

RADIO TEST REPORT FCC ID: 2ANMU-WP20PRO

Product: Smart Phone Trade Mark: OUKITEL Model No.: WP20 Pro Family Model: N/A Report No.: S22081703702001 Issue Date: Aug 31. 2022

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD

A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

I

TABLE OF CONTENTS

1	TES	ST RESULT CERTIFICATION	3
2	SUI	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
3.	.1	FACILITIES	5
	.2	LABORATORY ACCREDITATIONS AND LISTINGS	5
3.	.3	MEASUREMENT UNCERTAINTY	
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6	SET	FUP OF EQUIPMENT UNDER TEST	9
6.	.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
6.	.2	SUPPORT EQUIPMENT	10
6.		EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TE	ST REQUIREMENTS	13
7.	.1	CONDUCTED EMISSIONS TEST	
	.2	RADIATED SPURIOUS EMISSION	
7.		NUMBER OF HOPPING CHANNEL	
	.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
7. 7	.5 .6	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	.0 .7	PEAK OUTPUT POWER	
7.	••	CONDUCTED BAND EDGE MEASUREMENT.	
	.0 .9	SPURIOUS RF CONDUCTED EMISSION	
	.10	ANTENNA APPLICATION	
		REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8		ST RESULTS	
		DWELL TIME	
8. 8.		DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER	
8.		OCCUPIED CHANNEL BANDWIDTH	
8.		CARRIER FREQUENCIES SEPARATION	
8.		NUMBER OF HOPPING CHANNEL	
8.		BAND EDGE	
8.		CONDUCTED RF SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer's Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Product description	
Product name:	Smart Phone
Model and/or type reference:	WP20 Pro
Family Model:	N/A
Sample number	S220817037002

Measurement Procedure Used:

APPLICABLE STANDARDS

STANDARD/ TEST PROCEDURE	TEST RESULT
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Aug 17. 2022 ~ Aug 30, 2022	
Testing Engineer	:	Den lin	
		(Allen Liu)	
Authorized Signatory	:	Alex	
		(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification			
Equipment	Smart Phone		
Trade Mark	OUKITEL		
FCC ID	2ANMU-WP20PRO		
Model No.	WP20 Pro		
Family Model	N/A		
Model Difference	N/A		
Operating Frequency	2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK		
Number of Channels	79 Channels		
Antenna Type	PIFA Antenna		
Antenna Gain	0.25 dBi		
Power supply	DC 3.87V/6300mAh from battery or DC 5V from Adapter.		
Adapter	Model:PS10UA050K2000UU Input: 100-240V~50/60Hz 0.35A Max Output: 5.0V2.0A 10.0W		
HW Version	TE656_MAIN_PCB_V1.1		
SW Version	OUKITEL_WP20Pro_EEA_V03		

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

	Re		
		vision History	
Report No.	Version	Description	Issued Date
S22081703702001	Rev.01	Initial issue of report	Aug 31, 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

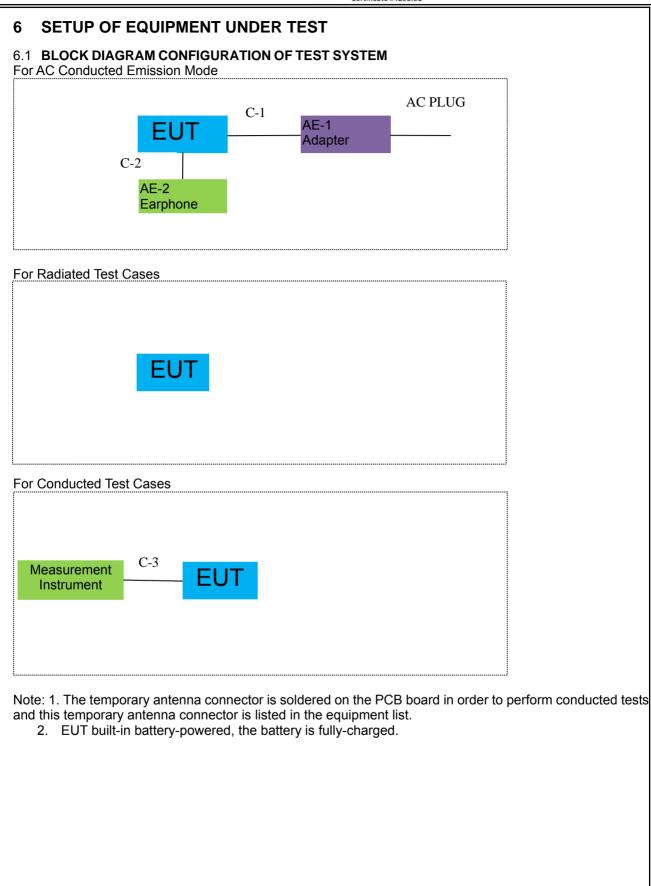
Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission		
Final Test Mode Description		
Mode 1 normal link mode		
Note: AO assure lies. Ose desta d Esciencian esta ta des des resultances destas ta sure		

Note: AC power line Conducted Emission was tested under maximum output power.

For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	


Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases		
Final Test Mode Description		
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4 CH78(2480MHz)		
Mode 5	Hopping mode	

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	PS10UA050K2000UU	N/A	Peripherals
AE-2 Earphone		N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Vaulatio		estequipment					
Item	Equipment		Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2021.11.07	2022.11.06	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2021.11.07	2022.11.06	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

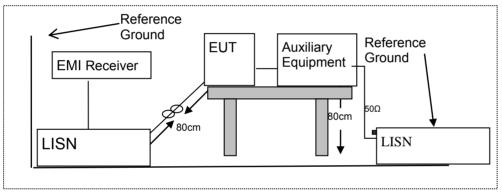
Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)


7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

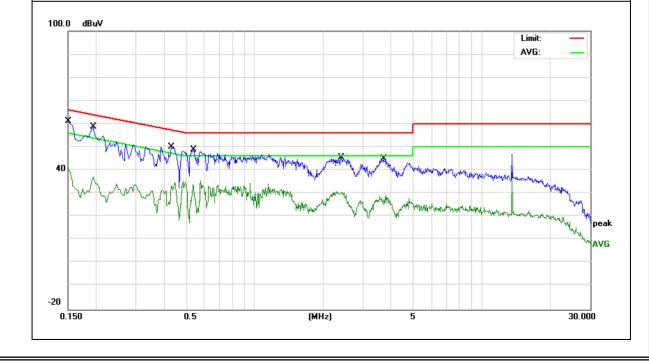
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
 may be terminated, if required, using the correct terminating impedance. The overall length shall not
 exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

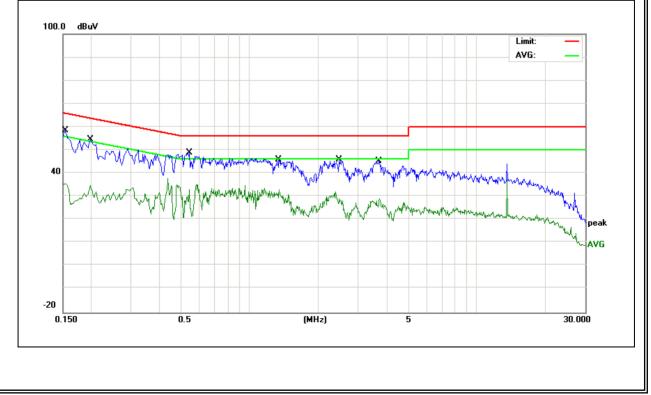

EUT:	Smart Phone	Model Name :	WP20 Pro
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

1						-
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	51.55	9.60	61.15	65.99	-4.84	QP
0.1500	31.06	9.60	40.66	55.99	-15.33	AVG
0.1940	49.15	9.61	58.76	63.86	-5.10	QP
0.1940	38.72	9.61	48.33	53.86	-5.53	AVG
0.4300	40.51	9.66	50.17	57.25	-7.08	QP
0.4300	30.59	9.66	40.25	47.25	-7.00	AVG
0.5380	39.15	9.66	48.81	56.00	-7.19	QP
0.5380	25.90	9.66	35.56	46.00	-10.44	AVG
2.4060	35.95	9.70	45.65	56.00	-10.35	QP
2.4060	29.51	9.70	39.21	46.00	-6.79	AVG
3.6980	35.12	9.74	44.86	56.00	-11.14	QP
3.6980	25.62	9.74	35.36	46.00	-10.64	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Smart Phone	Model Name :	WP20 Pro
Temperature:	25 ℃	Relative Humidity:	62%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	48.90	9.65	58.55	65.78	-7.23	QP
0.1539	28.01	9.65	37.66	55.78	-18.12	AVG
0.1980	44.90	9.62	54.52	63.69	-9.17	QP
0.1980	34.70	9.62	44.32	53.69	-9.37	AVG
0.5420	39.05	9.66	48.71	56.00	-7.29	QP
0.5420	25.48	9.66	35.14	46.00	-10.86	AVG
1.3380	36.31	9.67	45.98	56.00	-10.02	QP
1.3380	25.69	9.67	35.36	46.00	-10.64	AVG
2.4820	36.29	9.68	45.97	56.00	-10.03	QP
2.4820	22.51	9.68	32.19	46.00	-13.81	AVG
3.7060	35.46	9.71	45.17	56.00	-10.83	QP
3.7060	25.62	9.71	35.33	46.00	-10.67	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 dit10.20	According to 1 OC 1 art 15.200, Restricted bands							
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	322-335.4	3600-4400	(2)					
13.36-13.41								

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Froguopov(MHz)	Class B (dBuV/	/m) (at 3M)
Frequency(MHz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

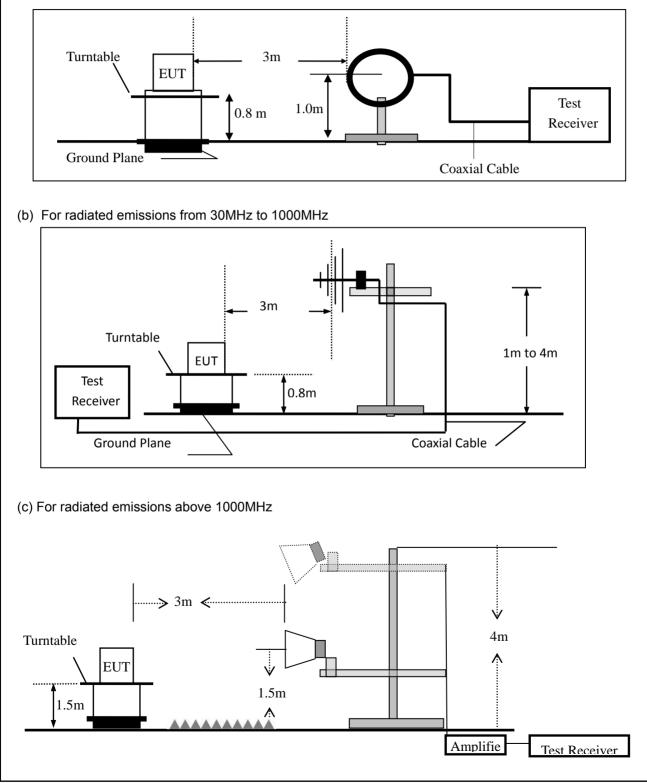
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

<u></u>	
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	est, the Spectrum An	alyzer was set with the follow	ving configurations:
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	WP20 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB) PK AV		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Smart Phone WP20 Pro Model Name : Temperature: **25**℃ 55% Relative Humidity: Pressure: 1010hPa Test Mode: Mode 1 Test Voltage : DC 3.87V Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (dBuV) (dBuV/m) (dBuV/m) (MHz) (dB) (dB) V 31.1798 7.04 19.78 -13.18 QP 26.82 40.00 14.27 V 40.7016 12.14 26.41 40.00 -13.59 QP V 92.4624 11.30 22.98 43.50 -20.52 QP 11.68 V QP 124.5690 11.10 12.90 24.00 43.50 -19.50 V 10.57 194.4534 14.46 25.03 43.50 -18.47 QP 684.7454 19.77 21.58 41.35 46.00 -4.65 QP V Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBu∀/m Limit: Margin: 32 in march we which -8 30.000 50 60 70 80 (MHz) 300 400 500 600 700 1000.000 40

NTEK 北测[®]

(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dBuV/m) (dB) H 31.1798 6.11 19.78 25.89 40.00 -14.11 QP H 94.0978 8.50 11.39 19.89 43.50 -23.61 QP H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP	(H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) H 31.1798 6.11 19.78 25.89 40.00 -14.11 QP H 94.0978 8.50 11.39 19.89 43.50 -23.61 QP H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -7.79 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m Limit: Margin:	Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Demos
H 31.1798 6.11 19.78 25.89 40.00 -14.11 QP H 94.0978 8.50 11.39 19.89 43.50 -23.61 QP H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -7.79 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m 6	H 31.1798 6.11 19.78 25.89 40.00 -14.11 QP H 94.0978 8.50 11.39 19.89 43.50 -23.61 QP H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -7.79 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dBuV/m 6 32 1 2 3 3 4 5 4	(H/V)	(MHz)		(dB)		(dBuV/m)	(dB)	Remar
H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit -77.9 QP 72.0 dBuV/m dBuV/m -6 6 6	H 170.1948 12.36 11.64 24.00 43.50 -19.50 QP H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBw/m dBw/m <t< td=""><td>Н</td><td></td><td></td><td>. ,</td><td></td><td></td><td></td><td>QP</td></t<>	Н			. ,				QP
H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit Imit: Margin: Ma	H 352.9433 10.83 16.03 26.86 46.00 -19.14 QP H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m 69	Н	94.0978	8.50	11.39	19.89	43.50	-23.61	QP
H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dBuV/m 72.0 dBuV/m 6 6 6 6 6	H 434.0651 9.85 18.06 27.91 46.00 -18.09 QP H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m dBuV/m dBuV/m 72.0 dBuV/m dBuV/m </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	H 694.4174 16.19 22.02 38.21 46.00 -7.79 QP Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Н	352.9433	10.83	16.03	26.86	46.00	-19.14	QP
Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Remark: Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Н	434.0651	9.85	18.06	27.91	46.00	-18.09	QP
Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit	Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 72.0 dBuV/m	Н	694.4174	16.19	22.02	38.21	46.00	-7.79	QP
Margin:	-8	Emissior	n Level= Meter F	Reading+ Fac	tor, Margin	= Emission Le	vel - Limit		
	-8								
	-8	32 1 X	he has a second se	2	3 	Hudrolu, Harbert	A S A A A A A A A A A A A A A A A A A A	and the second s	± ••*
		-8							00.000

