.

3.1.3 Test setup

Below 30MHz Test Setup:

Test Report No.: FCCSZ2024-0055-RF3

Page 16 of 46

Below 1GHz Test Setup:

Above 1GHz Test Setup:

Test Report No.: FCCSZ2024-0055-RF3

Page 17 of 46

3.1.4 Test results

Internal PCB antenna:

Worst	Test Mode	Lora Link	(Channel		СН 0						
Freque	ency Range	9KHz ~	1GHz	Detector	Function		Quasi-Peak (QP)					
			Нс	orizontal								
	60 -											
	60 50 40											
[m//	40							5 6				
Vuđbji	30-			4			المالية الالمحالية والمحالين					
Leve	G		1 2	3	فليعد والم	A STATE OF THE STA						
	20 Manun March Markathy 4	al Alland marken of the second of		No. of the owner								
	0											
	30M		100M	Freauency[Hz]				1G				
	QP Limit	Horizontal PK		Ledgerre M1								
	QP Detector											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]				
1	104.115	4.73	17.15	21.88	43.50	21.62	100	41				
2	138.942	1.78	19.96	21.74	43.50	21.76	100	64				
3	148.255	2.03	20.50	22.53	43.50	20.97	100	204				
4	158.538	3.17	20.72	23.89	43.50	19.61	100	88				
5	882.133	4.63	29.42	34.05	46.00	11.95	100	53				
6	983.605	4.72	54.00	19.03	100	294						
Remar	 k: 1. 9KHz~30M 2. The emiss 3. Level (dBu 4. Factor (dB 5. Margin(dB 	1Hz have been ion levels of oth IV/m) = Readin /m) = Antenna	test and test da her frequencies g (dBuV/m) + F Factor (dB/m) - m] - Level [dBuV	ata more tha were greate actor (dB). + Cable Fac ⁴ //ml	n 20dB març ∍r than 20dB tor (dB).	gin. margin.						

Page 18 of 46

Page 19 of 46

External antenna:

Worst	Test Mode	Lora Link	(Channel			СН 0		
Freque	ency Range	9KHz ~	1GHz	Detector	Function		Quasi-Peal	< (QP)	
			Но	orizontal					
	70 T								
	60								
	50								
[m//M]	40							6	
Level[d	30-					5			
	20		2	3					
	20 . I WANN AND AND	alternation and a state of the	tryal the all a specific below the second		No. Construction of the second second				
	10								
	0		100M						
	OR Limit	Victorial DV	TOON	Frequency[Hz]				10	
		Verucal PK							
	QP Detector	Duralina	E tan		1	b d . u su i u	LL inh4	A al a	
NO.	⊢req. [MHz]	Reading [dBµV]	Factor [dB/m]	Levei [dBµV/m]	[dBµV/m]	Margin [dB]	feight [cm]	Angle [°]	
1	39.216	2.24	19.85	22.09	50.00	27.91	100	110	
2	113.040	3.55	18.04	21.59	53.50	31.91	100	232	
3	160.963	2.17	20.61	22.78	53.50	30.72	100	116	
4	295.904	2.90	19.72	22.62	56.00	33.38	100	329	
5	452.283	1.77	23.31	25.08	56.00	30.92	100	358	
6	876.701	5.09	29.36	34.45	56.00	21.55	100	295	
Remar	 k: 1. 9KHz~30M 2. The emiss 3. Level (dBu 4. Factor (dB 	/IHz have been ion levels of oth JV/m) = Readin 3/m) = Antenna	test and test da her frequencies g (dBuV/m) + F Factor (dB/m) -	ata more tha were greate actor (dB). + Cable Fac	an 20dB març er than 20dB tor (dB).	jin. margin.			

5. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]

