

RADIO TEST REPORT FCC ID: 2AGKB-KD2

Product: Android TV Box

Trade Mark: N/A

Model No.: KD2

KD2 PRO,KD2 PLUS,KD3 PRO, KD3 PLUS,KD4,KD5 PRO, KD5 PLUS,HD5,GMMZ-DongleTV1, BTV CAST,BTV CAST13, Family Model: BTV CAST14,BTV CAST15, BTV CAST16,BC11,BC12,BC13, BC14,BC15,BC16,BC17, BC18, BC19,BC20,XRS4000,XR4000, Unipro3,HD5

Report No.: S22033003004001

Issue Date: 05 May. 2022

Prepared for

Videostrong Technology Co.,Ltd

604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

2 SUMMARY OF TEST RESULTS	1 TEST RESULT CERTIFICATION	4
3 FACILITIES AND ACCREDITATIONS 6 3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 FQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Agasuria Instruments 14 7.1.2 Configuration 14 7.1.3 Measuria Instruments 14 7.1.4 Test Procedure 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2 RADIATED SPURIOUS EMISSION 17 7.2.3 Measuria Instruments 18 7.2.4 Test	2 SUMMARY OF TEST RESULTS	5
3.1 FACILITIES 6 3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1.1 CONDUCTED EMISSIONS TEST 14 7.1.2 Conformance Limit 14 7.1.4 Test Configuration 14 7.1.5 Test Resource Limit 14 7.1.4 Test Configuration 14 7.1.5 Test Resource Limit 14 7.1.4 Test Configuration 17 7.2.1 RADIATED SPURIOUS EMISSION 17 7.2.2 RADIATED SPURIOUS EMISSION 17 7.2.3 Measuring Instruments 17 7.3.4 Test Results 20 7.3.5		
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENT SUBST FOR ALL TEST TIEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.4 Apsticable Standard 14 7.1.5 Test Procedure 14 7.1.6 Test Configuration 14 7.1.7 Test Configuration 15 7.2 Conformance Limit 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Procedure 20 7.3 OB BAND	3 FACILITIES AND ACCREDITATIONS	6
3.2 LABORATORY ACCREDITATIONS AND LISTINGS 6 3.3 MEASUREMENT UNCERTAINTY 6 4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENT SUBST FOR ALL TEST TIEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.4 Apsticable Standard 14 7.1.5 Test Procedure 14 7.1.6 Test Configuration 14 7.1.7 Test Configuration 15 7.2 Conformance Limit 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Procedure 20 7.3 OB BAND	3.1 FACILITIES	6
4 GENERAL DESCRIPTION OF EUT 7 5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 16.3 EQUIPMENTS LIST FOR ALL TEST ITEMIS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Fest Results 15 7.2 Conformance Limit 14 7.1.6 Test Results 15 7.2.7 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 20 7.3 OB BANDWIDTH 26 7.3 OB BANDWIDTH 26 7.3.5 Test Procedure 26 </td <td></td> <td></td>		
5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Procedure 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.3 Conformance Limit 17 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 Gobb Bandard 26 7.3.4 Test Configuration 18 7.2.5 Test Results 20 7.3 Gobb BanDWIDTH 26	3.3 MEASUREMENT UNCERTAINTY	6
5 DESCRIPTION OF TEST MODES 9 6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Procedure 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.3 Conformance Limit 17 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 Gobb Bandard 26 7.3.4 Test Configuration 18 7.2.5 Test Results 20 7.3 Gobb BanDWIDTH 26	4 GENERAL DESCRIPTION OF FUT	7
6 SETUP OF EQUIPMENT UNDER TEST 10 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM. 10 6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST TIEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard. 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Procedure 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 RAPHICABLE Standard. 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Results. 20 7.3 Measuring Instruments. 26 7.3.1 Applicable Standard. 26 7.3.2 Conformance Limit 26 7.3 OBB BANDWIDTH 26 7.3.4 Test Configuration		
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 10 6.2 SUPPORT EQUIPMENT 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS 14 7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 26 7.3.1 Applicable Standard 26 7.3.2 Measuring Instruments 26 7.3.4 Test Configuration 26 7.3.5 Test Mesults 26 7.3.4 Test Setup 26		
6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit. 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GB BANDWIDTH. 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 <th>6 SETUP OF EQUIPMENT UNDER TEST</th> <th>10</th>	6 SETUP OF EQUIPMENT UNDER TEST	10
6.2 SUPPORT EQUIPMENT. 11 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit. 17 7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GB BANDWIDTH. 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 Test Standard 26 7.3.4 <td>6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM</td> <td></td>	6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS. 12 7 TEST REQUIREMENTS. 14 7.1 CONDUCTED EMISSIONS TEST. 14 7.1.1 Applicable Standard. 14 7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Test Procedure 14 7.1.6 Test Procedure 14 7.1.7 Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 Applicable Standard 26 7.3.1 Applicable Standard 26 7.3.4 Test Setup 26 7.3.4		
7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 20 7.3 GDB BANDWIDTH 26 7.3.4 Desuring Instruments 26 7.3.4 Desuring Instruments 26 7.3.5 Test Procedure 26 7.3.6 Fest Results 26 7.3.7 Measuring Instruments 26 7.3.6 Test Setup 26 7.3.7 Measuring Instruments 26 7.3.7 Test Results 26 7.4.7	6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	
7.1 CONDUCTED EMISSIONS TEST 14 7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.4 Dasuring Instruments 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.7 Measuring Instruments 26 7.4.7	7 TEST REQUIREMENTS	14
7.1.1 Applicable Standard 14 7.1.2 Conformance Limit 14 7.1.3 Measuring Instruments 14 7.1.4 Test Configuration 14 7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.4 Test Setup	-	
7.1.2 Conformance Limit. 14 7.1.3 Measuring Instruments. 14 7.1.4 Test Configuration 14 7.1.5 Test Configuration 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Dest Results 20 7.3 6DB BANDWIDTH 26 7.3.3 Measuring Instruments 26 7.3.4 Test Results 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4.1 Applicable Standard 27 7.4.2 Conform		
7.1.3 Measuring Instruments		
7.1.4 Test Configuration 14 7.15 Test Procedure 14 7.16 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 GDB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Test Extup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.7 Measuring Instruments 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments </td <td></td> <td></td>		
7.1.5 Test Procedure 14 7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.4 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Newults 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Results 26 7.4 Applicable Standard 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit	0	
7.1.6 Test Results 15 7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.6 Test Results 26 7.3.7 Test Setup 26 7.3.6 Test Results 26		
7.2 RADIATED SPURIOUS EMISSION 17 7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Setup 26 7.3.6 Test Setup 26 7.3.5 Test Procedure 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.6 Test Results 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Setup 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27		
7.2.1 Applicable Standard 17 7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Setup 26 7.3.7 Test Setup 26 7.3.6 Test Procedure 26 7.3.6 Test Procedure 26 7.3.6 Test Procedure 26 7.4 DUTY CYCLE 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27		
7.2.2 Conformance Limit 17 7.2.3 Measuring Instruments 18 7.2.4 Test Configuration 18 7.2.5 Test Configuration 18 7.2.6 Test Results 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Results 28 7.5 PEAK OUTPUT POWER 29		
7.2.3 Measuring Instruments. 18 7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Network 26 7.3.4 Test Setup 26 7.3.5 Test Network 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Network 28		
7.2.4 Test Configuration 18 7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 28 7.5 PEst Results 28		
7.2.5 Test Procedure 19 7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Vencedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Neults 28 7		
7.2.6 Test Results 20 7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 <td></td> <td></td>		
7.3 6DB BANDWIDTH 26 7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test New 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Negalts 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test New 29 7.5.6 Test Results 29		
7.3.1 Applicable Standard 26 7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Vrocedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 26 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Results 29 7.5.6 Test Results 29 <td></td> <td></td>		
7.3.2 Conformance Limit 26 7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		
7.3.3 Measuring Instruments 26 7.3.4 Test Setup 26 7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		
7.3.5 Test Procedure 26 7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		
7.3.6 Test Results 26 7.4 DUTY CYCLE 27 7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 27 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Network 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	8	
7.4 DUTY CYCLE	7.3.5 Test Procedure	
7.4.1 Applicable Standard 27 7.4.2 Conformance Limit 27 7.4.3 Measuring Instruments 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	7.3.6 Test Results	
7.4.2 Conformance Limit. 27 7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure. 27 7.4.6 Test Results. 28 7.5 PEAK OUTPUT POWER. 29 7.5.1 Applicable Standard. 29 7.5.2 Conformance Limit. 29 7.5.3 Measuring Instruments. 29 7.5.4 Test Setup 29 7.5.5 Test Procedure. 29 7.5.6 Test Results 29 7.5.6 Test Results 29	7.4 DUTY CYCLE	
7.4.3 Measuring Instruments. 27 7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	7.4.1 Applicable Standard	27
7.4.4 Test Setup 27 7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		27
7.4.5 Test Procedure 27 7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	o	
7.4.6 Test Results 28 7.5 PEAK OUTPUT POWER 29 7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	· · · · · · · · · · · · · · · · · · ·	
7.5 PEAK OUTPUT POWER. 29 7.5.1 Applicable Standard. 29 7.5.2 Conformance Limit. 29 7.5.3 Measuring Instruments. 29 7.5.4 Test Setup 29 7.5.5 Test Procedure. 29 7.5.6 Test Results 29		
7.5.1 Applicable Standard 29 7.5.2 Conformance Limit 29 7.5.3 Measuring Instruments 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29		
7.5.2 Conformance Limit		
7.5.3 Measuring Instruments. 29 7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	••	
7.5.4 Test Setup 29 7.5.5 Test Procedure 29 7.5.6 Test Results 29	5	
7.5.5 Test Procedure 29 7.5.6 Test Results 29	8	
7.5.6 Test Results	1	