	Spurious Emission Above 1GHz (1GHz to 25GHz)										
EU	T:	Smart	Phone		Model I	No.:	V	VP20) Pro		
Ter	nperature:	20 ℃	0 °C			e Humidity	/: 4	8%			
Tes	st Mode:	Mode	2/Mode3/	Mode4	Test By	/:	A	llen	Liu		
All t	he modulat	ion modes	have bee	en tested,	and the w	orst resul	t was r	epor	t as belo	w:	
	Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	ts	Margin	Remark	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	/m)	(dB)		
				Low Chanr	nel (2402 MI	Hz)(GFSK)/	Above 1	G			
	4804.214	64.08	5.21	35.59	44.30	60.58	74.0	0	-13.42	Pk	Vertical
	4804.214	40.52	5.21	35.59	44.30	37.02	54.0	0	-16.98	AV	Vertical
	7206.265	61.69	6.48	36.27	44.60	59.84	74.0	0	-14.16	Pk	Vertical
	7206.265	45.05	6.48	36.27	44.60	43.20	54.0	0	-10.80	AV	Vertical
	4804.109	62.35	5.21	35.55	44.30	58.81	74.0	0	-15.19	Pk	Horizontal
	4804.109	42.52	5.21	35.55	44.30	38.98	54.0	0	-15.02	AV	Horizontal
	7206.224	63.69	6.48	36.27	44.52	61.92	74.0	0	-12.08	Pk	Horizontal
	7206.224	47.43	6.48	36.27	44.52	45.66	54.0	0	-8.34	AV	Horizontal
				Mid Chanr	nel (2441 MI	lz)(GFSK)/	Above 10	G		I	
	4882.396	64.17	5.21	35.66	44.20	60.84	74.0	0	-13.16	Pk	Vertical
	4882.396	43.61	5.21	35.66	44.20	40.28	54.0	0	-13.72	AV	Vertical
	7323.241	60.22	7.10	36.50	44.43	59.39	74.0	0	-14.61	Pk	Vertical
	7323.241	46.68	7.10	36.50	44.43	45.85	54.0	0	-8.15	AV	Vertical
	4882.108	60.75	5.21	35.66	44.20	57.42	74.0	0	-16.58	Pk	Horizontal
	4882.108	49.03	5.21	35.66	44.20	45.70	54.0	0	-8.30	AV	Horizontal
	7323.132	60.84	7.10	36.50	44.43	60.01	74.0	0	-13.99	Pk	Horizontal
	7323.132	41.66	7.10	36.50	44.43	40.83	54.0		-13.17	AV	Horizontal
			1	High Chanr	nel (2480 Mł	Hz)(GFSK)	Above 1	G		1	
	4960.397	67.47	5.21	35.52	44.21	63.99	74.0	0	-10.01	Pk	Vertical
	4960.397	43.63	5.21	35.52	44.21	40.15	54.0	0	-13.85	AV	Vertical
	7440.201	62.06	7.10	36.53	44.60	61.09	74.0	0	-12.91	Pk	Vertical
	7440.201	44.52	7.10	36.53	44.60	43.55	54.0	0	-10.45	AV	Vertical
	4960.225	66.71	5.21	35.52	44.21	63.23	74.0	0	-10.77	Pk	Horizontal
	4960.225	47.18	5.21	35.52	44.21	43.70	54.0	0	-10.30	AV	Horizontal
	7440.298	61.39	7.10	36.53	44.60	60.42	74.0	0	-13.58	Pk	Horizontal
	7440.298	44.88	7.10	36.53	44.60	43.91	54.0	0	-10.09	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious										
EUT:	Smart Ph	one		Model	No.:	1	WP20) Pro		
Temperature	erature: 20 °C Relative Humid						48%			
Test Mode:	est Mode: Mode2/ Mode4 Test By:							Liu		
All the modu	lation mod	es have	been teste		,	ilt was	s report as below:			
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			1	1Mbps(GFSk	()-Non-hoppin	g				
2310.00	58.50	2.97	27.80	43.80	45.47	7	'4	-28.53	Pk	Horizontal
2310.00	44.84	2.97	27.80	43.80	31.81	5	4	-22.19	AV	Horizontal
2310.00	59.75	2.97	27.80	43.80	46.72	7	'4	-27.28	Pk	Vertical
2310.00	43.08	2.97	27.80	43.80	30.05	5	4	-23.95	AV	Vertical
2390.00	57.74	3.14	27.21	43.80	44.29	7	'4	-29.71	Pk	Vertical
2390.00	42.82	3.14	27.21	43.80	29.37	5	54	-24.63	AV	Vertical
2390.00	56.53	3.14	27.21	43.80	43.08	7	'4	-30.92	Pk	Horizontal
2390.00	41.86	3.14	27.21	43.80	28.41	5	64	-25.59	AV	Horizontal
2483.50	58.17	3.58	27.70	44.00	45.45	7	'4	-28.55	Pk	Vertical
2483.50	42.17	3.58	27.70	44.00	29.45	5	4	-24.55	AV	Vertical
2483.50	60.51	3.58	27.70	44.00	47.79	7	'4	-26.21	Pk	Horizontal
2483.50	43.43	3.58	27.70	44.00	30.71	5	4	-23.29	AV	Horizontal
				1Mbps(GF	SK)-hopping					
2310.00	51.17	2.97	27.80	43.80	38.14	74	.00	-35.86	Pk	Vertical
2310.00	43.08	2.97	27.80	43.80	30.05	54	.00	-23.95	AV	Vertical
2310.00	51.38	2.97	27.80	43.80	38.35	74	.00	-35.65	Pk	Horizontal
2310.00	44.10	2.97	27.80	43.80	31.07	54	.00	-22.93	AV	Horizontal
2390.00	54.94	3.14	27.21	43.80	41.49	74	.00	-32.51	Pk	Vertical
2390.00	42.10	3.14	27.21	43.80	28.65	54	.00	-25.35	AV	Vertical
2390.00	53.03	3.14	27.21	43.80	39.58	74	.00	-34.42	Pk	Horizontal
2390.00	44.35	3.14	27.21	43.80	30.90	54	.00	-23.10	AV	Horizontal
2483.50	51.47	3.58	27.70	44.00	38.75	74	.00	-35.25	Pk	Vertical
2483.50	44.66	3.58	27.70	44.00	31.94	54	.00	-22.06	AV	Vertical
2483.50	52.15	3.58	27.70	44.00	39.43	74	.00	-34.57	Pk	Horizontal
2483.50	43.12	3.58	27.70	44.00	30.40	54	.00	-23.60	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

	Spurious Emission in Restricted Band 3260MHz-18000MHz											
Εl	JT:	Sma	art Phone			Model	1odel No.: WP20 Pro					
Te	emperature:	20 °C	20 ℃			Relativ	ve Humidity	ty: 48%				
Те	est Mode:	Mod	e2/ Mode) 4		Test B	By:		Allen	Liu		
A	II the modu	lation mod	les have	been teste	d, a	and the	worst resu	ılt wa	s rep	ort as belo	SW:	
	Frequency	Reading Level	Cable Loss	Antenna Factor		reamp ⁻ actor	Emission Level	Lir	nits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m		(dB)	(dBµV/m)	(dBj	uV/m)	(dB)	Туре	
	3260	60.53	4.04	29.57	4	44.70	49.44	7	74	-24.56	Pk	Vertical
	3260	56.27	4.04	29.57	4	44.70	45.18	Ę	54	-8.82	AV	Vertical
	3260	62.23	4.04	29.57	2	44.70	51.14	1	74	-22.86	Pk	Horizontal
	3260	58.24	4.04	29.57	2	44.70	47.15	Ę	54	-6.85	AV	Horizontal
	3332	65.02	4.26	29.87	4	44.40	54.75	7	74	-19.25	Pk	Vertical
	3332	54.58	4.26	29.87	2	44.40	44.31	Ę	54	-9.69	AV	Vertical
	3332	63.30	4.26	29.87	4	44.40	53.03	7	74	-20.97	Pk	Horizontal
	3332	53.49	4.26	29.87	4	44.40	43.22	Ę	54	-10.78	AV	Horizontal
	17797	42.88	10.99	43.95	4	43.50	54.32	7	74	-19.68	Pk	Vertical
	17797	33.98	10.99	43.95	4	43.50	45.42	Ę	54	-8.58	AV	Vertical
	17788	45.61	11.81	43.69	4	44.60	56.51	7	74	-17.49	Pk	Horizontal
	17788	32.68	11.81	43.69	2	44.60	43.58	Ę	54	-10.42	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	WP20 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Allen Liu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	WP20 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	UT: Smart Phone		WP20 Pro	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu	

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	WP20 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 **PEAK OUTPUT POWER**

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$ bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Smart Phone Model No.:		WP20 Pro	
Temperature:	20 ℃	Relative Humidity:	48%	
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu	

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Smart Phone	Model No.:	WP20 Pro
Temperature:	20 ℃	Relative Humidity:	
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Allen Liu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.25dBi). It comply with the standard requirement.

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

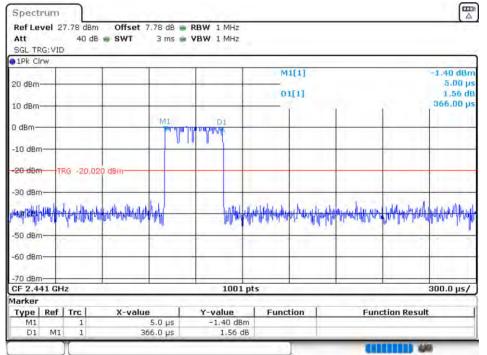
This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

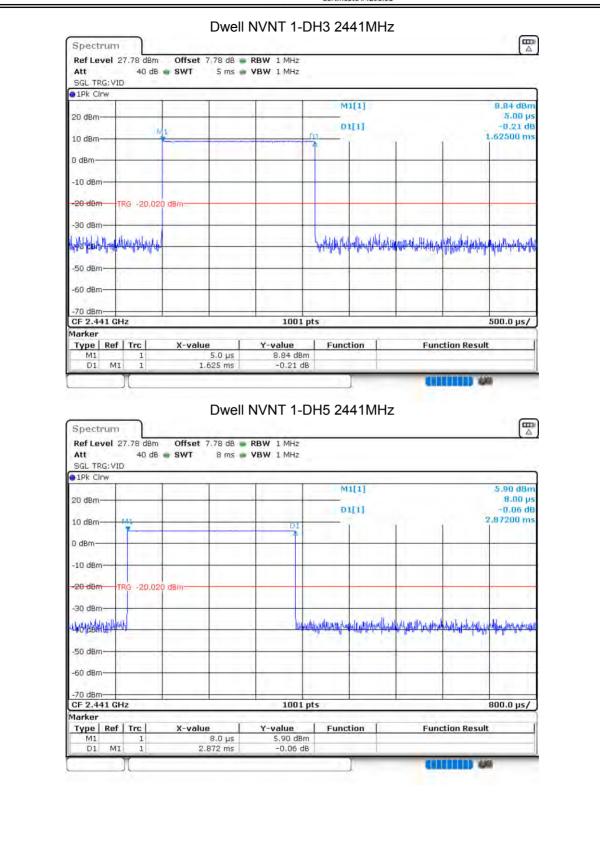
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

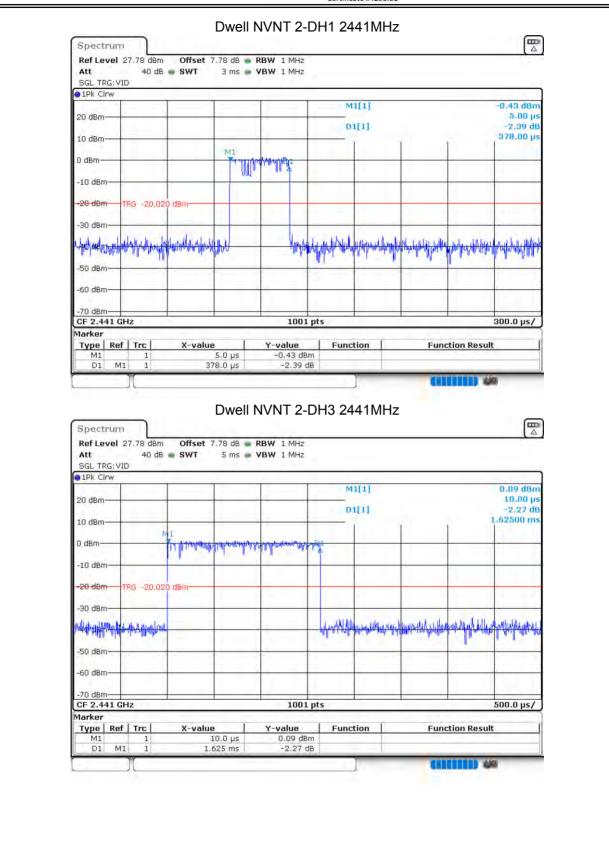
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