Page 20 of 46

Test Report No.: FCCSZ2024-0055-RF3

Page 21 of 46

(Internal PCB antenna) ABOVE 1GHz DATA

Channel	CH 0				F	reque	ncy			902.3MHz		
Frequency Range	1GHz~9.3G					etect	or Fur	nction		PK/AV		
	Horizontal											
NO.	Freq. [MHz]	Read [dB	ding uV]	Facto [dB/m	r I]	Le [dBµ	vel V/m]	[d	Limit BµV/m]	Margin [dB]	Detector	
1	1870.89	46.9	97	6.18		53	.15		74.00	20.85	PK	
2	1939.89	37.:	20	6.90		44	.10		54.00	9.90	AV	
3	3476.57	45.	29	5.65		50	.94		74.00	23.06	PK	
4	3601.65 35.92			92 6.45		42	.37		54.00	11.63	AV	
5	5747.19	19 44.4		.46 12.46		56	6.92		74.00	17.08	PK	
6	5935.31	34.3	36	14.21		48	.57		54.00	5.43	AV	
				V	erti	ical						
NO.	Freq. [MHz]		Read [dBj	ding µV]	Fac [dB	ctor 3/m]	Le [dBµ	vel V/m]	Limit [dBµV/m]	Margin [dB]	Detector	
1	1783.88		46.	16	5.	32	51	.48	74.00	22.52	PK	
2	1804.88		37.	11	5.4	46	42	.57	54.00	11.43	AV	
3	3584.82		36.	20	6.4	46	42	.66	54.00	11.34	AV	
4	3645.54		45.	45	6.3	38	51	.83	74.00	22.17	PK	
5	03	13	.96	48	.99	54.00	5.01	AV				
6	6227.06		43.	74	14	.56	58	.30	74.00	15.70	PK	
 Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m] 												

Test Report No.: FCCSZ2024-0055-RF3

Page 22 of 46

Channel	CH 63				F	reque	ncy			914.9MHz	
Frequency Range	1GHz~9.3G)etecto	or Fur	nction		PK/AV	
	Horizontal										
NO.	Freq. [MHz]	Rea [dB	ding µV]	Factor [dB/m	r]	Le [dBµ	vel V/m]	[d	Limit IBµV/m]	Margin [dB]	Detector
1	1848.08	45.	72	5.94		51	.66		74.00	22.34	PK
2	1874.69	36.	87	6.22		43	.09		54.00	10.91	AV
3	3320.46	36.	01	5.12		41	.13		54.00	12.87	AV
4	3345.87	.37 4.98			50.35			74.00	23.65	PK	
5	5884.49 43.2		21	21 13.86		57.07		74.00		16.93	PK
6	5936.96	34.	45	14.28		48	.73		54.00	5.27	AV
				Ve	ert	ical					
NO.	Freq. [MHz]		Rea [dB	ding µV]	Fao [dB	ctor 3/m]	Le [dBµ	vel V/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1625.26		47.	.41	4.	29	51	.70	74.00	22.30	PK
2	1672.47		37.	.10	4.	59	41	.69	54.00	12.31	AV
3	3419.80		44.	.91	5.	51	50	.42	74.00	23.58	PK
4	3478.55		35.	.83	5.	62	41	.45	54.00	12.55	AV
5	43.	.26	14	.41	57	.67	74.00	16.33	PK		
6	6008.58		34.	.73	14	.36	49	.09	54.00	4.91	AV
Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]											

Channel	CH 126			Freque	ncy		927.6MHz				
Frequency Range	1GHz~9).3G		Detecto	or Function		PK/AV	PK/AV			
Horizontal											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	L [dB	evel 8µV/m]	Limit [dBµV/m]	Margin [dB]	Detector			
1	1851.49	45.89	5.98	5	1.87	74.00	22.13	PK			
2	1861.89	36.94	6.08	4	3.02	54.00	10.98	AV			
3	3780.20	35.76	7.25	4	3.01	54.00	10.99	AV			
4	3860.73	44.78	6.97	5	1.75	74.00	22.25	PK			
5	7673.21	31.12	14.44	45.56		74.00	28.44	PK			
6	7707.99	21.19	14.79	3	5.98	54.00	18.02	AV			
			Ve	rtical							
NO.	Freq. [MHz]	Read [dBj	ling ıV]	Factor [dB/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Detector			
1	1748.67	46.3	33	5.12	51.45	74.00	22.55	PK			
2	1753.48	37.0	66	5.15	42.81	54.00	11.19	AV			
3	3269.31	44.0	69	5.15	49.84	74.00	24.16	PK			
4	3275.58	35.9	93	5.10	41.03	54.00	12.97	AV			
5	5666.01	44.0	05	12.61	56.66	74.00	17.34	PK			
6	6 5761.72 34.78 12.73 47.51 54.00 6.49 AV										
Remark: 1. The emiss 2. Level (dBr 3. Factor (dE 4. Margin(dB	6 5/61.72 34.78 12.73 47.51 54.00 6.49 AV Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).										