7.6.1	Applicable Standard	
7.6.2	Conformance Limit	
7.6.3	Measuring Instruments	
7.6.4	Test Setup	
7.6.5	Test Procedure	
7.6.6	Test Results	
7.7 (CONDUCTED BAND EDGE MEASUREMENT	
7.7.1	Applicable Standard	
7.7.2	Conformance Limit	
7.7.3	Measuring Instruments	
7.7.4	Test Setup	
7.7.5	Test Procedure	
7.7.6	Test Results	
7.8 \$	SPURIOUS RF CONDUCTED EMISSIONS	
7.8.1	Conformance Limit	
7.8.2	Measuring Instruments	
7.8.3	Test Setup	
7.8.4	Test Procedure	
7.8.5	Test Results	
7.9 A	ANTENNA APPLICATION	
7.9.1	Antenna Requirement	
7.9.2	Result	
8 TEST	RESULTS	35
	IM:	
8.1.1	Maximum Conducted Output Power	
8.1.2	Occupied Channel Bandwidth	
8.1.3	Maximum Power Spectral Density Level	
8.1.4	Band Edge	
8.1.5	Conducted RF Spurious Emission	
	2M:	
8.2.1	Maximum Conducted Output Power	
8.2.2	Occupied Channel Bandwidth	
8.2.3	Maximum Power Spectral Density Level	
8.2.4	Band Edge	
8.2.5	Conducted RF Spurious Emission	

TEST RESULT

Complied

1 TEST RESULT CERTIFICATION

Applicant's name:	Videostrong Technology Co.,Ltd
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China
Manufacturer's Name:	Videostrong Technology Co.,Ltd
Address:	604, Lushi industrial Building, 28 District, Bao'an District, Shenzhen, China
Product description	
Product name:	Android TV Box
Model and/or type reference:	KD2
Family Model:	KD2 PRO,KD2 PLUS,KD3 PRO,KD3 PLUS,KD4,KD5 PRO, KD5 PLUS,HD5,GMMZ-DongleTV1,BTV CAST,BTV CAST13, BTV CAST14,BTV CAST15,BTV CAST16,BC11,BC12,BC13, BC14,BC15,BC16,BC17, BC18,BC19,BC20,XRS4000, XR4000,Unipro3,HD5

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	07 Apr. 2022 ~ 21 Apr. 2022	
Testing Engineer	:	Susan Li	
0 0		(Susan Li)	
		Ades	
Authorized Signatory	:	(Alex Li)	

	FCC Part15 (15.247), Subpart	С	
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.247 (a)(2)	6dB Bandwidth	PASS	
15.247 (b)	Peak Output Power	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247 (e)	Power Spectral Density	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

l				
Product Feature and Specification				
Equipment	Android TV Box			
Trade Mark	N/A			
FCC ID	2AGKB-KD2			
Model No.	KD2			
Family Model	KD2 PRO,KD2 PLUS,KD3 PRO,KD3 PLUS,KD4,KD5 PRO,KD5 PLUS, HD5,GMMZ-DongleTV1,BTV CAST,BTV CAST13,BTV CAST14, BTV CAST15,BTV CAST16,BC11,BC12,BC13,BC14,BC15,BC16,BC17, BC18,BC19,BC20,XRS4000,XR4000,Unipro3,HD5			
Model Difference	All models are the same circuit and RF module, except the Model names and appearance are different.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	PCB Antenna			
Antenna Gain	1 dBi			
Power supply	DC 5V from USB port			
Adapter	N/A			
HW Version	V1.1			
SW Version	N/A			
1	· · · · · · · · · · · · · · · · · · ·			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

		vision History	
Report No.	Version	Description	Issued Date
S22033003004001	Rev.01	Initial issue of report	05 May. 2022

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

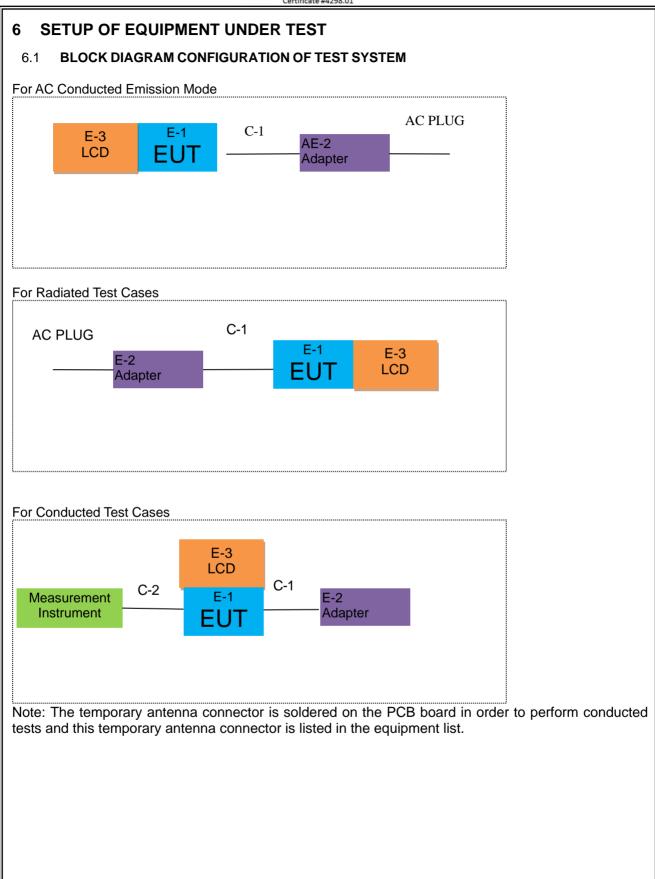
Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+kx2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:


1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode(duty cycle =100% during the test)

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
E-1	Android TV Box	KD2	N/A	EUT
E-2	Adapter	N/A	N/A	Peripherals
E-3	LCD	241P6V	UHBA17240117 20C24	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adiad	Una Conducted	oot oquipmont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.01	2023.03.31	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2021.07.01	2022.06.30	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2021.07.01	2022.06.30	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2021.11.07	2022.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2021.07.01	2022.06.30	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2021.11.07	2022.11.06	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2021.07.01	2022.06.30	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.06	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2019.08.06	2022.08.05	3 year
16	Filter	TRILTHIC	2400MHz	29	2021.07.01	2022.06.30	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2021.06.22	2022.06.21	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

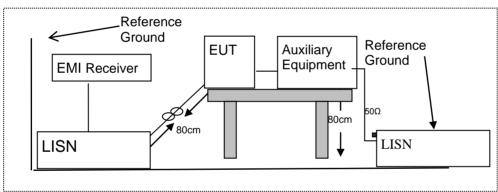
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