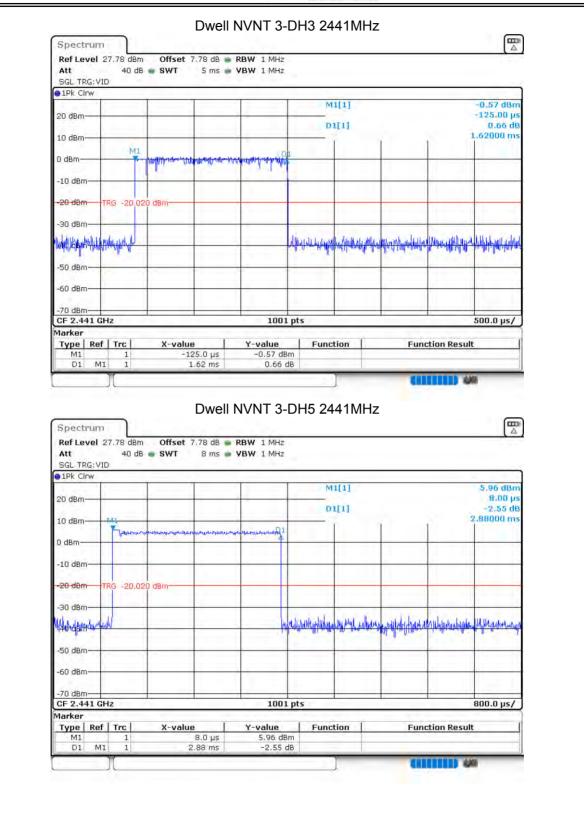


8 TEST RESULTS

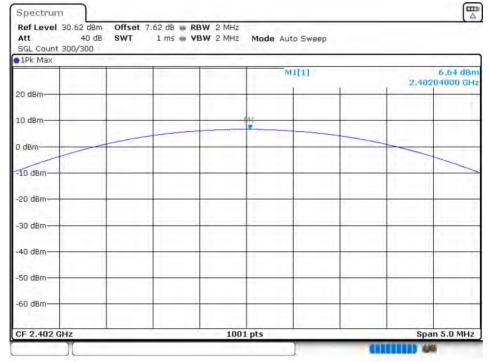
8.1 DWELL TIME


8.1 DWELL HIVE							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.366	117.12	31600	400	Pass
NVNT	1-DH3	2441	1.625	260	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.625	260	31600	400	Pass
NVNT	2-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	3-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass





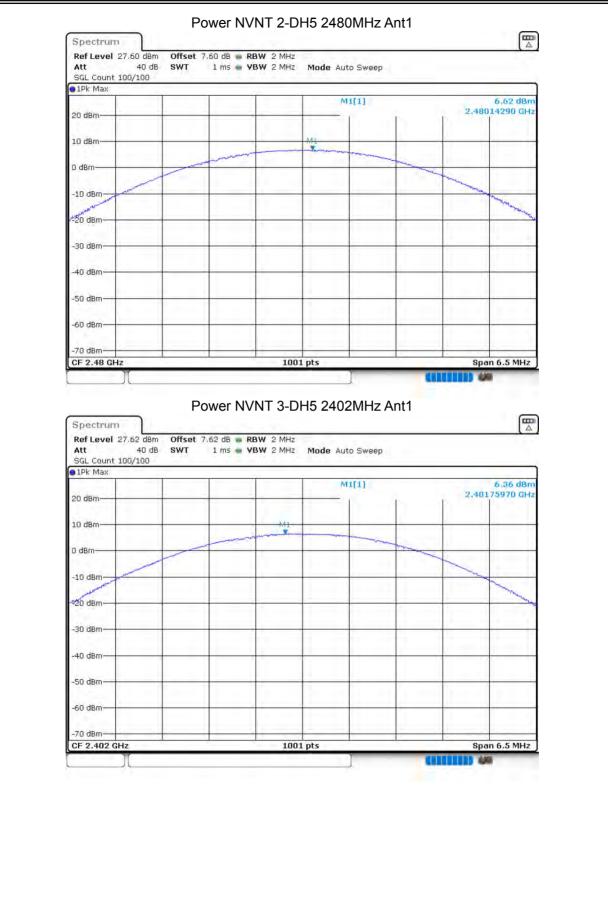
SGL TRG: VID 1Pk Clrw						
20 dBm			M1[1]			7 dBm .00 µs
			01[1]			B8 dB
10 dBm					2.0000	Juins
D dBm M1	องราวเลี้ยงหมายใหญ่เขาเหลือมูลไรป้ายการก	แก้งุกราวสาขารปังหระชานเกลียง1				
-10 dBm						-
-20 dBm TRG -20	.020 dBm	_				
-30 dBm						
HAD BEHAMINAN			mal hyper when the provided	A Contractor Contractor	also the A could be decide	ding also
тинолавнининина			and the second of the second	11 a. a. 1996 Arthudilia Ala	nt i nil inkologi ik	1.1
-50 dBm		-		_		-
-60 dBm				-		
-70 dBm						
CF 2.441 GHz Marker		1001	pts		800.0) µs/
			Function	Euno	tion Result	1
Type Ref Trc	X-value	Y-value				
	X-value 8.0 μs 2.88 ms	-2.87 dB	m			
Type Ref Trc M1 1 D1 M1 1 Spectrum Ref Level 27.78 d	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB	: -2.87 dB ; -2.88 (m		an (())	
Type Ref Trc M1 1 1 D1 M1 1 Spectrum	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB	-2.87 dB -2.88 d ell NVNT 3-	m 18		8.83	i dBm
Type Ref Trc M1 1 1 D1 M1 1 Spectrum	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB	-2.87 dB -2.88 d ell NVNT 3-	DH1 2441M		8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 Spectrum	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB 9 SWT 3 ms	-2.87 dB -2.88 d ell NVNT 3-	^м DH1 2441M мı[1]		8.83 2. -2.	3 dBm .00 µs
Type Ref Trc M1 1 1 D1 M1 1 Spectrum Image: Comparison of the system of th	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB 9 SWT 3 ms	2.87 dB -2.88 d -2.88 d ell NVNT 3-	^м DH1 2441M мı[1]		8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the system of the syst	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB 9 SWT 3 ms	2.87 dB -2.88 d -2.88 d ell NVNT 3-	^м DH1 2441M мı[1]		8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the system of the syst	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB SWT 3 ms	2.87 dB -2.88 d -2.88 d ell NVNT 3-	^м DH1 2441M мı[1]		8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the second seco	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB SWT 3 ms	2.87 dB -2.88 d -2.88 d ell NVNT 3-	^м DH1 2441M мı[1]		8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 D1 M1 D1 M1 Spectrum Ref Level 27.78 df Att 40 SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	-2.87 dB -2.88 d	MI[1] 01[1]	IHz	8.83 2. -2. -384.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the second seco	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	-2.87 dB -2.88 d	^м DH1 2441M мı[1]	IHz	8.83 2. -2.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 D1 M1 D1 M1 Spectrum Ref Level 27.78 df Att 40 SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	-2.87 dB -2.88 d	m 18 DH1 2441M M1[1] 01[1] 01[1]	IHz	8.83 2. -2. -384.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the second seco	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	-2.87 dB -2.88 d	m 18 DH1 2441M M1[1] 01[1] 01[1]	IHz	8.83 2. -2. -384.	3 dBm .00 μs 65 dB
Type Ref Trc M1 1 D1 M1 D1 M1 Spectrum Ref Level 27.78 di Att 40 SGL TRG: VID • IPk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	2.87 dB -2.88 d -2.88 d ell NVNT 3-	MI[1] 01[1]	IHz	8.83 2. -2. -384.	3 dBm 00 µs 65 dB 00 µs
Type Ref Trc M1 1 D1 M1 D1 M1 Spectrum Ref Level 27.78 dl Att 40 SGL TRG: VID 1Pk Clrw 20 dBm - 10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm - -70 dBm - -70 dBm -	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB • SwT 3 ms M1	-2.87 dB -2.88 d	MI[1] 01[1]	IHz	8.83 2. -2. -384.	3 dBm 00 µs 65 dB 00 µs
Type Ref Trc M1 1 1 D1 M1 1 D1 M1 1 Spectrum Image: Comparison of the system of the syst	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB SWT 3 ms M1 ,020 dBm	-2.87 dB -2.88 d	m JB DH1 2441M MI[1] O1[1] O1[1] DH1 Physical Physical Phys		8.83 2. -2. -384.	3 dBm 00 µs 65 dB 00 µs
Type Ref Trc M1 1 D1 M1 1 D1 M1 1 Spectrum Ref Level 27.78 dl Att 40 SGL TRG: VID IPK Clrw 20 dBm 20 dBm 10 dBm TRG 10 -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	8.0 µs 2.88 ms Dwe 3m Offset 7.78 dB dB SWT 3 ms .020 dBm	2.87 dB -2.88 d -2.88 d ell NVNT 3- * VBW 1 MHz * VBW 1 MHz * VBW 1 MHz * UBW	m IB DH1 2441M M1[1] 01[1] 01[1] 		8.83 2. -2. -384. 	3 dBm 00 µs 65 dB 00 µs

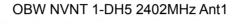


8.2 MAXIMUM CONDUCTED OUTPUT POWER

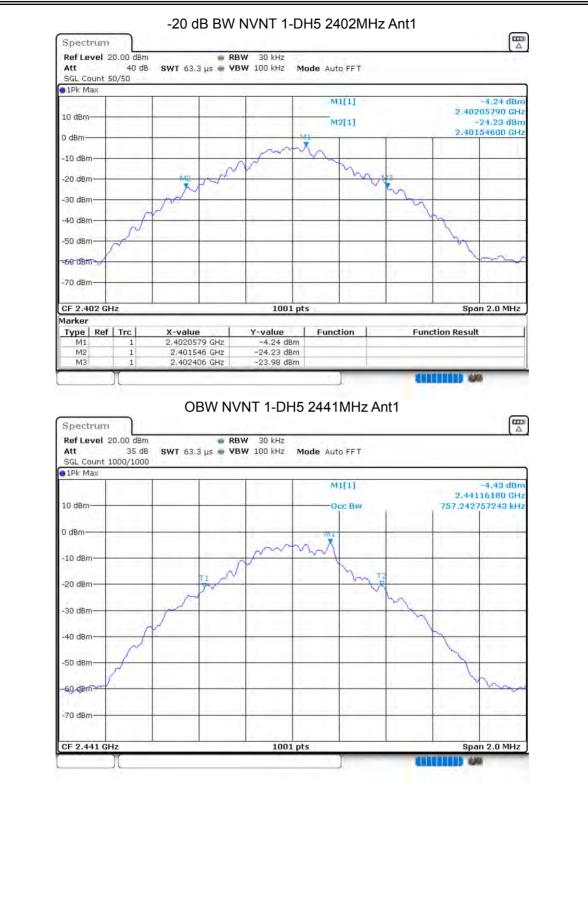
		Decile con ci	OHER			
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.645	30	Pass
NVNT	1-DH5	2441	Ant 1	6.111	30	Pass
NVNT	1-DH5	2480	Ant 1	7.331	30	Pass
NVNT	2-DH5	2402	Ant 1	6.304	21	Pass
NVNT	2-DH5	2441	Ant 1	5.957	21	Pass
NVNT	2-DH5	2480	Ant 1	6.624	21	Pass
NVNT	3-DH5	2402	Ant 1	6.358	21	Pass
NVNT	3-DH5	2441	Ant 1	5.885	21	Pass
NVNT	3-DH5	2480	Ant 1	6.657	21	Pass