4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]

Test Report No.: FCCSZ2024-0055-RF3

Page 24 of 46

(External antenna) ABOVE 1GHz DATA

Channel	СНО					reque	ency			902.3MHz		
Frequency Range	1GHz~9.3G					etecto	or Fur	oction		PK/AV		
	Horizontal											
NO.	Freq. [MHz]	Rea [dB	ding µV]	Factor [dB/m]	r]	Le [.] [dBµ	vel V/m]	[d	Limit BµV/m]	Margin [dB]	Detector	
1	1804.48	48.	90	5.46		54	.36		74.00	19.64	PK	
2	1804.48	44.	71	5.46		50	.17		54.00	3.83	AV	
3	3221.12	35.	54	5.20		40	.74		54.00	13.26	AV	
4	3238.28	.52 4.80			50	.32		74.00	23.68	PK		
5	5940.26 34.8		87	14.40		49	.27	54.00		4.73	AV	
6	6009.57 44.01 14.30					58	.37		74.00	15.63	PK	
				Ve	erti	ical	_					
NO.	Freq. [MHz]		Read [dBj	ding µV]	Factor Level Limit [dB/m] [dBµV/m] [dBµV/m]			Limit [dBµV/m]	Margin [dB]	Detector		
1	1804.48		41.	48	5.4	46	46	.94	54.00	7.06	AV	
2	1805.08		47.	18	5.4	46	6 52.		74.00	21.36	PK	
3	3224.42		45.	60	4.8	89	50	.49	74.00	23.51	PK	
4	3312.87		36.	35	4.8	84	41	.19	54.00	12.81	AV	
5	58	14.	.23	48	.81	54.00	5.19	AV				
6	5989.11		44.	11	14.	.38	58	.49	74.00	15.51	PK	
Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit(dBuV/m) - Level (dBuV/m)												

Test Report No.: FCCSZ2024-0055-RF3

Page 25 of 46

Channel	CH 63				F	reque	ncy			914.9MHz	
Frequency Range	1GHz~9.3G				D	etect	or Fur	nction		PK/AV	
Horizontal											
NO.	Freq. [MHz]	Rea [dB	ding µV]	Factor [dB/m]	r]	Le [dBµ	vel V/m]	[d	Limit IBµV/m]	Margin [dB]	Detector
1	1829.88	47.	61	5.74		53	.35		74.00	20.65	PK
2	1829.88	42.	32	5.74		48	.06		54.00	5.94	AV
3	2874.99	45.	98	10.69		56	.67		74.00	17.33	PK
4	2955.00 37.4		7.43 10.3			47.82			54.00	6.18	AV
5	4832.34 44.7		.71 9.71			54.42		74.00		19.58	PK
6	4912.54	35.	12	10.17		45	.29		54.00	8.71	AV
				Ve	ərt	ical					
NO.	Freq. [MHz]		Rea [dB	ding µV]	Fao [dB	ctor 3/m]	Le [dBµ	vel IV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1829.88		47.	61	5.	74	53	.35	74.00	20.65	PK
2	1829.88		42.	71	5.	74	48	.45	54.00	5.55	AV
3	3148.84		45.	14	4.	75	49	.89	74.00	24.11	PK
4	3261.72		35.	93	5.	05	40	.98	54.00	13.02	AV
5	5358.42		43.	73	13	.20	56	.93	74.00	17.07	PK
6	5406.93		34.	99	13	.35	48	.34	54.00	5.66	AV
Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m]											

Test Report No.: FCCSZ2024-0055-RF3

Page 26 of 46

Channel	CH 126		Frequency			927.6 MHz		
Frequency Range	1GHz~9.3G			Detector Function			PK/AV	
Horizontal								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	L [dB	evel µV/m]	Limit [dBµV/m]	Margin [dB]	Detector
1	1855.09	48.28	6.02	5	4.30	74.00	19.70	PK
2	1855.09	44.62	6.02	5	0.64	54.00	3.36	AV
3	2957.80	37.01	10.33	4	7.34	54.00	6.66	AV
4	2972.00	46.11	10.61	5	6.72	74.00	17.28	PK
5	5411.22	44.69	13.34	5	8.03	74.00	15.97	PK
6	5411.55	34.76	13.31	48.07		54.00	5.93	AV
Vertical								
NO.	Freq. [MHz]	Freq.ReadingFactorLevelLimit[MHz][dBµV][dB/m][dBµV/m][dBµV/m]		Limit [dBµV/m]	Margin [dB]	Detector		
1	1855.09	48.3	34	6.02	54.36	74.00	19.64	PK
2	1855.29	43.2	28	6.02	49.30	54.00	4.70	AV
3	3435.64	44.9	44.95 5.61 50.56		50.56	74.00	23.44	PK
4	3461.06	36.0)4	5.56	41.60	54.00	12.40	AV
5	5347.19	35.1	17	12.99	48.16	54.00	5.84	AV
6	5423.76 44.16 12.81 56.97 74.00 17.03 PK					PK		
 Remark: 1. The emission levels of other frequencies were greater than 20dB margin. 2. Level (dBuV/m) = Reading (dBuV/m) + Factor (dB). 3. Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB). 4. Margin(dB) = Limit[dBµV/m] - Level [dBµV/m] 								

3.2 NUMBER OF HOPPING FREQUENCY USED

3.2.1 Limits

Reported Only

3.2.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were completed.