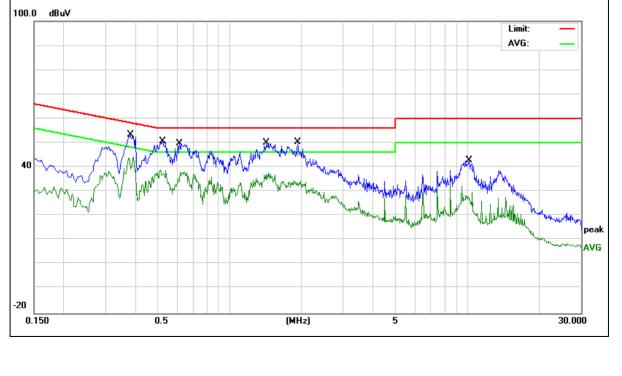
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support
 equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the
 measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results

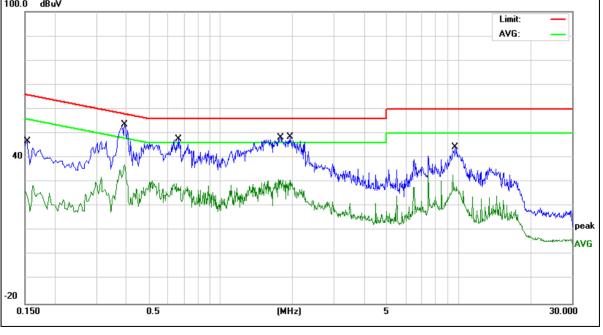

EUT:	Android TV Box	Model Name :	KD2
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3820	43.72	9.64	53.36	58.23	-4.87	QP
0.3820	34.82	9.64	44.46	48.23	-3.77	AVG
0.5220	40.95	9.65	50.60	56.00	-5.40	QP
0.5220	29.32	9.65	38.97	46.00	-7.03	AVG
0.6140	40.19	9.70	49.89	56.00	-6.11	QP
0.6140	28.38	9.70	38.08	46.00	-7.92	AVG
1.4260	40.21	9.75	49.96	56.00	-6.04	QP
1.4260	27.86	9.75	37.61	46.00	-8.39	AVG
1.9340	40.50	9.76	50.26	56.00	-5.74	QP
1.9340	24.67	9.76	34.43	46.00	-11.57	AVG
10.1499	33.02	9.71	42.73	60.00	-17.27	QP
10.1499	18.85	9.71	28.56	50.00	-21.44	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Android TV Box	Model Name :	KD2
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeril
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	37.12	9.63	46.75	65.78	-19.03	QP
0.1539	16.59	9.63	26.22	55.78	-29.56	AVG
0.3940	44.04	9.70	53.74	57.98	-4.24	QP
0.3940	27.37	9.70	37.07	47.98	-10.91	AVG
0.6620	37.89	9.66	47.55	56.00	-8.45	QP
0.6620	19.75	9.66	29.41	46.00	-16.59	AVG
1.7860	38.48	9.68	48.16	56.00	-7.84	QP
1.7860	21.48	9.68	31.16	46.00	-14.84	AVG
1.9580	38.88	9.66	48.54	56.00	-7.46	QP
1.9580	21.08	9.66	30.74	46.00	-15.26	AVG
9.6979	34.49	9.81	44.30	60.00	-15.70	QP
9.6979	23.04	9.81	32.85	50.00	-17.15	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475-16.69525	608-614	5.35-5.46
16.80425-16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5-1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475-156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2)
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

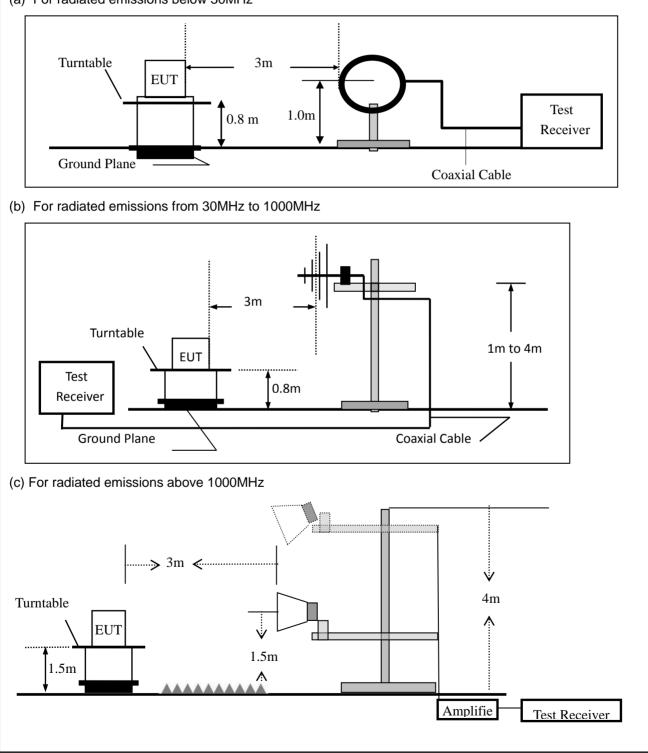
	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average
Receiver Parameter	Setting
Attenuation	Auto

Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

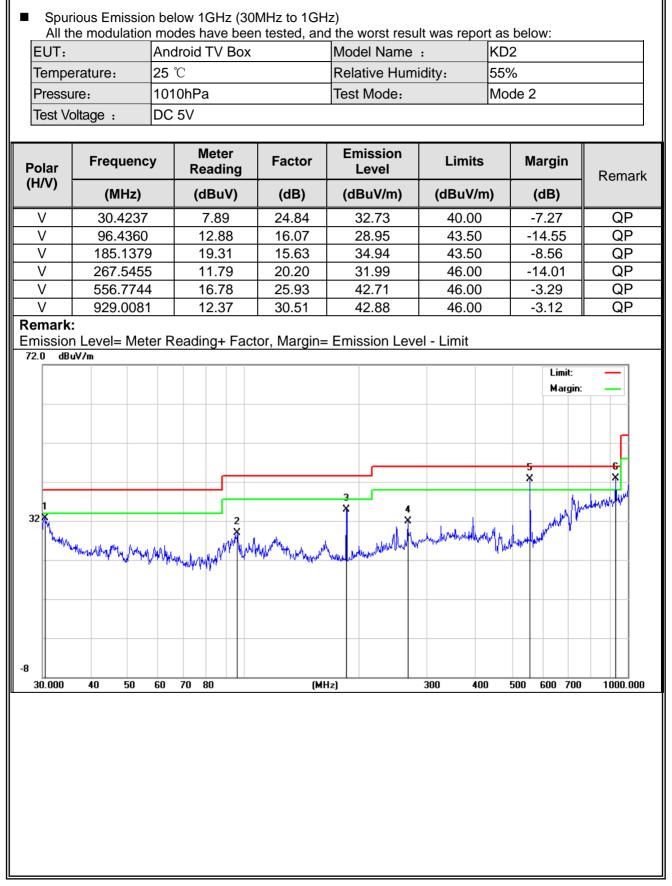
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:							
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth					
30 to 1000	QP	120 kHz	300 kHz					
Above 1000	Peak	1 MHz	1 MHz					
Above 1000	Average	1 MHz	1 MHz					

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

	Spurious	Emission	below	30MHz	(9KHz to 30MHz)
--	----------	----------	-------	-------	-----------------


EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode:	Mode2/Mode3/ Mode4	Test By:	Susan Li

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

(H/V)	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	33.9174	8.05	22.10	30.15	40.00	-9.85	QP
Н	95.4270	12.78	16.05	28.83	43.50	-14.67	QP
Н	181.9199	15.73	15.82	31.55	43.50	-11.95	QP
Н	250.3009	18.22	18.82	37.04	46.00	-8.96	QP
Н	556.7744	12.48	25.93	38.41	46.00	-7.59	QP
Н	860.0352	8.52	30.52	39.04	46.00	-6.96	QP
	n Level= Meter R ₩/m	eading+ Fact	or, Margin=	Emission Leve	el - Limit	Limit:	
32			,,,449,.44 ,,,449,.44 ,,440,.44 ,,440,.44,,440,.44 ,,440,.44 ,,440,.44,,440,.44,,440,.44 ,,440,.44,,440,.44,,440,.44,.44,,440,.440,.		he for the second	5 × http://www.hand.autor	6 ML/ML/M/1
30.000	40 50 60	70 80	(Mł		300 400	500 600 700	1000.000