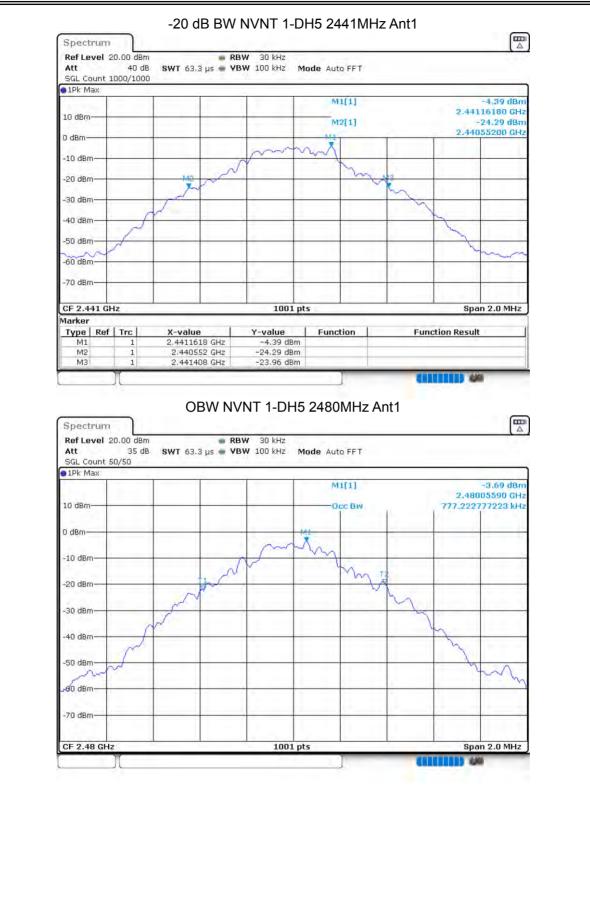
Power NVNT 1-DH5 2402MHz Ant1

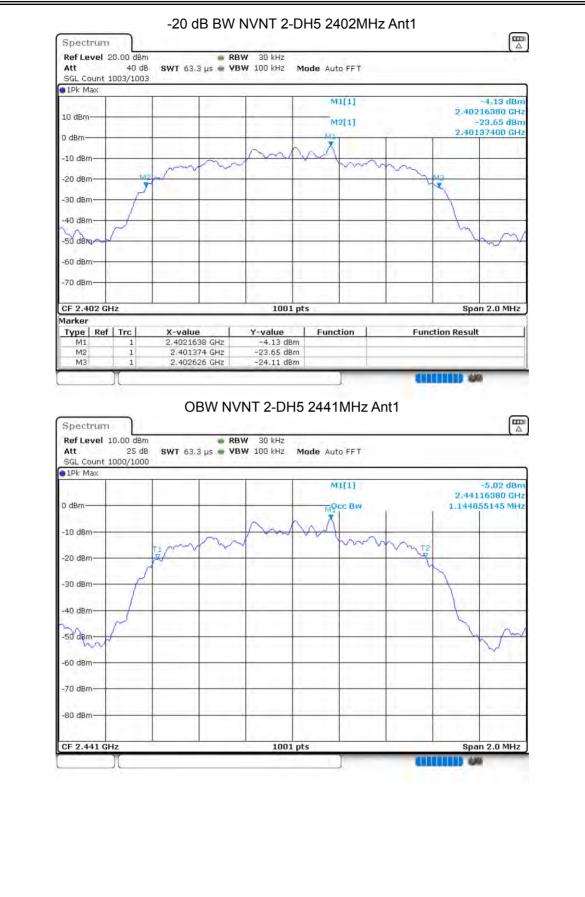


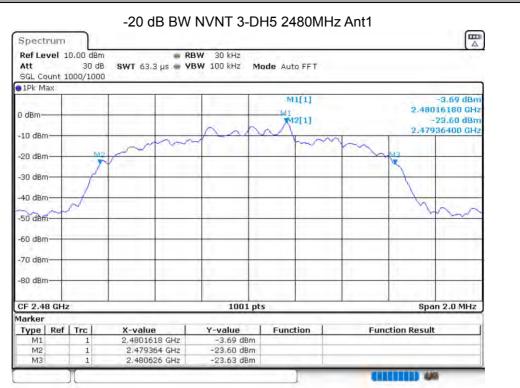


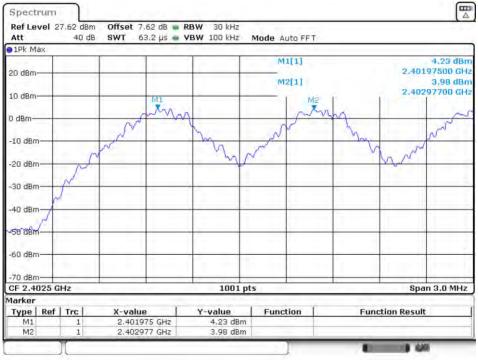
8.3 OCCUPIED CHANNEL BANDWIDTH


0.5 00001			1			
Condition	Mode	Frequency	Antenna	99% OBW	-20 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	1-DH5	2402	Ant 1	0.7592	0.86	Pass
NVNT	1-DH5	2441	Ant 1	0.7572	0.856	Pass
NVNT	1-DH5	2480	Ant 1	0.7772	0.912	Pass
NVNT	2-DH5	2402	Ant 1	1.1429	1.252	Pass
NVNT	2-DH5	2441	Ant 1	1.1449	1.252	Pass
NVNT	2-DH5	2480	Ant 1	1.1508	1.268	Pass
NVNT	3-DH5	2402	Ant 1	1.1489	1.278	Pass
NVNT	3-DH5	2441	Ant 1	1.1469	1.248	Pass
NVNT	3-DH5	2480	Ant 1	1.1548	1.262	Pass

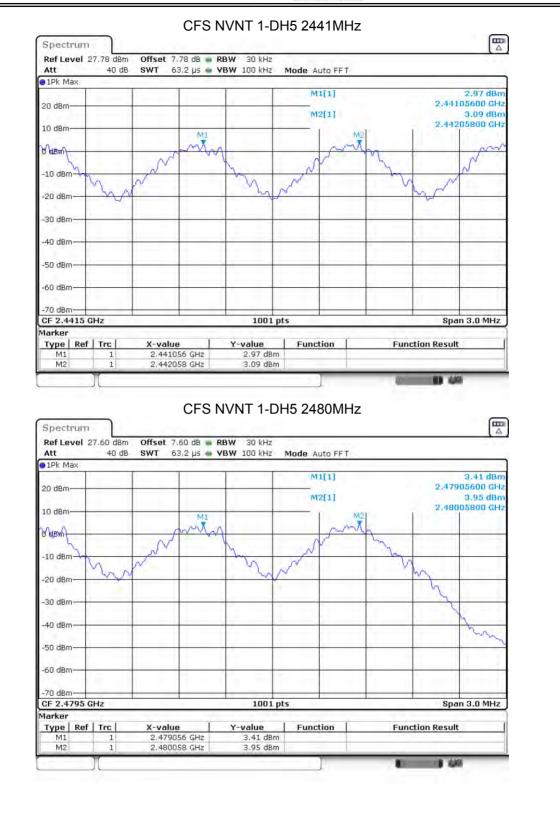


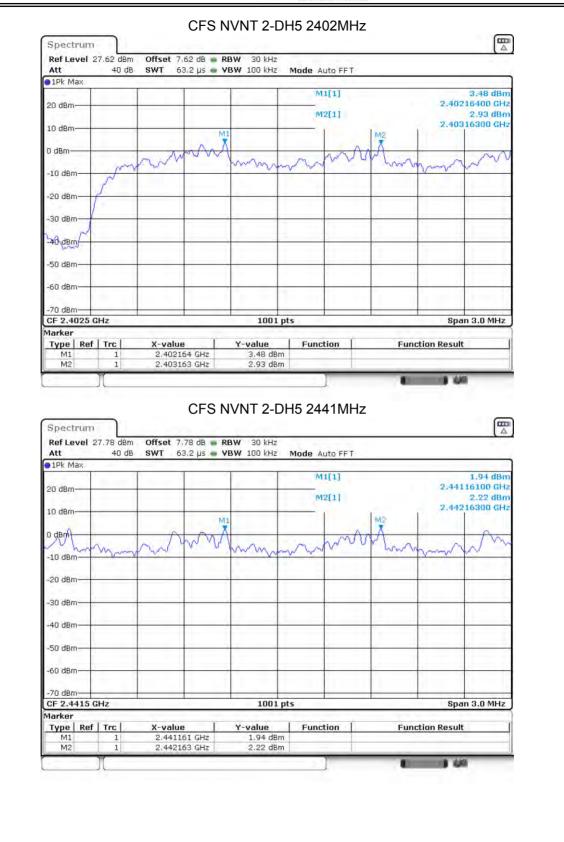


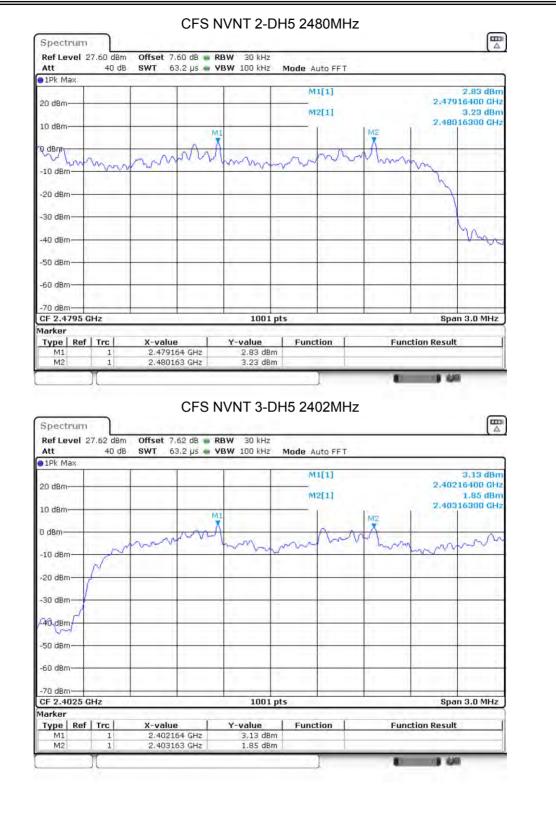


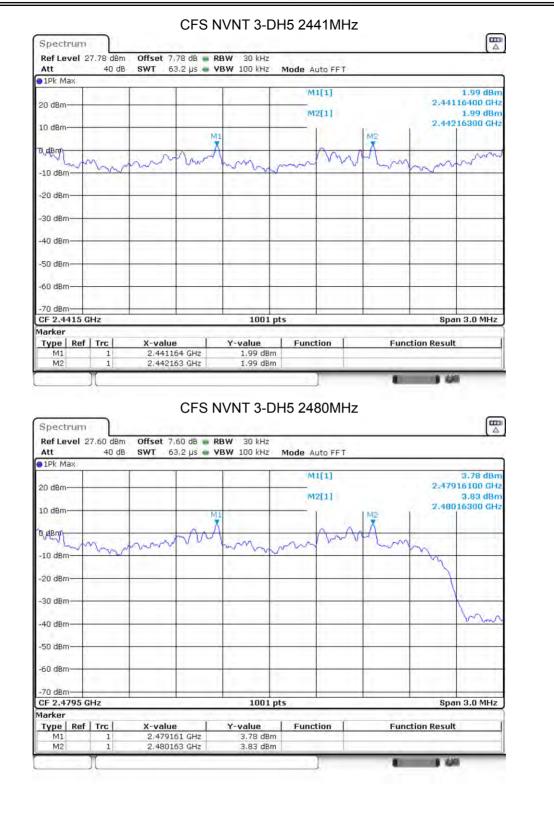


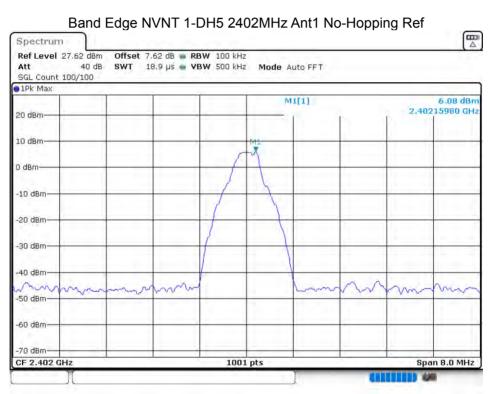
8.4 CARRIER FREQUENCIES SEPARATION


0.4 0/1111			1			
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.975	2402.977	1.002	0.86	Pass
NVNT	1-DH5	2441.056	2442.058	1.002	0.856	Pass
NVNT	1-DH5	2479.056	2480.058	1.002	0.912	Pass
NVNT	2-DH5	2402.164	2403.163	0.999	0.835	Pass
NVNT	2-DH5	2441.161	2442.163	1.002	0.835	Pass
NVNT	2-DH5	2479.164	2480.163	0.999	0.845	Pass
NVNT	3-DH5	2402.164	2403.163	0.999	0.852	Pass
NVNT	3-DH5	2441.164	2442.163	0.999	0.832	Pass
NVNT	3-DH5	2479.161	2480.163	1.002	0.841	Pass









NTEK 北测[®]

8.6 BAND EDGE

8.6 BANDE	DGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-46.9	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-44.91	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-49.47	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-48.33	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-46.81	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-45.54	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-48.86	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-47.69	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-46.53	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.43	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-49.24	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-46.31	-20	Pass

9 1Pk Max	100/100								
20 dBm					MI	[1]		2 401	5.83 dBm 95000 GHz
10 dBm					Ma	2[1]			46.55 dBm
						1		2.400	1000000 SHz
0 dBm								1	
-10 dBm-	01 -13.91	7 dBm					-		
-20 dBm		-					1.	1	
-30 dBm				M4		12.00			
-40 dBm-	men dwashanks	haller	mannah	wantermany	American	and the the she is	- malerestal	M3	M2 Unite
-50 dBm		and the state	5 (FUI)		- Westerner of		and the state	00 N-00 0000	o for on
-60 dBm									
-70 dBm- Start 2.30	6 CH3			1001	nts	_		Qtor 1	2.406 GHz
Marker	1			1001	pts	1		Stop .	2.400 GHZ
Type Re M1	ef Trc	X-value 2.4019	95 GHz	Y-value 5.83 dBr	Funct	ion	Fund	tion Result	*
M2 M3	1		.4 GHz 39 GHz	-46.55 dBr -46.48 dBr					
M4	1		93 GHz	-40.82 dBr	n				
Spectrur Ref Level Att	and Ed	SWT 18		RBW 100 kHz VBW 300 kHz	137762413				
Spectrur Ref Level Att SGL Count	n 27.62 dBm 40 dB	SWT 18			137762413		M	2,402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413		M	2.402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413		M	2.402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413			2.402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413			2,402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413			2,402	5,93 dBm
Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413			2.402	5,93 dBm
Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dB	SWT 18			137762413			2.402	5,93 dBm
Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm	n 27.62 dBm 40 dE	SWT 18							5,93 dBm
Spectrur Ref Level Att SGL Count ISGL Count IN Max 20 dBm- 10 dBm- -10 dBm- -20 dBm- -20 dBm- -30 dBm-	n 27.62 dBm 40 dB	SWT 18			137762413			2,402	5,93 dBm

Ref Level 2 Att SGL Count 1	40 dB			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT	-		
1Pk Max	-			1-1	M1	[1]			6.16 dBm
20 dBm					M2	[1]			295000 GHz -44.67 dBm
10 dBm				1			6		2H2 DODDDD
0 dBm			-			-		-	
-10 dBm-	1 -14,072	dBm							- PUR
-20 dBm	1 . 1 (love)	di Di Tit	-			-			
-30 dBm				110		-	-	-	
-40 dBm	1	A Carlos	Although	M4				43	ME
-50 dBm	anner ann ann ann ann ann ann ann ann ann an	an and the second	wanuu	and a contraction	mathemartic	maker the the	manufame	motherman	and the second
-60 dBm							_	-	
-70 dBm						1	1	1	
Start 2.306 Marker	GHz		A	1001 p	ts			Stop	2.406 GHz
Type Ref		X-valu		Y-value	Functi	ion	Fur	iction Resul	t
M1 M2	1		295 GHz 2.4 GHz	6.16 dBm -44.67 dBm					
M3	1		387 GHz	-44.56 dBm		_			
M4	1	2,34	486 GHz	-38.98 dBm					
Spectrum Ref Level 2 Att SGL Count 1	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-38.98 dBm -DH5 2480 RBW 100 kHz YBW 300 kHz) MHz A		o-Hopp	ing Ref	
Spectrum Ref Level 2 Att SGL Count 1 ● 1Pk Max	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au		o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		
Spectrum Ref Level 2 Att SGL Count 1 ● 1Pk Max	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hopp		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 • IPk Max 20 dBm 10 dBm 0 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 20 dBm 10 dBm -10 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 10 IPk Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FFT	o-Hoppi		6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 I D dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FF T	o-Hoppi	2.48	6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FF T	o-Hoppi	2.48	6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 I Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band 7.60 dBm 40 dB	Edge N Offset 7	IVNT 1	-DH5 248()MHz A Mode Au	to FF T	o-Hoppi	2.48	6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 I DR Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -60 dBm	Band 40 dB 00/100	Edge N Offset 7	IVNT 1	-DH5 248(Mode Au	to FF T	o-Hoppi	2,481	6,29 dBm
Spectrum Ref Level 2 Att SGL Count 1 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Band 40 dB 00/100	Edge N Offset 7	IVNT 1	-DH5 2480	Mode Au	to FF T	o-Hoppi	2,481	6.29 dBm 003200 GHz
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Band 40 dB 00/100	Edge N Offset 7	IVNT 1	-DH5 2480	Mode Au	to FF T	o-Hoppi	2,481	6.29 dBm 003200 GHz
Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Band 40 dB 00/100	Edge N Offset 7	IVNT 1	-DH5 2480	Mode Au	to FF T	o-Hoppi	2,481	6.29 dBm 003200 GHz