3.2.3 Test setup

Test Report No.: FCCSZ2024-0055-RF3

Page 28 of 46

3.2.4 Test result

There are 127 hopping frequencies in the hopping mode. Please refer to next two pages for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

Mode	Channel	Result [Num]	Limit [Num]	Verdict		
DR0	Нор	127	N/A	PASS		
Spectrum Ref Level 23.00 dBm Att 40 dE	Spectrum Ref Level 23.00 dBm Att 40 dB SWT 1.3 ms VBW 30 kHz					
20 dBm						
10 dBm						
0 dBm						
-20 dBm						
-40 dBm						
-50 dBm						
~60 dsm-				Junio		
-/U UBIII -/U UBIII CF 915.0 MHz 691 pts Span 30.0 MHz						
Date: 8.JAN.2025 14:30:47						

Page 29 of 46

3.3 DWELL TIME ON EACH CHANNEL

3.3.1 Limits

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.3.2 Measurement procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

3.3.3 Test setup

Page 30 of 46

3.3.4 Test result

Mode	Number of Hopping Channel	Number of transmi in a period(chan number*0.4 sec	ssion nel c)	Length transmiss time (ms	of sion ec)	Result (msec)	Limit (msec)	Verdict		
DR0	127	50.8		0.371		0.371	≪0.4	PASS		
	Number of transmission in a period									
MultiView Ref Level 20 Att TRG:VID	 Spectrum 0.00 dBm 30 dB • SWT 51.2 s 	• RBW 1 MHz • VBW 3 MHz						SGL		
1 Zero Span	[1	O 1Pk Max		
10 dBm								1.0 ms		
0 dBm	TRG 0.000 dB	n								
-10 dBm										
-20 dBm					-					
-30 dBm										
-40 dBm					-					
s;50/dBm ≥ s	mand and provident of the second	man and the contraction of the c	Lautoroport		mburt	and an experimental and a second	and the second of the second o	man and the		
-60 dBm										
-70 dBm										
TRG										
CF 904.1 MH	CF 904.1 MHz 1001 pts 5.12 s/									
04.34.07	Ready 2024-07-24 16:34:07 04:24:07 下午、07:(24.(2024									
	Longth of transmission time									

Page 31 of 46

							8
MultiView Spectrum							
Ref Level 20.00 dBm	RBW 300 kHz						SGL
Att 30 dB SWT 1 s	VBW 300 kHz						
l Zero Span			r	r		1	O 1Pk Max
	ЛАЛАЛ МАЛАЛА ЛАМЛАЛА	AA.MAALAD2					D2[1] -0.28 dB
10 dBm		VVV VVVV					M1[1]-13.29 dBm
							0 s
0 dBm TRG 0.000 dBr	m						
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
a hall have been and a second		6. M	. A deressing all be want	Marian cable a the take	a de mos de moneto	where a solo met with a	about a with the sec a family of the
-60 dBm		Alberta a	Manual and a Damana Anala	. Your draw day to	office in a set of tensors in the	Colling and the Male 23	a state and consider on
70.10		1					
-70 dBm							
TRG							
CF 904.1 MHz		1001	pts				100.0 ms/
					Ready		16:40:46
4:40:47 下午 07/24/2024							

Page 32 of 46

3.4 20dB EMISSION BANDWIDTH

3.4.1 Limits

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz

3.4.2 Measurement procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

3.4.3 Test setup

Page 33 of 46

3.4.4 Test result

Page 34 of 46

3.5 HOPPING CHANNEL SEPARATION

3.5.1 Limits

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

3.5.2 Measurement procedure

- a. Span: Wide enough to capture the peaks of two adjacent channels.
- b. RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c. Video (or average) bandwidth (VBW) \ge RBW.
- d. Sweep: Auto.
- e. Detector function: Peak.
- f.Trace: Max hold.
- g. Allow the trace to stabilize.