EUT:		ndroid TV	<u>1GHz (1GI</u> / Box		Model No.:		KD2				
Temperature	e: 20	0 °C		1	Relative Humi	dity:	y: 48%				
Test Mode:	M	ode2/Mor	de3/Mode4	t -	Test By:		Susa	an Li			
Frequency	Read Level	Cable loss	Antenna Factor	Pream Factor		Lim	iits	Margin	Rema	rk	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ\	,	(dB)			
ļ			Low Cha	annel (24	102 MHz)(GFSK	()Abo	ve 1G				
4804	70.21	5.21	35.59	44.30	66.71	74.	00	-7.29	Pk		Vertical
4804	50.37	5.21	35.59	44.30	46.87	54.	00	-7.13	AV		Vertical
7206	68.26	6.48	36.27	44.60	66.41	74.	00	-7.59	Pk		Vertical
7206	49.92	6.48	36.27	44.60	48.07	54.	00	-5.93	AV		Vertical
4804	69.52	5.21	35.55	44.30	65.98	74.	00	-8.02	Pk	Н	lorizontal
4804	47.36	5.21	35.55	44.30	43.82	54.	00	-10.18	AV	Н	lorizontal
7206	70.63	6.48	36.27	44.52	68.86	74.	00	-5.14	Pk	Н	lorizontal
7206	48.90	6.48	36.27	44.52		54.		-6.87	AV	Н	lorizontal
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880	70.31	5.21	35.66	44.20		74.		-7.02	Pk		Vertical
4880	45.35	5.21	35.66	44.20		54.		-11.98	AV		Vertical
7320	70.98	7.10	36.50	44.43		74.		-3.85	Pk		Vertical
7320	50.40	7.10	36.50	44.43		54.		-4.43	AV		Vertical
4880	69.71	5.21	35.66	44.20		74.		-7.62	Pk		lorizontal
4880	48.88	5.21	35.66	44.20		54.		-8.45	AV		lorizontal
7320	68.99	7.10	36.50	44.43		74.		-5.84	Pk	Н	lorizontal
7320	45.71	7.10	36.50	44.43		54.		-9.12	AV	Η	lorizontal
	T			· ·	480 MHz)(GFSH	Í.					
4960	70.45	5.21	35.52	44.21		74.		-7.03	Pk		Vertical
4960	49.56	5.21	35.52	44.21		54.		-7.92	AV		Vertical
7440	69.59	7.10	36.53	44.60		74.		-5.38	Pk		Vertical
7440	46.91	7.10	36.53	44.60		54.		-8.06	AV		Vertical
4960	69.39	5.21	35.52	44.21		74.		-8.09	Pk		lorizontal
4960	46.22	5.21	35.52	44.21		54.		-11.26	AV		lorizontal
7440	69.44	7.10	36.53	44.60		74.		-5.53	Pk		lorizontal
7440	45.49	7.10	36.53	44.60	44.52	54.	00	-9.48	AV	H	lorizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Android	TV Box		M	odel No.:		KD2	02		
emperature:	20 ℃	20 ℃			Relative Humidity: 48%					
est Mode:	Mode2/ Mode4			Te	est By:		Susa	an Li		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Pream Facto		Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
1Mbps(GFSK)										
2310.00	70.73	2.97	27.80	43.8	0 57.70	74	4	-16.30	Pk	Horizonta
2310.00	50.64	2.97	27.80	43.8	0 37.61	54	4	-16.39	AV	Horizonta
2310.00	68.78	2.97	27.80	43.8	0 55.75	74	4	-18.25	Pk	Vertical
2310.00	46.95	2.97	27.80	43.8	0 33.92	54	4	-20.08	AV	Vertical
2390.00	68.32	3.14	27.21	43.8	0 54.87	74	4	-19.13	Pk	Vertical
2390.00	47.63	3.14	27.21	43.8	0 34.18	54	4	-19.82	AV	Vertical
2390.00	69.12	3.14	27.21	43.8	0 55.67	74	4	-18.33	Pk	Horizonta
2390.00	46.41	3.14	27.21	43.8	0 32.96	54	4	-21.04	AV	Horizonta
2483.50	68.89	3.58	27.70	44.0	0 56.17	74	4	-17.83	Pk	Vertical
2483.50	46.41	3.58	27.70	44.0	0 33.69	54	4	-20.31	AV	Vertical
2483.50	68.84	3.58	27.70	44.0	0 56.12	74	4	-17.88	Pk	Horizonta
2483.50	47.75	3.58	27.70	44.0	0 35.03	54	4	-18.97	AV	Horizonta

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

JT:	Androi	d TV Bo	х	Mo	del No.:		KD2			
emperature:	20 ℃	20 ℃			Relative Humidity: 48			48%		
est Mode:	Mode: Mode2/ Mode4			Tes	t By:		Susa	n Li		
Frequency	Reading Level	Cable Loss	Antenna Factor	Pream Factor		Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
3260	69.45	4.04	29.57	44.70	58.36	74	4	-15.64	Pk	Vertical
3260	46.95	4.04	29.57	44.70	35.86	54	4	-18.14	AV	Vertical
3260	70.45	4.04	29.57	44.70	59.36	74	4	-14.64	Pk	Horizontal
3260	49.74	4.04	29.57	44.70	38.65	54	4	-15.35	AV	Horizontal
3332	70.73	4.26	29.87	44.40	60.46	74	4	-13.54	Pk	Vertical
3332	49.86	4.26	29.87	44.40	39.59	54	4	-14.41	AV	Vertical
3332	70.39	4.26	29.87	44.40	60.12	74	4	-13.88	Pk	Horizontal
3332	50.23	4.26	29.87	44.40	39.96	54	4	-14.04	AV	Horizontal
17797	52.03	10.99	43.95	43.50	63.47	74	4	-10.53	Pk	Vertical
17797	34.36	10.99	43.95	43.50	45.80	54	4	-8.20	AV	Vertical
17788	49.71	11.81	43.69	44.60	60.61	74	4	-13.39	Pk	Horizontal
17788	35.87	11.81	43.69	44.60	46.77	54	4	-7.23	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit. (2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note: Not Applicable

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

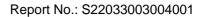
The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.


- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Susan Li

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

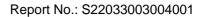
The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.


Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Android TV Box	Model No.:	KD2
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Susan Li

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

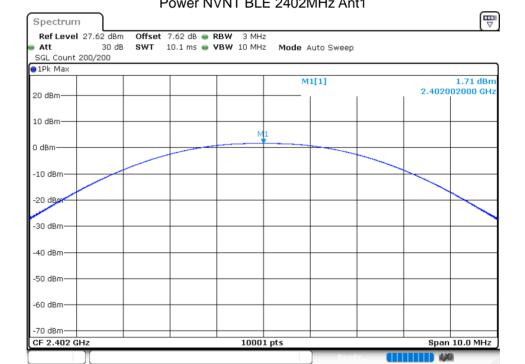
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 1 dBi). It comply with the standard requirement.