SGL Count 100/10 9 1Pk Max	00	1.44						
20 dBm-	-			M	1[1]		2.480	6.17 dBm 105000 GHz
10 dbm	-	1		M	2[1]			-46.10 dBm
0 dBm					1		2,700	
-10 dBm			1		1	-	1	1
-20 cBm-	3.711 dBm							1
-30 dBm					· · · · ·		1 i	
-40 dBm	MB				1		1.4	1.5 2.8
-50 dBm	www.www.www.	munan	when have we don't	windowingth	margalation	he had in the share	aindunation	purchangelanne
-60 dBm				_			_	
-70 dBm					1			1
Start 2.476 GHz Marker			1001	pts	1		Stop	2.576 GHz
Type Ref Trc M1 1		9 D5 GHz	Y-value 6.17 dBm	Funct	tion	Fund	tion Result	
M2 1 M3 1	2.48	35 GHz 2.5 GHz	-46.10 dBm -45.05 dBm	n				
M4 1		02 GHz	-43.19 dBm		1			
					1	-		
20 dBm				M	1(1)	r.	2,480	6,15 dBm 107190 GHz
10 dBm-	_			1				
10 0011	Among	r		5	1 7 7			
m my								
D dBm				1	1	1	-	
m my			V	7			-	
D dBm				1				
0 dBm -10 dBm				1				
0 dBm -10 dBm -20 dBm -30 dBm				1				
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm				1	have a second se			
0 dBm -10 dBm -20 dBm -30 dBm								
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm					h.			· · · · · · · · · · · · · · · · · · ·
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm			1001	pts				n 8.0 MHz)
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm			1001	pts			Spa	
0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm			1001	pts)			

🔵 1Pk Max	-	[1	î î	M1	Ē11		-	5.91 dBm
20 dBm				-	_				105000 GHz
10 dBm-	_			-	M2	[1]	-		42.85 dBm
0 dem				-		_			
-10 dBm			-			-			
-20 cBm	01 -13,847	dBm							1
-30 cBm	-					-	_		
-40 dBm2	M4	643	10						11
-50 dBm-	whomen for the	himmonia	about manage	and a grant and a start of the	munipharme	numerojdun	ndrawa processo	poster marched	the ward warmen and the
-60 dBm							· . · · · · · · · · · · · · · · · · · ·		
	-						· · · · · · · · · · · · · · · · · · ·	h	·
-70 dBm- Start 2.476	GHz	ľ.	1	1001 p	ots			Stop	2.576 GHz
Marker Type Ref	Trc	X-valu	e (Y-value	Functi	ion I	Fun	ction Result	
M1 M2	1	2.480	ID5 GHz I35 GHz	5.91 dBm -42.85 dBm					
M3 M4	1	2	2.5 GHz 35 GHz	-43.75 dBm -42.19 dBm	5				
IMI 11	1	2,49	35 GHZ	-42.19 UBM	2. A				
(N					_			8
Spectrum Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	-DH5 2402 RBW 100 kHz YBW 300 kHz	13.2.		o-Hoppin	ng Ref	
Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Au		o-Hoppin		5,80 dBm
Ref Level Att SGL Count	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Au	to FF T	p-Hoppin		
Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz	Mode Au	to FF T	p-Hoppin		5,80 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T	p-Hoppin		5,80 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T	p-Hoppin		5,80 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T			5,80 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm-	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T	p-Hoppin		5,80 dBm
Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T	p-Hoppin		5,80 dBm
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T			5,80 dBm
Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm -10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FF T			5,80 dBm
Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT			5,80 dBm
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT			5,80 dBm
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm • 0 dBm • -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT			5,80 dBm
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT		2.401	5,80 dBm 84820 GHz
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT		2.401	5,80 dBm
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 100/100	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT		2.401	5,80 dBm 84820 GHz
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.62 dBm 40 dB 100/100	Offset 7	.62 dB 🐞 I	RBW 100 kHz YBW 300 kHz	Mode Au	to FFT		2.401	5,80 dBm 84820 GHz

Att SGL Count	40 dB 100/100	SWT 22	27.5 µs 🎃	VBW 300 kHz	z Mode A	uto FFT.			
●1Pk Max	1			1	M1	[1]			3.90 dBr
20 dBm					M2	[1]			95000 GH 44,16 dBr
10 dBm							0	2.400	100000)(GH
0 dBm-			_					1 1	A
	D1 -14,196	dBm			_		-		
-20 dBm				1.5	1		7.	1	
-30 dBm				M4	1			1	
-40 dBm	whichdow rifle	nennengymannen	Montherith	way with one thing	Alternation	alaborent	Advantagenation	MIS Marty Mary	unual he
-50 dBm					1	1	1	11 1	1
-60 dBm							·	1	
-70 dBm	GHz		-	1001	pts		1	Stop	2.406 GHz
Marker Type Ref	Trc	X-value	1	Y-value	Functi	ion	Fund	tion Result	t
M1 M2	1		95 GHz .4 GHz	3.90 dBr -44.16 dBr					
M3 M4	1		39 GHz 94 GHz	-45.83 dBr -41.02 dBr					
1917									
	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	VNT 2-D RBW 100 kHz YBW 300 kHz	Mode Au	to FFT	Ant1 Ho	oping R	
Ba Spectrum Ref Level Att SGL Count	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz	Mode Au		Ant1 Ho		
Ba Spectrum Ref Level Att SGL Count IPk Max	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count I PIPK Max 20 dBm- 10 dBm- -10 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- 0 dBm- -10 dBm-	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count I O dBm D dBm -10 dBm -20 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT	Ant1 Ho		5,18 dBn
Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	27.62 dBm 40 dB	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz	Mode Au	to FFT			5,18 dBn
Back Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 8000/8000	Offset 7.	62 dB 🐞 F	RBW 100 kHz		to FFT	Ant1 Ho	2.402	5,18 dBn
Ba Spectrum Ref Level Att SGL Count I OdBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	27.62 dBm 40 dB 8000/8000	Offset 7.	62 dB 🐞 F	RBW 100 kHz VBW 300 kHz		to FFT		2.402	5,18 dBn
Back Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 8000/8000	Offset 7.	62 dB 🐞 F	RBW 100 kHz		to FFT		2.402	5,18 dBn
Back Spectrum Ref Level Att SGL Count ID dBm 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 8000/8000	Offset 7.	62 dB 🐞 F	RBW 100 kHz		to FFT		2.402	5,18 dBn

Ref Level 27.62 dBm Att 40 dB SGL Count 1000/1000		VBW 300 kHz	MODE AUTO FFT		
●1Pk Max	1 1	1 1	M1[1]		5.89 dBm
20 dBm			M2[1]		-43.88 dBm
10 dBm				$\mathbf{f} = \mathbf{h}^{4}$	2.40000000 GHz
0 dBm					/he/he
-10 dBm-D1 -14.82	4 dBm				
-20 dBm					
-30 dBm-		M4		Ma	Ma
-40 dBm- melandon	have been and the second of the second of the second s	manufactor from the second grave	www.www.www.www.www.www.www.www.	143	el manufacture to
-60 dBm					
-70 dBm				· · · · · · · · · · · · · · · · · · ·	
Start 2.306 GHz	1 1	1001 pt	ts	1 1	Stop 2.406 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function R	esult
M1 1 M2 1	2.40215 GHz 2.4 GHz	5.89 dBm -43.88 dBm			
M3 1 M4 1	2.39 GHz 2.3508 GHz	-44.53 dBm -40.36 dBm			
					1000
Band Spectrum Ref Level 27.60 dBm Att 40 dE SGL Count 100/100 PIPk Max		S.O.T.	Mode Auto FFT	lo-Hopping R	ef
Spectrum Ref Level 27.60 dBm Att 40 dE SGL Count 100/100	n Offset 7.60 dB 🖷	RBW 100 kHz	1		
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max	n Offset 7.60 dB 🖷	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 PIPK Max 20 dBm 10 dBm	n Offset 7.60 dB 🖷	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 PIPK Max 20 dBm-	n Offset 7.60 dB	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm	n Offset 7.60 dB	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm 0 dBm	n Offset 7.60 dB	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm -10 dBm	n Offset 7.60 dB	RBW 100 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dE SGL Count 100/100 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7.60 dB	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 •1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dE SGL Count 100/100 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dE SGL Count 100/100 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 • IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm 2.48015980 GHz
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 IPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm 2.48015980 GHz
Spectrum Ref Level 27.60 dBm Att 40 dB SGL Count 100/100 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	n Offset 7.60 dB 3 SWT 18.9 μs	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		6.14 dBm 2.48015980 GHz

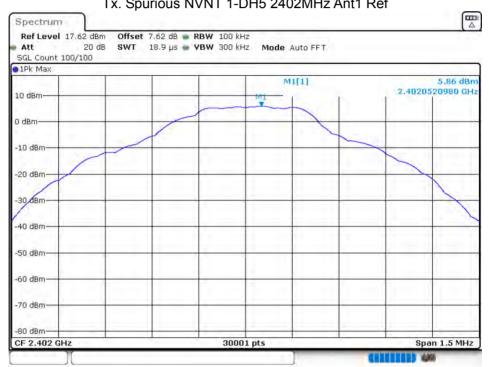
SGL Count	100/100				-				
20 dBm-					M1	[1]		2.40	4.23 dBm
			-		M2	[1]			-46.29 dBm
10 dBm						ć	1	2.46	350000 GHz
-10 cBm	÷			1.	-				
	01 -13,862	dBm							
-30 dBm			_	1		1	<u></u>		1
16 ddm	M4			1		1100	1 -	1	1
-50 dBm	monthemany	www.had.www.	adversionalized	Munnhamphing	untruitinget	han white day	allely way that	numbers/masses	Har and Andrew Marker
-60 dBm				· · · · · · ·		1			
-70 dBm		-		1		1 1	1		·*
Start 2.476 Marker	GHz		4	1001	ots			Stop	2.576 GHz
Type Ref		X-valu		Y-value	Funct	ion	Fur	nction Resu	lt
M1 M2	1	2.48	105 GHz 335 GHz	4.23 dBm -46.29 dBm	τ				
M3 M4	1		2.5 GHz 902 GHz	-47.28 dBm -42.72 dBm					
Spectrum Ref Level : Att SGL Count	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	VNT 2-DH BW 100 kHz BW 300 kHz	13.25		Ant1 Ho	opping F	Ref
Spectrum Ref Level 3 Att SGL Count 4 • 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz	Mode Au		Ant1 Hc		
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 4 • 1Pk Max	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 2 Att SGL Count 2 1Pk Max 20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 1 1Pk Max 20 dBm- 10 dBm-	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 6 1Pk Max 20 dBm 10 dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 1 IPK Max 20 dBm 10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 6 1Pk Max 20 dBm 10 dBm -10 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	(1)	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 1 IPK Max 20 dBm 10 dBm -10 dBm -20 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	ito FFT	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 1 PR Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	(1)	Ant1 Hc		5,40 dBm
Spectrum Ref Level : Att SGL Count : 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	(1)	Ant1 Hc		5,40 dBm
Spectrum Ref Level : Att SGL Count : 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.60 dBm 40 dB	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz	Mode Au	(1)	Ant1 Hc		5,40 dBm
Spectrum Ref Level 3 Att SGL Count 1 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz		(1)	Ant1 Hc	2.47	5.40 dBm 98.420 GHz
Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz		(1)	Ant1 Hc	2.47	5,40 dBm
Spectrum Ref Level : Att SGL Count : 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz		(1)	Ant1 Hc	2.47	5.40 dBm 98.420 GHz
Spectrum Ref Level 3 Att SGL Count 1 PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	27.60 dBm 40 dB 3000/8000	Offset 7	.60 dB 💼 R	BW 100 kHz BW 300 kHz		(1)	Ant1 Hc	2.47	5.40 dBm 98.420 GHz