3.5.3 Test setup

Page 35 of 46

3.5.4 Test result

Mode	Adjacent Channel Separation (kHz)	Minimum Limit 20dB Bandwidth (kHz)	Verdict
DR0	201.400	125.499	PASS
			•
	CHANNEL SEP	ARATION	
MultiView Spectrum Ref Level 30.00 dBm Att 40 dB SWT 209 µs (~1.2 r	● RBW 10 kHz ms) ● VBW 30 kHz Mode FFT		
20 dBm	M1 D2		D2[1] 0.00 dB 201.400 kHz M1[1] 19.62 dBm 914.505 000 MHz
0 dBm			
-20 dBm			
-40 dBm			
-60 dBm			
CF 914.7 MHz 04:54:10 下午 07/24/2024	1001 pts	80.0 kHz/	Span 800.0 kHz

Page 36 of 46

3.6 CONDUCTED OUTPUT POWER

3.6.1 Limits

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

3.6.2 Measurement procedure

- a. A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor and set the detector to PEAK. Record the power level.
- b. Anaverage power sensor was used on the output port of the EUT. A power meter was used to read the response of the average power senso and set the detector to AVERAGE. Record the power level.

3.6.3 Test setup

Page 37 of 46

3.6.4 Test result

PEAK OUTPUT POWER

GFSK

CHANNEL	Channel Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)	Peak Power Limit (mW)	Verdict
0	902.3	-5.89	0.25	1000	PASS
63	914.9	-7.16	0.19	1000	PASS
126	927.6	-8.46	0.14	1000	PASS

Test Report No.: FCCSZ2024-0055-RF3

3.7 POWER SPECTRAL DENSITY MEASUREMENT

3.7.1 Limits

The Maximum of Power Spectral Density Measurement is 8dBm/3KHz.

3.7.2 Measurement procedure

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set RBW to: 3KHz
- 4. Set VBW ≥3 x RBW.
- 5. Detector = peak
- 6. Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- 7. Sweep time = auto couple.
- 8 .Use the peak marker function to determine the maximum amplitude level.

3.7.3 Test setup

Page 39 of 46

3.7.4 Test result

CHANNEL	CHANNEL FREQUENCY (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS / FAIL
0	902.3	-2.81	8	PASS
63	914.9	-4.52	8	PASS
126	927.6	-5.95	8	PASS

Test Plot:

Page 40 of 46

3.8 OUT OF BAND EMISSION MEASUREMENT

3.8.1 Limits

Below -20dB of the highest emission level of operating band (in 100KHz RBW).

3.8.2 Measurement procedure

The transmitter output was connected to the spectrum analyzer via a low loss cable. of Spectrum Analyzer was set RBW to 100 kHz and VBW to 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. Detector = PEAK and Trace mode = Max Hold. The band edges was measured and recorded.

3.8.3 Test setup

Test Report No.: FCCSZ2024-0055-RF3

Page 41 of 46

3.8.4 Test result

The spectrum plots are attached on the following images.

DR0

Test Report No.: FCCSZ2024-0055-RF3

Page 42 of 46

DR0-HOPPING

Page 43 of 46

3.9 ANTENNA REQUIREMENT

3.9.1 LIMITS OFFREQUENCY STABILITY

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.9.2 Antenna Anti-Replacement Construction

The antennas used in this product are internal antennas and external antennas. Antennas provided by non-responsible parties must not be used

3.9.3 Antenna Gain

The maximum peak gain of the transmit antenna 1 is -3.24dBi.

The maximum peak gain of the transmit antenna 2 is 0.83 dBi.

Page 44 of 46

4 PHOTOGRAPHS OF TEST SETUP

Please refer to the attached file (Test Photos).

Page 45 of 46

5 PHOTOGRAPHS OF THE EUT

Please refer to the attached file (External Photos and Internal Photos report).

----- End of the Report ------

Important

(1) The test report is invalid without the official stamp of CVC;

(2) Any part photocopies of the test report are forbidden without the written permission from CVC;

(3) The test report is invalid without the signatures of Approval and Reviewer;

- (4) The test report is invalid if altered;
- (5) Objections to the test report must be submitted to CVC within 15 days.
- (6) Generally, commission test is responsible for the tested samples only.

(7) As for the test result "-" or "N" means "not applicable", "/" means "not test", "P" means "pass" and "F" means "fail"

Address: No. 1301-14&16, Guanguang Road, Xinlan Community, Guanlan Subdistrict, Longhua District, Shenzhen, Guangdong,China Post Code: 518110 Tel: 0755-23763060-8805 Fax: 0755-23763060 E-mail: sz-kf@cvc.org.cn http://www.cvc.org.cn