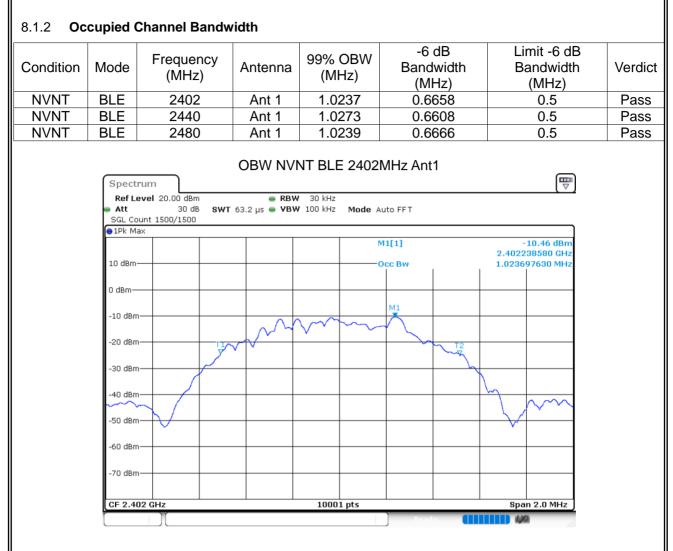
TEST RESULTS 8

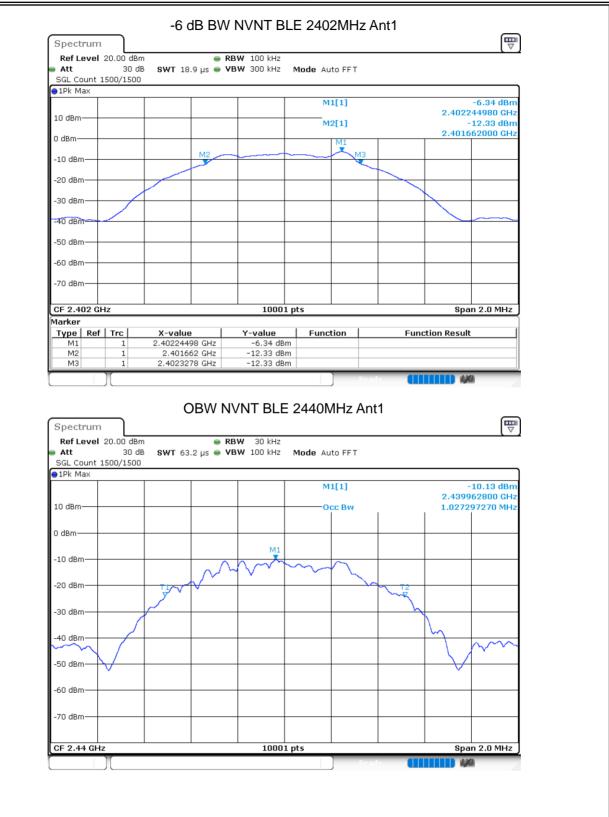
8.1 1M:

8.1.1 **Maximum Conducted Output Power**


Condition NVNT NVNT NVNT	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	1.705	30	Pass
NVNT	BLE	2440	Ant 1	2.396	30	Pass
NVNT	BLE	2480	Ant 1	1.696	30	Pass

Power NVNT BLE 2402MHz Ant1





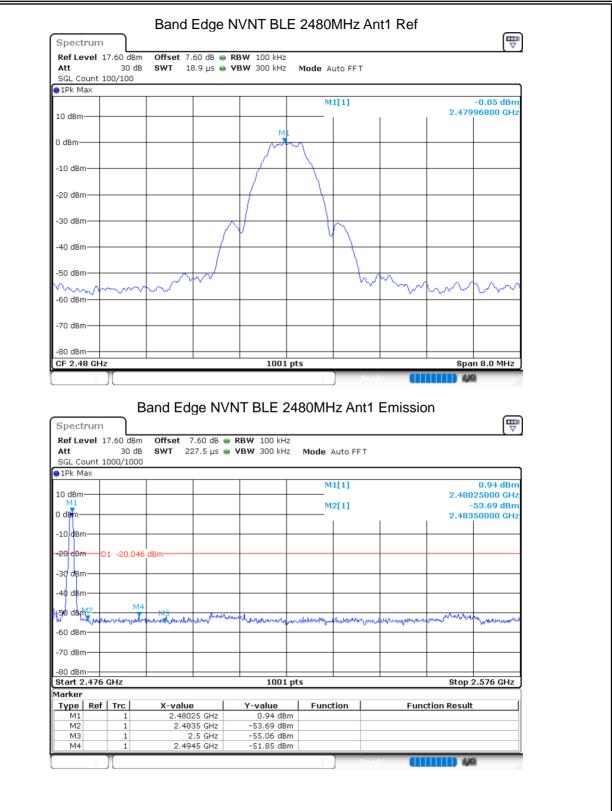


-6 dB BW NVNT BLE 2480MHz Ant1 ₽ Spectrum Ref Level 20.00 dBm 🖷 RBW 100 kHz Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 2000/2000 ●1Pk Max M1[1] -6.32 dBn 2.480243580 GHz 10 dBm-M2[1] -12.33 dBm 2.479659400 GHz 0 dBm-× Ma M3 -10 dBm--20 dBm -30 dBm· -40 dBm -50 dBm -60 dBm -70 dBm· CF 2.48 GHz 10001 pts Span 2.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.48024358 GHz 2.4796594 GHz -6.32 dBm -12.33 dBm M1 M2 1 $\hat{\underline{1}}$ МЗ 2.480326 GHz -12.32 dBm 1 4.40

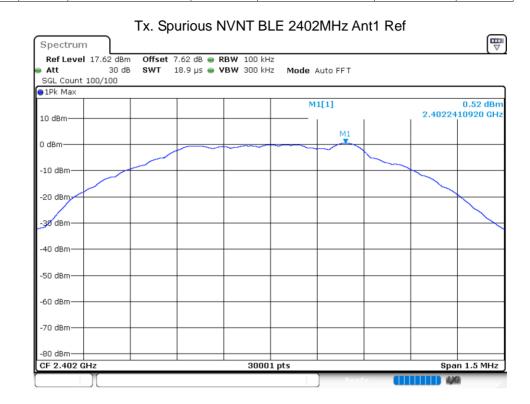
Report No.: S22033003004001

Condition	Mode	Frequency (MHz)	Antenna	Max PS	D (dBm/3kHz)	Limit (dBm/3kH	z) Verdict
NVNT	BLE	2402	Ant 1	-'	15.294	8	Pass
NVNT	BLE	2440	Ant 1	-'	14.657	8	Pass
NVNT	BLE	2480	Ant 1	- '	15.334	8	Pass
	👄 Att	rum evel 27.62 dBm Offset 7.62 30 dB SWT 633	2 dB • RBW 3 2 µs • VBW 10	kHz			
	O 1Pk Ma	unt 3000/3000 ax]	
				м	1[1]	-15.29 dBm 2.4018260440 GHz	
	20 dBm·						
	10 dBm·						
	0 dBm—						
	-10 dBm		1	and an an and the a	D. 008-048-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		
	-20 dBm -30 dBm	www.www.www.w	An Me fin. Linker al Inc.		Der ittelie vällige valle for der for d	J. Martin W. Martin St	
	-40 dBm						
	-50 dBm	·					
	-60 dBm	<u></u>					
	-70 dBm						
	CF 2.40	D2 GHz	10	1001 pts		Span 998.7 kHz	

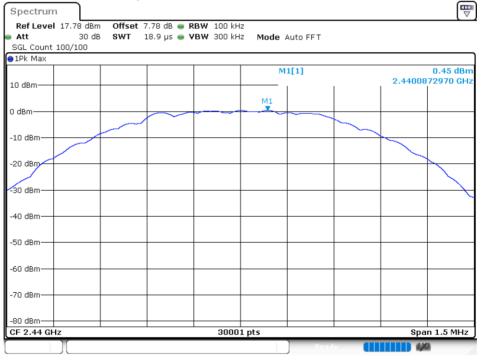
SGL Count 10 91Pk Max	00/1000								
					M	1[1]			14.66 dBm
20 dBm								2.44001	.66500 GHz
10 dBm									
0 dBm									
-10 dBm					м1				
-20 dBm -20 dBm -20 dBm -30 dBm		mmm	wwww	Minimperson A	Mannahan	wanny	Whenter		
-20 abill	MAADAA M.	η···						Jan Mark Mark	manne
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
-/U UBIII								enan	991.2 kHz
Spectrum Ref Level 2	30 dB	Offset 7.	.60 dB 曼 R	1000: NT BLE BW 3 kHz 'BW 10 kHz	2480N		1 1		
Spectrum Ref Level 2 Att SGL Count 10	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480N		1		
Spectrum Ref Level 2' Att SGL Count 10 • 1Pk Max	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480M Mode At		1		₩₩₩ ₩₩ ₩
Spectrum Ref Level 2 Att SGL Count 10	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480M Mode At	uto FFT	1		
Spectrum Ref Level 2' Att SGL Count 10 • 1Pk Max	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480M Mode At	uto FFT	1		₩₩₩ ₩₩ ₩
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 IPk Max 20 dBm 10 dBm	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480M Mode At	uto FFT	1		₩₩₩ ₩₩ ₩
Spectrum Ref Level 2' Att SGL Count 10 1Pk Max 20 dBm	30 dB	Offset 7.	.60 dB 曼 R	NT BLE	2480M Mode At	uto FFT	1		₩₩₩ ₩₩ ₩
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 IPk Max 20 dBm 10 dBm -10 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 IPk Max 20 dBm 10 dBm 0 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT	С П	2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2 Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2' Att SGL Count 10 PIPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2' Att SGL Count 10 PIPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2' Att SGL Count 10 PIPk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2' Att SGL Count 10 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -60 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M Mode Au	uto FFT		2.4798	.15.33 dBm 124190 GHz
CF 2.44 GHz Spectrum Ref Level 2' Att SGL Count 10 1Pk Max 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm	30 dB 00/1000	Offset 7. SWT 6	.60 dB ● R 532 μs ● V	NT BLE	E 2480M	uto FFT		2.4798	15.33 dBm 24190 GHz