SGL Count 1Pk Max		-	1	7 - T					
20 dBm		_			MI	(1)			5.58 dBm 015000 GHz
10 ¹ d8m			-		M2	2[1]			-45.15 dBm 350000 GHz
			_						
-10 cBm						1		1.000	
-20 aBm	D1 -14.596	dBm						1	
-30 dBm						1	<u> </u>		
-40 damtz	M4	Ma					1		1.1
-50 dBm-	phaneliter Anishis	ereelistyphicista	manula lancounty	spinaneoneopy	handendry	instal with ing a few	www.linespaneterne	white the second	a publication
-60 dBm						· · · · · · ·			
-70 dBm	-								
Start 2.47	5 GHz		4	1001	pts			Stop	2.576 GHz
Marker Type Rei	f Trc	X-value	e	Y-value	Funct	ion	Fund	tion Resul	t
M1 M2	1		15 GHz	5.58 dBm -45.15 dBm			2.00		
M3 M4	1		2.5 GHz	-44.09 dBm -42.29 dBm					_
-									
Spectrum Ref Level Att SGL Count • 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	DH5 240	Mode Au		D-Hoppir	ng Ref	5.21 dBm
Ref Level Att SGL Count	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		[Δ
Ref Level Att SGL Count 1Pk Max	27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm-	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm- 10 dBm- -10 dBm- -20 dBm-	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	ito FFT	p-Hoppir		5.21 dBm
Ref Level Att SGL Count IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	uto FF T	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	uto FF T	p-Hoppir		5.21 dBm
Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 27.62 dBm 40 dB	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	uto FF T	p-Hoppir		5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 F		Mode Au	uto FF T	p-Hoppir	2.40	5,21 dBm 199200 GH2
Ref Level Att SGL Count 9 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 F	RBW 100 kHz	Mode Au	uto FF T	p-Hoppir	2.40	5.21 dBm
Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 F		Mode Au	uto FF T	p-Hoppir	2.40	5,21 dBm 199200 GH2
Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	27.62 dBm 40 dB 300/300	Offset 7	.62 dB 🐞 F		Mode Au	uto FF T	p-Hoppir	2.40	5,21 dBm 199200 GH2

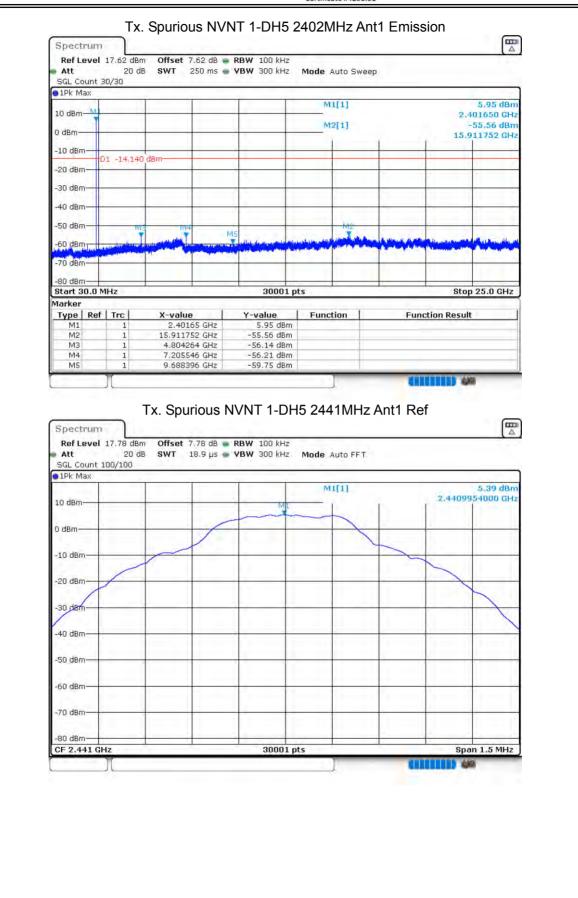
SGL Count : 1Pk Max		í.	1	7 I					
20 dBm				-	M1[11		2.40	5.78 dBm 205000 GHz
10 dBm	1				M2[1]			-46.32 dBm 000000//sHz
0 dBm	_								
-10 dBm						1.1		1.000	
-20 dBm-	01 -14,788	dBm						1	
-30 dBm						1	<u>1</u>		
			M4				1	1	
-50 dBm	www.nauraurau	which any hyperse	wan histop	walk was and	would for many and	wantry hubberson	phonetheateneth	aghere to any man	sharen the
-60 dBm				· · · · · · · · · · · · · · · · · · ·					
			-	· · · · ·			·	1	
-70 dBm	GHz	1	1	1001	pts			Stop	2.406 GHz
Marker Type Ref	Trc	X-value	e	Y-value	Functio	on I	Fund	tion Resul	t
M1 M2	1	2.402	05 GHz 2.4 GHz	5.78 dB -46.32 dB	m				
M3 M4	1	2.	39 GHz 03 GHz	-45.49 dB -41.33 dB	m				
Ba Spectrum Ref Level 3 Att SGL Count 8 1Pk Max	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hop	oping R	
Spectrum Ref Level 2 Att SGL Count 8	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D] H5 2402	o FFT	ant1 Hoj		
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hoj		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm-	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm- 10 dBm-	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	unt1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm 0 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	unt1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ	VNT 3-D	H5 2402 Mode Aut	o FFT	unt1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) N	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hop		5,65 dBm
Spectrum Ref Level 2 Att SGL Count 8 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ	VNT 3-D	H5 2402 Mode Aut	o FFT	ant1 Hop		5,65 dBm
Spectrum Ref Level 3 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ	VNT 3-D	H5 2402 Mode Aut	o FFT	unt1 Hop		5,65 dBm
Spectrum Ref Level 3 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	27.62 dBm 40 dB	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ	VNT 3-D	H5 2402 Mode Aut	o FFT	wmth Hop		5,65 dBm
Spectrum Ref Level 3 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Ind Edg 27.62 dBm 40 dB 3000/8000	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ	VNT 3-D	H5 2402	o FFT	Ant1 Hop	2.40	5,65 dBm
Spectrum Ref Level 3 Att SGL Count 8 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	Ind Edg 27.62 dBm 40 dB 3000/8000	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ		H5 2402	o FFT	ant1 Hop	2.40	5,65 dBm 200800 GH2
Spectrum Ref Level 3 Att SGL Count 8 • 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Ind Edg 27.62 dBm 40 dB 3000/8000	ge(Hop) offset 7	ping) Ν .62 dB • Γ 8.9 μs • Υ		H5 2402	o FFT	ant1 Hop	2.40:	5,65 dBm 200800 GH2

Att SGL Count 1000/		227.5 µs 🎃	VBW 300 kHz	Mode Aut	O FFT			
1Pk Max	1		T I	M1[1	1]			4.77 dBm
20 dBm				M2[1	1]			415000 GHz -44.53 dBm
10 dBm							2.40	000000 CHHz
0 dBm							1	pulli
-10 dBm-	4.347 dBm					-		
-20 dBm						-		
-30 dBm		M4					-	
-40 dBm	the late some installing in	· · · · ·	nortal amanabilition praw	umana wash	Maninana	whethershort	Ma	AN WELL
-50 dBm	0.000			- Value	a sea for the	and An ora		Page
-60 dBm								
-70 dBm						1		
Start 2.306 GHz Marker	<u>.</u>		1001 pt	s			Stop	2.406 GHz
Type Ref Tro		alue	Y-value 4.77 dBm	Function	n	Fund	ction Resul	lt
M2	1	2.4 GHz	-44.53 dBm					
	1	2.39 GHz 2.3399 GHz	-46.12 dBm -39.78 dBm					
								10
Spectrum Ref Level 27.60	dBm Offse HO dB SWT	et 7.60 dB 👜	-DH5 2480 RBW 100 kHz VBW 300 kHz	Mode Auto	FFT	-Hoppii	ng Ref	
Spectrum Ref Level 27.60 Att SGL Count 100/1	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	0.2.5	FFT	-Hoppin		5,71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att - SGL Count 100/1 1Pk Max 20 dBm-	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppii		5,71 dBm
Spectrum Ref Level 27.60 Att - SGL Count 100/1 1Pk Max	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att - SGL Count 100/1 1Pk Max 20 dBm-	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppii		5,71 dBm
Spectrum Ref Level 27.60 Att SGL Count 100/1 1Pk Max 20 dBm 10 dBm	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	0 FF T	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att SGL Count 100/1 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offse HO dB SWT	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	FFT	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att	dBm Offse H0 dB SWT D0	et 7.60 dB 👜	RBW 100 kHz	Mode Auto	0 FF T	-Hoppin		5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att SGL Count 100/1 IPk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz	Mode Auto	0 FF T	-Hoppin		5,71 dBm
Spectrum Ref Level 27.60 Att SGL Count 100/1 1Pk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz	Mode Auto	0 FF T			5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz	Mode Auto	0 FF T	-Hoppin		5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att SGL Count 100/1 IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz	Mode Auto	0 FF T	-Hoppin	2.48	5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz YBW 300 kHz	Mode Auto	0 FF T		2.48	5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz YBW 300 kHz	Mode Auto	0 FF T		2.48	5.71 dBm 001600 GHz
Spectrum Ref Level 27.60 Att	dBm Offse H0 dB SWT D0	et 7.60 dB = 18.9 μs =	RBW 100 kHz YBW 300 kHz	Mode Auto	0 FF T		2.48	5.71 dBm 001600 GHz

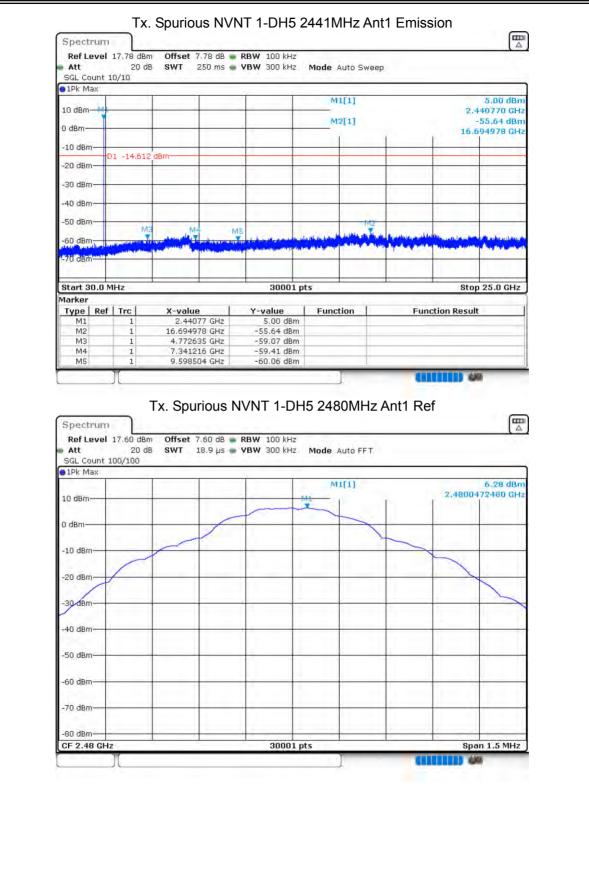
Att SGL Count 10		VI 227.5 µs	VBW 300 KHZ	Mode Auto FFT		
●1Pk Max		1	1-1	M1[1]		5.38 dBm
20 dBm				M2[1]		+8015000 GHz ~45,41 dBm
10/d8m					2.4	18350000 GHz
0 d8m						1.1.1
	-14.292 dBm				1	
-20 dBm			1.			10122
-30 dBm		5 - 1				
40 dBm2	maderman	andreamente	and many and a state of the second	medical and the superior and public	worshare are all the shires	wellthapphotormous
-50 dBm						
-60 dBm					· · · · · · · · · · · · · · · · · · ·	1
-70 dBm Start 2.476 0	Hz		1001 p	ts	Ste	op 2.576 GHz
Marker Type Ref	Trc y	(-value	Y-value	Function	Function Res	sult
M1 M2	1	2.48015 GHz 2.4835 GHz	5.38 dBm -45.41 dBm			
M3 M4	1	2.5 GHz 2.4997 GHz	-45.23 dBm -43.53 dBm			
	[]	(ILLIND)	400
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz	Mode Auto FFT	Ant1 Hopping	
Spectrum Ref Level 27 Att SGL Count 80	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz	A. 2. 3. 5		
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT		5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	2.4	5.26 dBm 179B4020 GHz
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	2.4	5.26 dBm
Spectrum Ref Level 27 Att SGL Count 80 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	7.60 dBm Off 40 dB SV	fset 7.60 dB 🖷	RBW 100 kHz YBW 300 kHz	Mode Auto FFT	2.4	5.26 dBm 179B4020 GHz


	m					
Att	1 27.60 dBm 40 dB 1 1000/1000	8 SWT 227.5 µs 🖷	RBW 100 kHz VBW 300 kHz	Mode Auto FF	r.	
1Pk Max		in the second				
				M1[1]		5.36 dBm
20 dBm-	-		-			2.48015000 GHz
10/d8m-				M2[1]		-43,78 dBm 2,48350000 GHz
TO GOIL		1			1	2:40030000 GHZ
Right	-		1			
1.						
-10 cBm-	D1 -14.73	6 dBm	1	1		
-20 aBm-	Rt STICS	C ubm				
-30 dBm—						
AD HEME	M4	MO				
Literity	monumber	many the allegrest there	month have been provide	Han what ennanty	une line with the state	and the share a superior
-50 dBm-						
20.00			1			· · · · · · · · · · · · · · · · · · ·
-60 dBm—						
-70 dBm-	_		_			1.000
Start 2.4	76 GHz	1 1	1001 pt	5	1	Stop 2.576 GHz
Marker	1000			the start		100 CT
	ef Trc	X-value	Y-value	Function	Fund	tion Result
M1	1	2.48015 GHz	5.36 dBm			
M2	1	2.4835 GHz 2.5 GHz	-43.78 dBm -44.54 dBm			
M3						