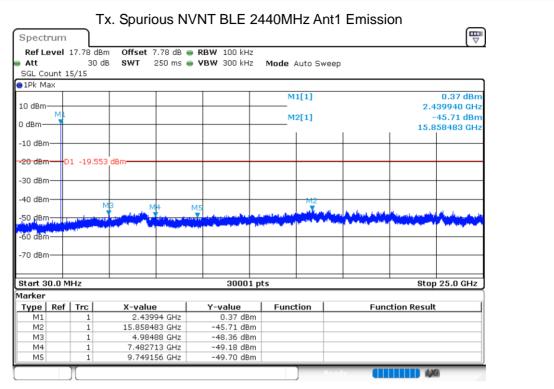

NTEK 北测

8.1.4 **Band Edge** Mode Frequency (MHz) Max Value (dBc) Limit (dBc) Condition Antenna Verdict NVNT BLE 2402 Ant 1 -52.87 -20 Pass NVNT BLE 2480 -51.8 -20 Pass Ant 1 Band Edge NVNT BLE 2402MHz Ant1 Ref ₿ Spectrum Offset 7.62 dB 👄 RBW 100 kHz Ref Level 17.62 dBm 30 dB SWT 18.9 µs 🔵 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 1.11 dBm 2.40223980 GHz 10 dBm М1 0 dBm· -10 dBm -20 dBm -30 dBm 40 dBm -50 dBm -60 dBm· -70 dBm -80 dBm CF 2.402 GHz 1001 pts Span 8.0 MHz Band Edge NVNT BLE 2402MHz Ant1 Emission Spectrum Ref Level 17.62 dBm Offset 7.62 dB 曼 RBW 100 kHz 30 dB SWT 227.5 µs 💿 VBW 300 kHz Att Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 1.29 dBm 10 dBm 2.40225000 GHz -53.61 Bn M2[1] 0 dBm 2.40000000/GHz -10 dBm -20 dBm-D1 -18.893 -30 dBm -40 dBm -50 dBm arminous Withmany Application and Mahmalionhah or when the second of the seco للمريحاته أساس while while the state of the second states of the s -60 dBm--70 dBm· -80 dBm Stop 2.406 GHz 1001 pts Start 2.306 GHz Marker Type | Ref | Trc Function Function Result X-value Y-value 2.40225 GHz 1.29 dBm M1 1 М2 2.4 GHz -53.61 dBm ΜЗ 2.39 GHz -57.00 dBm 1 M4 1 2.3417 GHz -51.77 dBm **1**,00

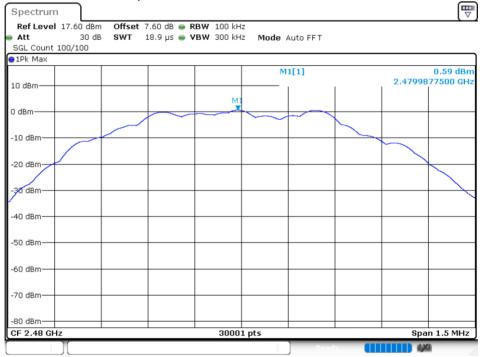


8.1.5 Conducted RF Spurious Emission

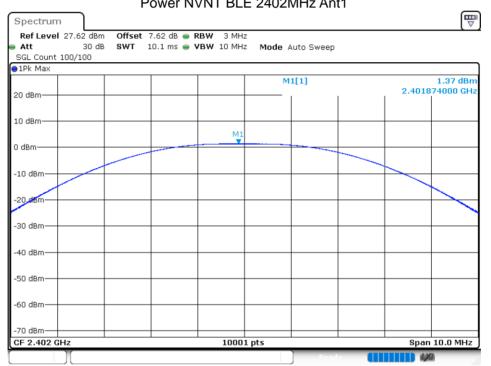

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-45.84	-20	Pass
Condition NVNT NVNT NVNT	BLE	2440	Ant 1	-46.16	-20	Pass
NVNT	BLE	2480	Ant 1	-45.74	-20	Pass



	rum													
Ref L	evel	17.62 dE	Bm Offset	7.62 dB	e RB	W 100 kH	z							
Att		30	dB SWT	250 ms	e VB	W 300 kH	z	Mode /	Auto Sv	veep				
	ount 1	5/15												
1Pk M	ах													
								M	1[1]				0.15 dBm	
) dBm	м												401650 GHz	
dBm-								M	2[1]			-45.33 dBm		
ubiii									ı.			16.	736595 GHz	
0 dBr	n 🕂													
) dBr	r — D	1 -19.47	76 dBm											
0 dBr														
л авг														
0 dBr	n									M2 -				
	.		мв "М4		M5					T				
0 <mark>,</mark> dBr	n <mark>- </mark>	and the read		test dance	- Viela	باخطيدا الالإربيان	والمراج	undingstind			Particular and the	The set of states	a subset of the second	
		and the second s	and and a second se	(the second	down of the	a de parte la relación de	1					and the second	and the second se	
) dBr	n													
) dBr														
U UDI														
0 dBr	n													
art 3	80.0 M	Hz	•			3000	1 pt	5			•	Sto	p 25.0 GHz	
arker														
Туре	Ref	Trc	X-valu	9	l ·	Y-value	1	Func	tion		Fund	tion Resu	lt	
M1		1		65 GHz		0.15 dB	m							
M2		1	16.7365	95 GHz		-45.33 dB	m							
МЗ		1		33 GHz		-49.98 dB	m							
M4		1	7.096	51 GHz		-49.01 dB	m							
111-		1		54 GHz		-49.37 dB								



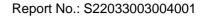
	т	x. Spuric	ous N	VNT BLE 24	480MH	z Ar	nt1	Emissi	on	Ē
Spectrum										
Ref Level	17.60 dB	m Offset 7	.60 dB	RBW 100 kHz						
Att	30 0	ib SWT :	250 ms	📄 VBW 300 kHz	Mode Au	ito Sw	еер			
SGL Count 1	.0/10									
1Pk Max										
					M1[1]				-0.63 dBm
10 dBm										479890 GHz
MI MI					M2[1]				-45.16 dBm
) dBm 🕂									. 22.	804305 GHz
10 dBm										
20 dBm—PD	1 -19.40	7 dBm								
30 dBm —		-					-			
40 dBm—										
40 uBm		MB M		M5						₩ <u>2</u>
50 dBm		- antikestelle y	and the state	متعاسيا ويلوج لأرب	أوالسانعير أوالعرا	l Ingele	and a	(Arthony) and a start of the	Share was been the	Walter and the second
فالأوائل فاسترع كتلوية		aparts the second second	and a second la	water a ferrer and a state of the state	and the second secon	1997 P	стан (a state of the second	I formation and the	the state of the second second second
50 asm 🕂										
70 dBm		-					-			
80 dBm										
start 30.0 M	1117			30001 p	tc				Sto	p 25.0 GHz
larker				50001 p						p 20.0 GH2
	Trc	X-value		Y-value	Functio			Eupo	tion Resu	I+
M1	1		39 GHz	-0.63 dBm	Function	л		Func	alon kesu	n
M2	1	22.8043		-45.16 dBm						
M3	1	4.9973		-50.04 dBm						
M4	1	7.3828		-49.07 dBm						
M5	1	10.0396		-49.36 dBm						
							_			



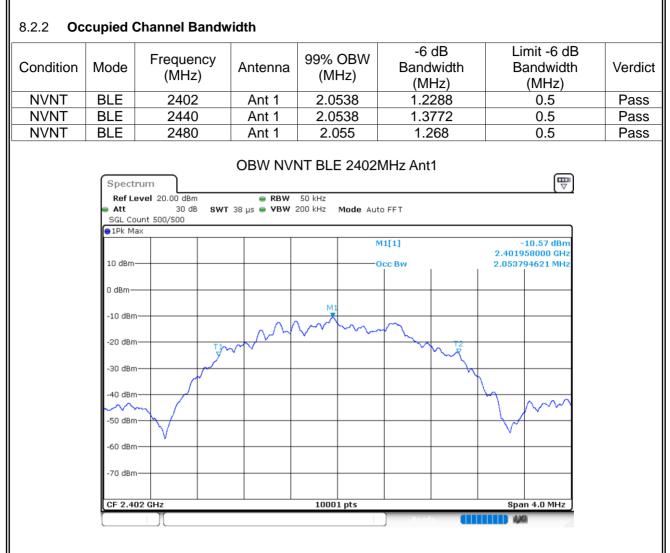
8.2 2M:

8.2.1 **Maximum Conducted Output Power**

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant 1	1.371	30	Pass
NVNT	BLE	2440	Ant 1	2.1	30	Pass
NVNT	BLE	2480	Ant 1	1.478	30	Pass



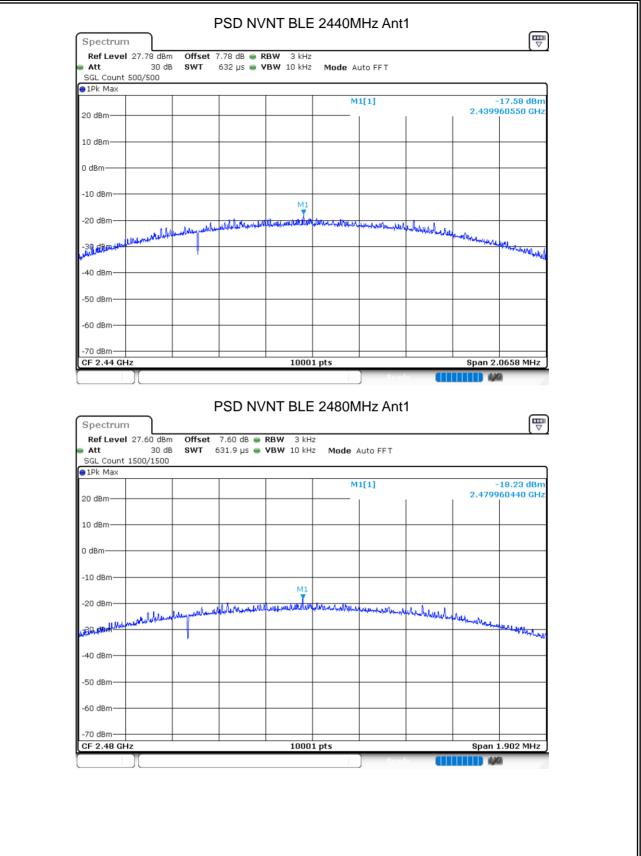
Power NVNT BLE 2402MHz Ant1





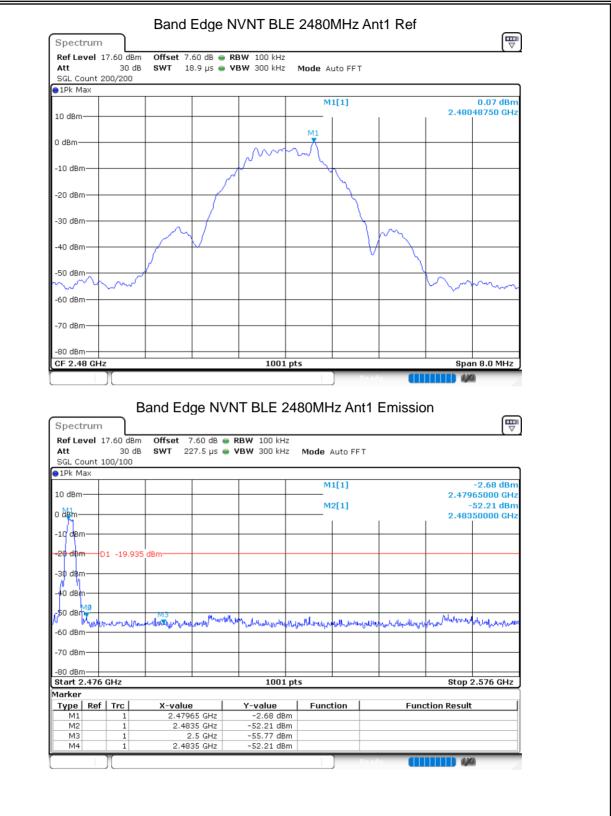
-6 dB BW NVNT BLE 2480MHz Ant1 ₽ Spectrum RBW 100 kHz Ref Level 20.00 dBm Att 30 dB SWT 18.9 µs 👄 VBW 300 kHz Mode Auto FFT SGL Count 500/500 ●1Pk Max M1[1] -8.37 dBn 2.479987600 GHz 10 dBm-M2[1] -14.37 dBm 2.479318800 GHz 0 dBm--10 dBm--20 dBm -30 dBm· -40 d8m--50 dBm -60 dBm -70 dBm· CF 2.48 GHz 10001 pts Span 4.0 MHz Marker Type | Ref | Trc X-value Y-value Function Function Result 2.4799876 GHz 2.4793188 GHz -8.37 dBm -14.37 dBm M1 M2 1 1 МЗ 2.4805868 GHz -14.32 dBm 1 4.40

Report No.: S22033003004001



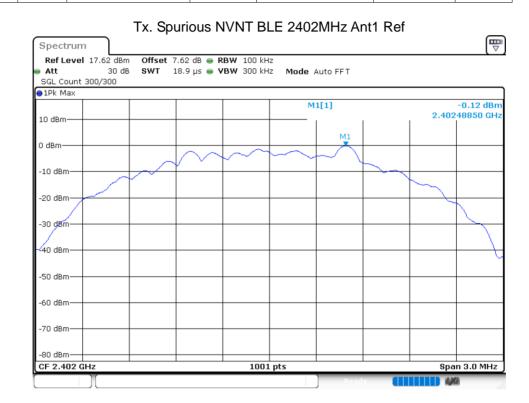
8.2.3 Ma	ximum l	Power Spectral Den	sity Level					
Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/3kHz)	Limit (d	IBm/3kHz)	Verdict
NVNT	BLE	2402	Ant 1	-18.			8	Pass
NVNT	BLE	2440	Ant 1		583		8	Pass
NVNT	BLE	2480	Ant 1	-18.	228		8	Pass
	🖷 Att	rum evel 27.62 dBm Offset 7.6 30 dB SWT 632. unt 500/500	2 dB 👄 RBW 3	LE 2402MHz ^{kHz} Mode Auto				
	20 dBm			M1[1]			18.39 dBm 50740 GHz	
	10 dBm·							
	0 dBm—							
	-10 dBm	<u> </u>		41				
	-20 dBm	aloness hale leven and marked wat he also	wand Will wat milell	all and the second second	manumenter halupelul	ahar .		
	n <u>s</u> gorddiff	Marrier Marrier Carter				and and the second s	Math & and the start	
	-40 dBm	<u> </u>						
	-50 dBm							
	-60 dBm							
	-70 dBm						400 MU	
	CF 2.4	J2 GHZ	10	001 pts	Ready .	span 1.8	3432 MHz	
	L							

NTEK 北测[®]