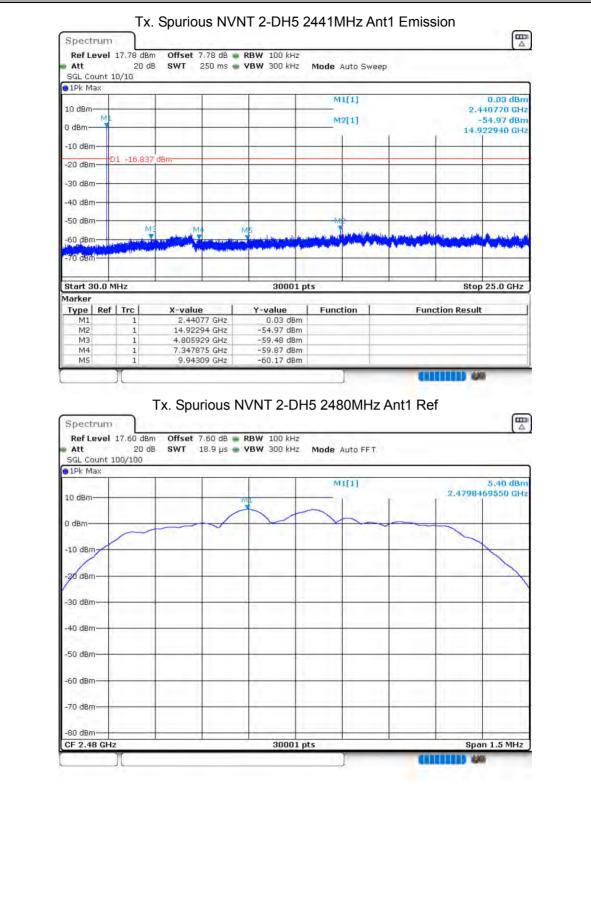
8.7 CONDUCTED RF SPURIOUS EMISSION


0.7 00110	001001					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-61.41	-20	Pass
NVNT	1-DH5	2441	Ant 1	-61.03	-20	Pass
NVNT	1-DH5	2480	Ant 1	-57.17	-20	Pass
NVNT	2-DH5	2402	Ant 1	-60.06	-20	Pass
NVNT	2-DH5	2441	Ant 1	-58.12	-20	Pass
NVNT	2-DH5	2480	Ant 1	-53.93	-20	Pass
NVNT	3-DH5	2402	Ant 1	-60.81	-20	Pass
NVNT	3-DH5	2441	Ant 1	-60.38	-20	Pass
NVNT	3-DH5	2480	Ant 1	-55.44	-20	Pass

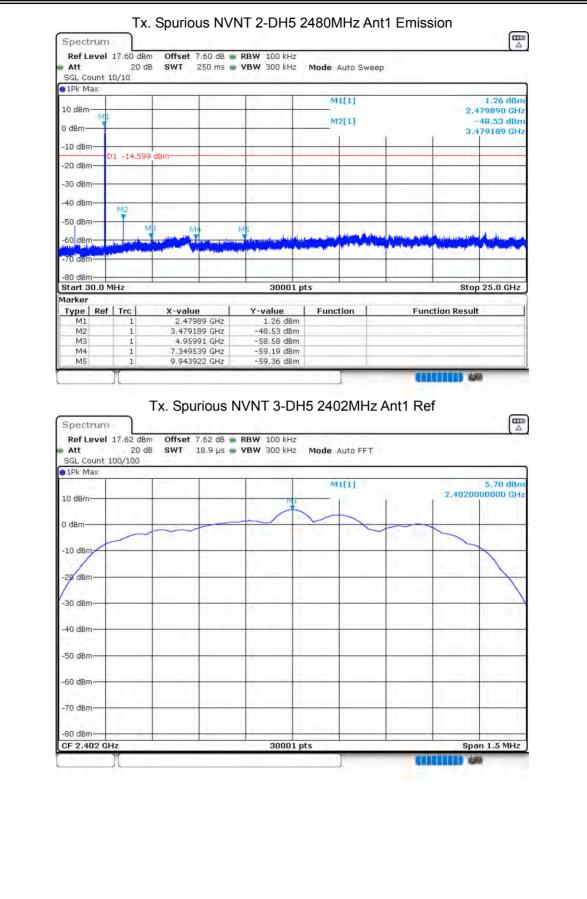
Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

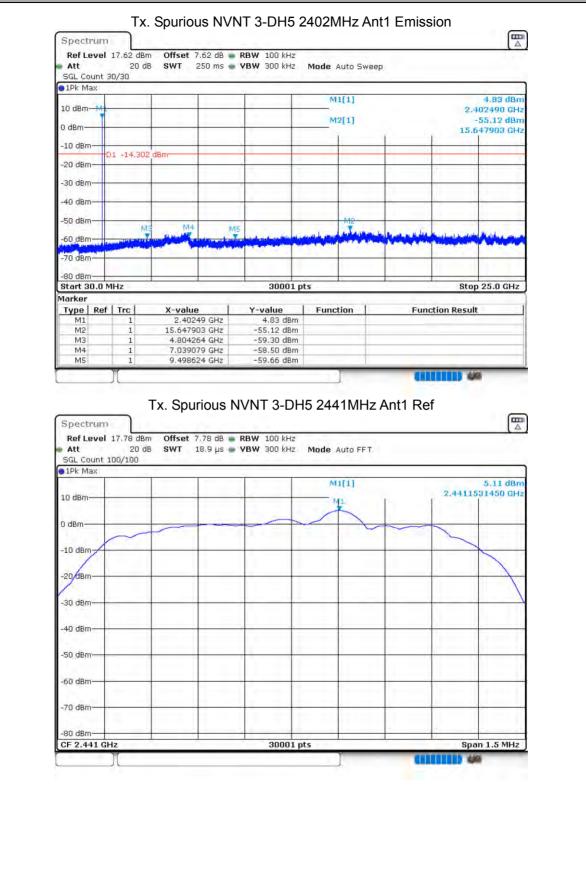


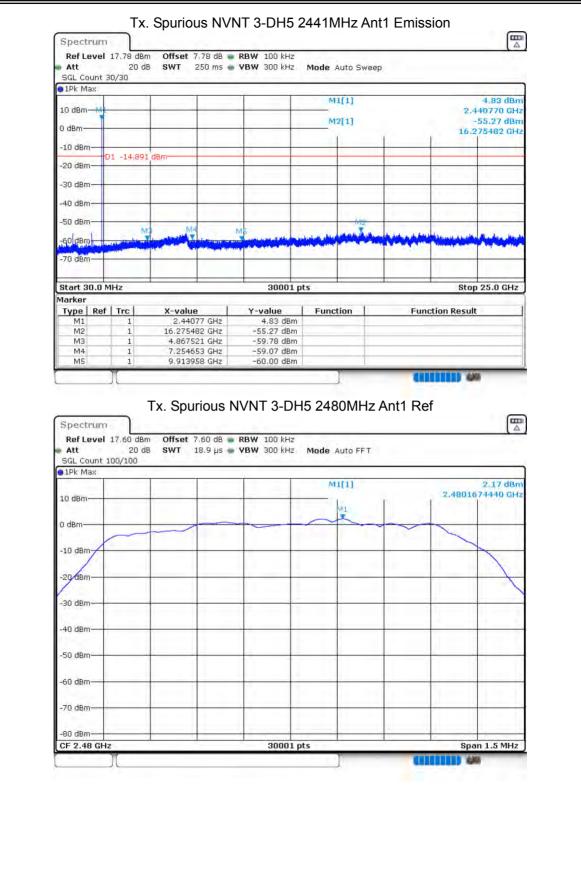
10 dBm 42.459990 0Hz 20 dBm 4.95991 0Hz 20 dBm 4.95991 0Hz 30 dBm 40 dBm 40 dBm 4.95991 0Hz 30 dBm 40 dBm 40 dBm 4.95991 0Hz 30 dBm 1.10.013005 0Hz Stort 30.0 MHz 30001 pts Stort 30.0 MHz 30.0 Hz 40 dBm 1.0.013005 GHz -50.9 dBm -59.9 dBm 10 dBm 1.1.9 µz 90 dBm <th>10 dBm</th> <th>42</th> <th></th> <th></th> <th></th> <th>M1[1]</th> <th></th> <th></th> <th>5,96 dBm</th>	10 dBm	42				M1[1]			5,96 dBm
0 dBm 01 -13.717 dBm 20 dBm 40 dBm 40 dBm 50 dBm 40 dBm 50 dBm 40 dBm 50 dBm 40 dBm 50 dBm 40 dBm 50 dBm 40 dBm 50 dBm	0 dBm	1							2.479890 GHz
c0 -13.717.0 dbm -30 dbm -40 dbm -30 dbm -40 dbm -50 dbm -50 dbm -50 dbm -50 dbm -50 dbm -50 dbm -50 dbm -50 dbm M1 1 2.47999 dbt -50 dbm M2 1 -247999 dbt -50 dbm M2 1 -50 dbm -50 dbm M3 1 0.01000 dbt -50 dbm M4 1 -7393653 dbt -50 db dbm M4 1 -50 db dbm -50 db dbm M4 1 0.01000 dbt -50 db dbm M4 1 0.01000 dbt -50 db dbm Sectrum Tx Spectrum -50 db dbt Court 100/100 -50 dbt -50 db dbt	e dem				-	[MZ[1]	1	1	
20 dBm 30 dBm 31 1 2.47989 dHz 50.89 dBm 40 dBm 40 dBm 31 10.013006 GHz -59.87 dBm 30 dBm 31 10.013006 GHz -59.97 dBm 30 dBm 31 10.013006 GHz -59.97 dBm 30 dBm<	-10 dBm-	D1 -13.717	dBm		-				
40 dBm M3 M3 M4 M4 M5 M4	-20 dBm					-		-	
-50 dBm -60 dBm	-30 dBm								-
50 dBm 40 dBm	-40 dBm	N.						_	
-60 Bm	-50 dBm—	1		14 N	5				
Bit of 30.0 MHz 30001 pts Stop 25.0 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47989 GHz 5.96 dBm Function Function Result M2 1 4.95991 GHz -50.89 dBm Function Function Result M4 1 7.399363 GHz -59.89 dBm Function Function Result M4 1 7.399363 GHz -59.89 dBm Function Function Result M4 1 7.399363 GHz -59.89 dBm Function Result Function Result M4 1 0.13006 GHz -59.77 dBm Function Result Function Result Stop 20 dB SWT 18.9 µs YBW 300 KHz Mode Auto FFT SGL Count 100/100 SQL Count 100/100 M1 2.4013494020 GHz Function Result Function Result 10 dBm M1 2.4013494020 GHz Function Result Function FT -30 dBm -30 dBm -4013494020 GHz -4013494020 GHz -4013494020 GHz	-60 dBm	Maked States		Made and and			Scholar S. Stranger	Andrew Recharged	all disk and
Stort 30.0 MHz 30001 pts Stop 25.0 GHz Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.47989 GHz 5.96 dBm Function Function Result M2 1 4.95991 GHz -50.89 dBm Function Result Function Result M4 1 7.393653 GHz -59.87 dBm Function Function Result M5 1 10.013006 GHz -59.87 dBm Function Function Result M4 1 7.393653 GHz -59.87 dBm Function Result Function Result M5 1 10.013006 GHz -59.87 dBm Function Result Function Result Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Mode Auto FFT SGL Count 100/100 IPK Max IIII 2.4019494020 GHz Sat 7 dBm Sat 7 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm	-70 dBm				1.2.7.0				
Narker Trc X-value Y-value Function Function Result M1 1 2.47989 GHz 5.96 dbm Function Function Result M2 1 4.95991 GHz -50.89 dbm Function Function Result M3 1 4.95991 GHz -50.89 dbm Function Function Result M4 1 7.393653 GHz -59.87 dbm Function Function Result M5 1 10.013006 GHz -59.77 dbm Function Result Function Result Ref Level 17.62 dbm Offset 7.52 db RBW 100 KHz Mode Auto FFT SGL Count 100/100 PF Max 20 db SWT 18.9 µs YBW 300 KHz Mode Auto FFT SGL Count 100/100 O Bm M1 2.4015494020 GHz S.87 dbm S.87 dbm -20 dbm M1 M1 2.4015494020 GHz S.87 dbm -30 dbm Gbm Gbm Gbm Gbm Gbm -30 dbm Gbm Gbm Gbm Gbm Gbm Gbm	-80 dBm-	MIL			0000	1 114	-		
M1 1 2.47989 GHz 5.96 dBm M2 1 4.95991 GHz -50.89 dBm M3 1 4.95991 GHz -50.89 dBm M4 1 7.393653 GHz -59.82 dBm M5 1 10.013006 GHz -59.77 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Mat 20 dB SWT 18.9 µs YBW 300 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz M1[1] 3.87 dBm 10 dBm 0 dB SWT 18.9 µs YBW 300 kHz Att 2.4019494020 GHz Att 2.4019494020 GHz 10 dBm -0 dBm	Marker	MHZ			3000.	r prs	N.	5	top 23.0 GH2
M2 1 4.95991 GHz -50.89 dBm M3 1 4.95991 GHz -50.89 dBm M4 1 7.39365 GHz -59.82 dbm M5 1 10.013005 GHz -59.77 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dBm Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 M1(1) 2.4919494020 GHz 0 dBm 10 dBm M1(1) 2.4919494020 GHz							1	Function Res	sult
M4 1 7.393653 GHz -59.82 dBm M5 1 10.013006 GHz -59.77 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz MI[1] 3.87 dBm 0 dBm MI[1] 3.87 dBm 10 dBm MI[1] 3.87 dBm -10 dBm MI[1] 3.87 dBm -28 dBm									
MS 1 10.013006 GHz -59.77 dBm Tx. Spurious NVNT 2-DH5 2402MHz Ant1 Ref Spectrum Ref Level 17.62 dB Offset 7.62 dB RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max MI[1] 3.87 dBm 10 dBm MI[1] 2.4019494020 GHz -10 dBm MI[1] 3.87 dBm -30 dBm						1.1.1.1			
Spectrum Image: Construction of the construle of the construction of the construle of the construction of									
Spectrum Image: Construction of the construle of the construction of the construle of the construction of][1		CHILING	644
0 dBm -10 dBm -28 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 d	Ref Leve Att	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH:	z Z Mode Auto	FFT.	Ref	
-10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH:	z Z Mode Auto	FFT.		3,87 dBm
-28 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- -10 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm- 0 dBm- -10 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-50 dBm -60 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -28 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-60 dBm -70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-70 dBm -80 dBm CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	m20 dBm20 dB20 dB00 d	Offset	7.62 dB 🖷 F	XBW 100 kH; XBW 300 kH; M1	Z Mode Auto	FFT.	2.40)	3.87 dBm
	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -10 dBm -28 dBm -30 dBm -50 dBm -60 dBm -70 dBm	m20 dBm20 dB20 dB00 d	Offset	7.62 dB 🖷 F	XBW 100 kH; XBW 300 kH; M1	Z Mode Auto	FFT.	2.40)	3.87 dBm
F 2.402 GHz Span 1.5 MHz Span 1.5 MHz	Ref Leve Att GL Count IPk Max 0 dBm dBm 0 dBm 0 dBm 30 dBm 40 dBm 50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBr
CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
-80 dBm	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
CF 2.402 GHz 30001 pts Span 1.5 MHz	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm
	Ref Leve Att SGL Count SGL Count 10 dBm 0 dBm -10 dBm -28 dBm -30 dBm -40 dBm -50 dBm -60 dBm	m al 17.62 dBm 20 dB	Offset	7.62 dB 🖷 F	RBW 100 kH: VBW 300 kH:	z Z Mode Auto	FFT.		3,87 dBm