8.2.4 Band Edge

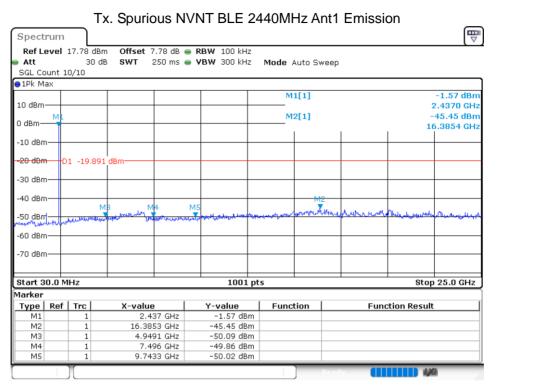
ndition	Mode		ncy (MHz)	Antenna	Max Value (d		it (dBc)	Verdict
VNT	BLE		402	Ant 1	-51.29		-20	Pass
VNT	BLE	24	480	Ant 1	-52.27		-20	Pass
			_			-		
			Band E	dge NVNT	BLE 2402MHz	Ant1 Ref		_
	Spect	rum						
	Ref Le Att	vel 17.62 dBn 30 di		dB 👄 RBW 100	kHz kHz Mode Auto FFT			
	SGL Co	unt 200/200	5 3WI 10.9	ps 🖕 🕶 300	KH2 MOUE AUTOFFT			
	⊖1Pk Ma	ax			M1[1]			-0.13 dBm
	10 dBm·						2.40	198400 GHz
					м			
	0 dBm—			0.0	mh-n			
	-10 dBm			\mathcal{M}	·· ·· · · · · · · · · · · · · · · · ·			
	-10 UBIT	'		M	\sim			
	-20 dBm	ı—						
	-30 dBm	י	m	/		Thin		
	-40 dBm	η	+ /			M		
						۲ (^۱		
	-50 dBm	man	1 +				turn	m
	-60 dBm						1.4 - 4	· · · · · ·
	-00 uBI							
	-70 dBm	ı					+	
	ii ii			1				
	-80 dBm			1	001 pts		Spa	an 8.0 MHz
				1	001 pts	eady 🚺	Spa	an 8.0 MHz
		02 GHz				eady 🚺		an 8.0 MHz
		02 GHz	Band Edge		001 pts E 2402MHz Ant	eedy I		
	CF 2.40	D2 GHz		e NVNT BLI	E 2402MHz Ant	ody (an 8.0 MHz
	CF 2.44 Spect Ref Le	rum vel 17.62 dBn	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant			
	Spect Ref Le SGL Co	rum vel 17.62 dBn 30 db	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant			
	CF 2.44 Spect Ref Le Att	rum vel 17.62 dBn 30 db	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant			4 (₩⊽
	Spect Ref Le SGL Co	P2 GHz rum vel 17.62 dBr 30 dl nunt 500/500 ax	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant		on 2.40	0.02 dBm 245000 GHz
	CF 2.44 Spect Ref Le Att SGL Co P 1Pk M	P2 GHz rum vel 17.62 dBr 30 dl nunt 500/500 ax	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm
	CF 2.44 Spect Ref Le Att SGL Co P 1Pk Mi 10 dBm-	rum vel 17.62 dBr 30 dl nunt 500/500 ax	n Offset 7.6	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm 245000 GHz -32.76№Bm
	CF 2.44 Spect Ref Le Att SGL Co 1Pk M. 10 dBm- 0 dBm- -10 dBm	P2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm 245000 GHz -32.76№Bm
	CF 2.44 Spect Ref Le Att SGL Co P 1Pk Mi 10 dBm-	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm 245000 GHz -32.76MBm 000000, HHz
	CF 2.44 Spect Ref Le Att SGL Co 1Pk M. 10 dBm- 0 dBm- -10 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm 245000 GHz -32.76№Bm
	CF 2.44 Spect Ref Le Att SGL CO I D dBm- -10 dBm- -10 dBm-	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100	E 2402MHz Ant		on 2.402	0.02 dBm 245000 GHz -32.76MBm 000000, HHz
	CF 2.44 Spect Ref Le Att SG Co 1Pk M. 10 dBm- -10 dBm- -10 dBm -30 dBm -30 dBm -30 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant D kHz D kHz Mode Auto FFT M1[1] M2[1]		2.400 2.400	0.02 dBm 245000 GHz -32.76 dBm 000000 SHz
	CF 2.44 Spect Ref Le Att SG Co P 1Pk M 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant		2.400 2.400	0.02 dBm 245000 GHz -32.76 dBm 000000 SHz
	CF 2.44 Spect Ref Le Att SGL Co ● 1Pk M: 10 dBm -10 dBm -10 dBm -30 dBm -40 dBm -40 dBm -60 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant D kHz D kHz Mode Auto FFT M1[1] M2[1]		2.400 2.400	0.02 dBm 245000 GHz -32.76 dBm 000000 SHz
	CF 2.44 Spect Ref Le Att SG Co P 1Pk M 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant D kHz D kHz Mode Auto FFT M1[1] M2[1]		2.400 2.400	0.02 dBm 245000 GHz -32.76 dBm 000000 SHz
	CF 2.44 Spect Ref Le Att SGL CO ● 1Pk M. 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm - 70 dBm - 70 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB	E 2402MHz Ant		2.400 2.400	0.02 dBm 245000 GHz -32.76MBm 000000 SHz M2
	CF 2.44 Spect Ref Le Att SGL CO ● 1Pk M. 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm - 50 dBm - 60 dBm - 70 dBm - 70 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB	E 2402MHz Ant		2.400 2.400	0.02 dBm 245000 GHz -32.76 dBm 000000 SHz
	CF 2.44 Spect Ref Le Att SG Co P1Pk M. 10 dBm- -10 dBm- -10 dBm- -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant D kHz D kHz Mode Auto FFT M1[1] M2[1]		2.400 2.400	0.02 dBm 245000 GHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz
	CF 2.44 Spect Ref Le Att SG Cc P1Pk M. 10 dBm- -10 dBm- -10 dBm- -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	D2 GHz	m Offset 7.6 B SWT 227.	2 dB • RBW 100 5 µs • VBW 300	E 2402MHz Ant D kHz D kHz Mode Auto FFT M1[1] M2[1]		On 2.402 2.400 2.400 	0.02 dBm 245000 GHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz
	CF 2.44 Ref Le Att SGL CO ● 1Pk M. 10 dBm- 0 dBm- 10 dBm- 10 dBm- -10 dBm -30 dBm	D2 GHz	m Offset 7.6 B SWT 227.	A VNT BLI 2 dB RBW 100 5 μs VBW 300	E 2402MHz Ant		On 2.402 2.400 2.400 	0.02 dBm 245000 GHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz 0000000 SHz



8.2.5 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant 1	-44.87	-20	Pass
Condition NVNT NVNT NVNT	BLE	2440	Ant 1	-45.55	-20	Pass
NVNT	BLE	2480	Ant 1	-42.1	-20	Pass

Page 59 of 62


Att SGL C		17.62 dBn 30 dB 0/10		 RBW 100 kHz VBW 300 kHz 	Mode Auto S	weep	
1Pk M	ax		1				0.00.40
.0 dBm					M1[1]		-2.39 dBn 2.4120 GH
dBm-	м				M2[1]		-44.99 dBn 17.7088 GH
10 dBr	n						
20 dBr	n D	1 -20.122	dBm				
30 dBr	n						
40 dBr	n					1/12	
50 dBr		N Marterlanda	B M4	M5 مەكىپەتىرىلەر بىلاردارىيە ئەتلارارىيەرىلەر	walkers and production of	Well hall more more	Anderson with the Construction of the second s
տերապ 60 dBr	program by m	albaha.					
70 dBr	n						
80 dBr							
	10.0 M	IHz		1001 p	ts		Stop 25.0 GHz
larker							
Туре	Ref	Trc	X-value	Y-value	Function	Fun	ction Result
M1		1	2.412 GHz	-2.39 dBm			
M2		1	17.7088 GHz	-44.99 dBm			
		1	4.999 GHz	-49.89 dBm			
MЗ		1	7.0466 GHz	-49.35 dBm			
M3 M4		-					

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission ₽ Spectrum Ref Level 17.60 dBm Offset 7.60 dB 🖷 RBW 100 kHz Att 30 dB SWT 250 ms 👄 VBW 300 kHz Mode Auto Sweep SGL Count 10/10 ●1Pk Max M1[1] -2.49 dBm 10 dBm 2.4870 GHz M2[1] -44.24 dBm 0 dBm 16.3854 GHz -10 dBm -20 dBm— D1 -22.139 dBm--30 dBm-MS -40 dBm . ભા**પ** 7 معدار العدم -50 dBm--60 dBm -70 dBm -80 dBm Stop 25.0 GHz 1001 pts Start 30.0 MHz Marker Type | Ref | Trc Function Y-value Function Result X-value 2.487 GHz М1 -2.49 dBm M2 16.3853 GHz -44.24 dBm 1 ΜЗ 1 5.024 GHz -49.76 dBm M4 7.2963 GHz -49.53 dBm 1 -49.65 dBm M5 10.018 GHz 1

END OF REPORT

Page 62 of 62