0.0 dBm 0.24.02240 CH: -55.20 OH 17.657155 CH 0.0 dBm 0.1 -16.122 dBm 0.0 dBm 0.1 -16.120 dBm 0.0 dBm 0.1 -16.120 dBm M3 1 2.4.0249 GHz 0.1 -16.120 dBm 0.24.0240 0.2 -16.10 / 100 0.24.0240 M4 1 2.4.0249 GHz M4 1 2.4.0249 GHz M5 1 9.0 -10.00 GHz M8 1 9.7.39168 GHz <th></th> <th>1</th> <th>i i</th> <th></th> <th></th> <th></th>		1	i i				
0 dBm 01-16.129 dBm 12.657155 GH 10 dBm 01-16.129 dBm 12.657155 GH 30 dBm 12.657155 GH 12.657155 GH 30 dBm M M MS 00 dBm M M MS 00 dBm M M MS 00 dBm M M MS 01 dBm M MS 12.2 dBm 02 dBm M M MS 01 dBm M MS 12.2 dBm 02 dBm M MS 12.4 dBm 02 dBm MI 12.4 dBm Function Farker Trc X-value Y-value Type Ref Trc X-value Y-value M1 1 2.4 dBm Function M3 1 4.0 424 GHz -55.0 dBm M4 1 7.3 3677 GHz -59.0 gBm M4 1 7.3 3677 GHz -59.0 gBm M4 1 7.3 3677 GHz -59.0 gBm Stocouti 10/100 Tix. Spurious NVNT 2-DH5 24441MHz Ant1 Ref Stocouti 10/100	10 dBm			M1[1]		0.24 dBm 2.402490 GHz	
10 dim 01 -16.129 dBm 20 dim 01 -16.129 dBm 30 dim 01 -16.129 dBm 30 dim 01 -16.129 dBm 30 dim 01 -16.129 dBm 50 dBm 01 -16.129 dBm 50 dBm 01 -16.129 dBm 50 dBm 01 -16.129 dBm 60 dBm 01 -16.129 dBm 50 dBm 01 -16.129 dBm 60 dBm 01 -16.129 dBm 90 dBm 11 -16.129 dBm 90 dBm 12 -40249 dHz 0.24 dBm M2 1 12 -75.916 dHz -56.20 dBm M3 1 4.804264 dHz -58.01 dBm M4 1 7.37307 CHz -59.09 dBm M4 7.37307 CHz -59.09 dBm M4 7.37307 CHz -59.09 dBm M1 1 7.37307 CHz -59.09 dBm Spectrum Crasser Crasser Ref Level 17.78 dBm Offset 7.78 dBm RefW 100 kHz Att 2.16 dBm <th>0 dBm</th> <th></th> <th></th> <th>M2[1]</th> <th></th> <th>-56.20 dBm 17.657155 GHz</th>	0 dBm			M2[1]		-56.20 dBm 17.657155 GHz	
20 dBm 40 <th>-10 dBm</th> <th></th> <th></th> <th></th> <th></th> <th></th>	-10 dBm						
40 dBm 50 dBm 60 dBm M 1 2 30001 pts Stop 25.0 GHz 80 dBm 80 dBm 1 2 30001 pts Stop 25.0 GHz 1 2 2.440249 GHz 0.24 dBm M 1 1 2.40249 GHz 0.24 dBm M 1 1 2.40249 GHz 0.24 dBm M 1 1 7.657155 GHz -558.00 dBm M 1 1 7.657155 GHz -558.00 dBm M 1 1 7.757156 GHz -559.00 dBm M 1 1 7.737377 GHz -559.00 dBm M 2 1 9.739168 GHz -50.41 dBm M 2 0 dB SWT 18.9 µs * VBW 300 KHz Mode Auto FFT. Scil Count 100/100 11/k Max 20 dB SWT 18.9 µs * VBW 300 KHz Mode Auto FFT. 501 Count 100/100 11/k Max 0 dBm 0 dBm	-20 dBm-01 -16,12	9 dBm					
S0 dbm M <td>-30 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-30 dBm						
S0 dbm M <td>-40 dBm-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-40 dBm-						
60 dbm Mile	-50 dBm				10		
Y0 GBm August 1 30001 pts Stop 25.0 GHz Stort 30.0 MHz 30001 pts Stop 25.0 GHz Garker Trc X-value Y-value Function Result M1 1 2.40249 GHz -58.20 dBm Function Result M2 1 17.73677 GHz -58.81 dBm Function Result M4 1 7.373677 GHz -59.00 dBm Function Result Function Result M4 1.7.37877 GHz -59.00 dBm Function Result Function Result Function Result M4 1.7.37877 GHz -59.00 dBm Function Result Function Result Function Result M4 1.7.37877 GHz -59.00 dBm Function Result Function Result Function Result Stort 200 Offset 7.78 dB RBW 100 KHz Mode Auto FFT Stol Count 100/100 IPK Max 20 dBm M1(1) 2.449949520 CH Function Result 10 dBm M1 M1(1) 3.36 dBm Function Result 20 dBm M1 M1 M1(1) Stop 2.	M	III Me	MS	and an art all the second second	Vice and provide star	In the second	
80 dBm 30001 pts Stop 25.0 GHz barker Trope Ref Tro X-value Y-value Function Function Result M1 1 2.40249 GHz 0.24 dBm Function Function Result M2 1 17.75.75 GHz 58.81 dBm Function Function Result M4 1 7.37877 GHz -50.20 dBm Function Function Result M4 1 7.37877 GHz -50.41 dBm Function Function Result M4 1 9.739168 GHz -60.41 dBm Function Result Function Result Spectrum Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Function 100/100 Function Result Function Result Scit Count 100/100 Function Result Mif(1) 3.3.6 dBm 10 dBm M11 8.88W 100 KHz Mode Auto FFT Scit 10 dBm M1 M11 3.3.6 dBm Function Result 10 dBm M1 M11 3.3.6 dBm Function Result 50 dBm GBm	and and the state and the state of the state	a provide the second		and the second secon			
Stort 30.0 MHz 30001 pts Stop 25.0 GHz tarker 1 2.40249 GHz 0.24 dBm Function Function Result M1 1 2.40249 GHz 0.24 dBm Function Function Result M2 1 17.767155 GHz -59.09 dBm Function Result Function Result M4 1 7.37367 GHz -59.09 dBm Function Function Result M5 1 9.739166 GHz -50.41 dBm Function Function Ref Level 17.76 dBm Offset 7.78 dB RBW 100 kHz Matt C Ref Level 17.76 dBm Offset 7.78 dB RBW 100 kHz Matt C Stor 20.00 SWT 18.9 µs VBW 300 kHz Mode Auto FFT Sci. Count 100/100 IJPK Max 3.16 dBm M1(1) 2.4409409520 GHz Sci. Count 100/100 <							
Type Ref Trc X-value Y-value Function Function Function Result M1 1 2.40249 GHz 0.24 dBm	Start 30.0 MHz		30001 pt	s	5 5	Stop 25.0 GHz	
M1 1 2.40249 GHz 0.24 dBm M2 1 17.657155 GHz -56.20 dBm M3 1 4.804264 GHz -59.81 dBm M4 1 7.373677 GHz -59.09 dBm M5 1 9.739168 GHz -50.01 dBm 9.739168 GHz -50.41 dBm -50.21 dBm Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 dB RBW 100 KHz Att 20 dB SWT 18.9 µs YBW 300 kHz Mode Auto FFT SGL Count 100/100 IPK Max 0.4409 Hg 520 GHz 10 dBm 0.41 dBm MI1 3.16 dBm 0 dBm 0.16 dBm MI1 3.16 dBm 0 dBm 0.16 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm <td col<="" td=""><td>Marker Type Ref Trc </td><td>X-value</td><td>Y-value</td><td>Function 1</td><td>Functio</td><td>n Result</td></td>	<td>Marker Type Ref Trc </td> <td>X-value</td> <td>Y-value</td> <td>Function 1</td> <td>Functio</td> <td>n Result</td>	Marker Type Ref Trc	X-value	Y-value	Function 1	Functio	n Result
M3 1 4.804264 GHz -58.81 dBm M4 1 7.373677 GHz -59.09 dBm M5 1 9.739168 GHz -50.41 dBm Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Fetture Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Fetture Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Spectrum Spectrum Mate 20 dB MMI 100/100 IPK Max 10 dBm 10 dBm 0 dBm 0 dBm 30 dBm 30 dBm 30001 pts Spen 1.5 MHz	M1 1	2.40249 GHz	0.24 dBm				
MS 1 9.739168 GHz -60.41 dBm Tx. Spurious NVNT 2-DH5 2441MHz Ant1 Ref Spectrum Ref Level 17.78 db RBW 100 kHz Att 20 dB SWT 18.9 µs VBW 300 kHz MI[1] 3.16 dBm OUB MI[1] 3.16 dBm 10 dBm MI[1] 3.16 dBm 2.44409409520 GH: 0 dBm 0 dBm <td>M3 1</td> <td>4.804264 GHz</td> <td>-58.81 dBm</td> <td></td> <td></td> <td></td>	M3 1	4.804264 GHz	-58.81 dBm				
Spectrum Image: Construct of the second							
Spectrum Image: Construct of the second	π					110 495	
0 dBm M1 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 10 dBm 30 dBm 10 dBm 40 dBm 10 dBm 50 dBm 10 dBm 60 dBm 10 dBm 70 dBm 10 dBm 80 dBm 10 dBm 90 dBm 10 dBm 10 dBm 10 dBm <td< th=""><th>The Max</th><th></th><th></th><th></th><th></th><th>10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th></td<>	The Max					10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10 dBm 20 dBm 20 dBm 30 dBm 30 dBm 40 dBm 50 dBm 50 dBm 60 dBm 50 dBm 70 dBm 50 dBm 80 dBm 50 dBm Start 50 dBm 50 dBm 50 dBm				MI[1]	- 18 B	3,16 dBm 2,4409489520 GHz	
20 dBm 30 dBm 40 dBm<	10 dBm-		MI		n f		
20 dBm 30 dBm 40 dBm<			MI				
30 dBm 40 dBm 40 dBm 50 dBm 50 dBm 60 dBm 60 dBm 60 dBm 70 dBm 60 dBm 80 dBm 60 dBm 55 dBm 50 dBm 56 dBm 50 dBm 50 dBm 50 dBm	10 dBm		MI	MI(1)			
40 dBm 50 dBm 60 dBm 70 dBm 80 dBm EF 2.441 GHz 30001 pts Span 1.5 MHz	10 dBm		MI	MI(1)			
50 dBm 60 dBm 70 dBm 70 dBm 80 dBm 70 dBm 90 dBm 70 dBm Structure Span 1.5 MHz	10 dBm		MI				
50 dBm 60 dBm 70 dBm 70 dBm 80 dBm 70 dBm 90 dBm 70 dBm Structure Span 1.5 MHz	10 dBm		MI				
60 dBm 70 dBm 80 dBm CF 2.441 GHz 30001 pts Span 1.5 MHz	10 dBm		MI				
70 dBm	10 dBm		MI				
70 dBm	10 dBm		MI				
80 dBm 30001 pts Span 1.5 MHz	10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm		MI				
CF 2.441 GHz 30001 pts Span 1.5 MHz	10 dBm		MI				
	10 dBm		M1				
	10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm		MI				
	10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm					Span 1.5 MHz	
	10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm					Span 1.5 MHz	







Ref Le Att SGL Cou		17.60 dBm 20 dB		RBW 100 kHz VBW 300 kHz	Mode Au	to Sweep			
🛛 1Pk Ma	X		A						
10. A.					M1[1]			3.79 dBm
10 dBm-	IVIL							2.4	79890 GHz
o dour	1				M2[1]			53.28 dBm
0 dBm—					i.		(i 4.9	59910 GHz
-10 dBm-	-	_		1	_				
C.D. Tree	-	47.004	ul Dure						-
-20 dBm-	-	L -17.834	ubm					2	
-30 dBm-									
-30 UBNI-	1						-	1	
-40 dBm-	_								
10 40									
-50 dBm-	-	M	B						-
co in			IVIT IN AND IN A STATE	M5	and a start	on Manua	An elideration and the	And the second	A
-60 dBm-	cale (rette	A CONTRACTOR OF STREET	Tripper and the second se	and the second sec		All Callente	A seal of a seal of the	The section of the section	
-70 dBm-								1	
								1	
-80 dBm-							-		
Start 30	.0 M	Hz		30001 p	ts			Stop	25.0 GHz
Marker									
	Ref		X-value	Y-value	Functio	in	Fund	tion Result	1
M1	-	1	2.47989 GHz	3.79 dBm					
M2		1	4.95991 GHz	-53.28 dBm	-				
M3		1	4.95991 GHz	-53.28 dBm					
M4 M5		1	7.495198 GHz 10.003018 GHz	-58.92 dBm -59.24 dBm					

END OF REPORT