

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

Dates of Tests: July 11, ~ 22, 2014 Test Report S/N: LR500111408B Test Site: LTA CO., LTD

CERTIFICATION OF COMPLIANCE

FCC ID IC APPLICANT S7A-SP15 8154A-SP15 Sena Technologies, Inc.

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : Bluetooth Action Camera
Manufacturer : Sena Technologies, Inc.

Model Name : SCA10

Test Device Serial No.: : Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2009

RSS-210 and ISSUE No.:8 Date:2010

Frequency Range : $2402MHz \sim 2480MHz$ (BT 4.0 LE)

Max. Output Power : Max 3.86 dBm - Conducted

Data of issue : July 23, 2014

This test report is issued under the authority of:

The test was supervised by:

Jae-Ho Lee, Manager

Young-Jin Lee, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	10
3.2.3 POWER SPECTRAL DENSITY	13
3.2.4 BAND – EDGE	16
3.2.5 CONDUCTED SPURIOUS EMISSIONS	19
3.2.6 FIELD STRENGTH OF HARMONICS - TRANSMITTER	23
3.2.7 FIEID STRENGTH OF HARMONICS - RECEIVERS	26
3.2.8 AC CONDUCTED EMISSIONS	31
APPENDIX APPENDIX	2.4
APPENDIX TEST EQUIPMENT USED FOR TESTS	34

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2014-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2015-03-06	EMC accredited Lab.
FCC	U.S.A	610755	2017-04-21	FCC filing
FCC	U.S.A	649054	2015-04-17	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2017-06-21	VCCI registration
VCCI	JAPAN	T-2009	2016-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA 5799A-1		2015-06-21	IC filing
KOLAS KOREA NO		NO.551	2017-01-08	KOLAS accredited Lab.

2. Product Information

2-1 Applicant

Company name : Sena Technologies, Inc.

Address : 210 Yangjae-dong Seocho-gu Seoul 137-130 Korea

Tel / Fax : +82-2-571-8283 / +82-2-573-7710

2-2 Equipment Under Test (EUT)

Trade name : PRISM Model name : SCA10

Date of receipt : July 10, 2014

EUT condition : Pre-production, not damaged

Antenna type : Chip Antenna (SENA 009) Max Gain 0.5 dBi

Frequency Range : $2402MHz \sim 2480MHz$ (BT 4.0LE)

RF output power : Max 3.86 dBm - Conducted

Number of channels : 40 Type of Modulation : GFSK

Channel spacing : 2MHz
Power Source : DC 3.7V
Firmware Version : V1.0.0

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz)	2402	2442	2480

2-4 Ancillary Equipment

Equipment	Equipment Model No.		Manufacturer		
NOTEBOOK	PP37L	29705283757	DELL		

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt	Conducted	С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted	С
15.247(d)	Band Edge & Spurious	> 20 dBc		
15.209	Field Strength of Harmonics	Emissions	D. I I	С
15.109	Field Strength	-	Radiated	С
15.207	AC Conducted Emissions	ted Emissions Emissions Conducted		С
15.203	Antenna requirement	-	-	С
Note 1: C=Complies NC=	Not Complies NT=Not Tested NA=	Not Applicable	ı	<u>'</u>
<i>Note 2</i> : The data in this test r	report are traceable to the national or interna-	ational standards.		

→ Antenna Requirement

The **Sena Technologies**, FCC ID: **S7A-SP15** unit complies with the requirement of §15.203. The Antenna type is the Chip Antenna.

The sample was tested according to the following specification:

^{*}FCC Parts 15.247; ANSI C-63.4-2009

^{*}FCC KDB Publication No. 558074 D01 DTS Meas. Guidance V01

^{*}FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

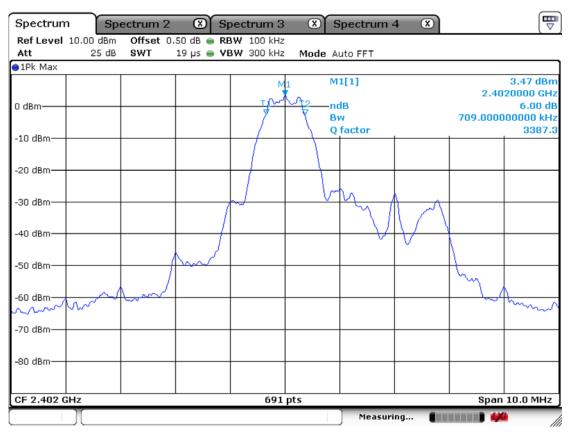
RBW = 100 kHz Span = 10 MHz

 $VBW = 300 \text{ kHz} (VBW \ge 3x \text{ RBW})$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data:

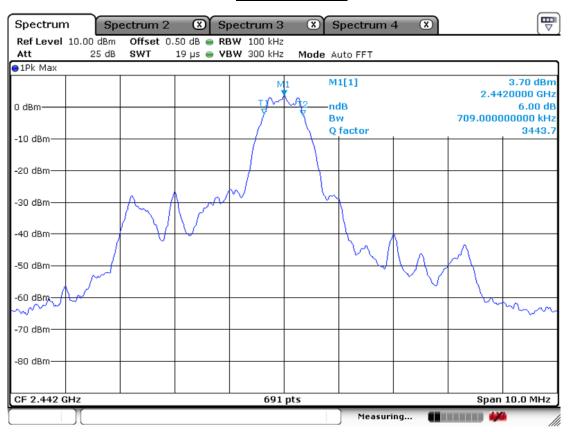
Frequency	Channel No.	Test Results(MHz)			
(MHz)	Chamiei No.	6dB Bandwidth	99% Bandwidth		
2412	0	0.709	1.071		
2442	20	0.709	1.056		
2480	39	0.724	1.056		

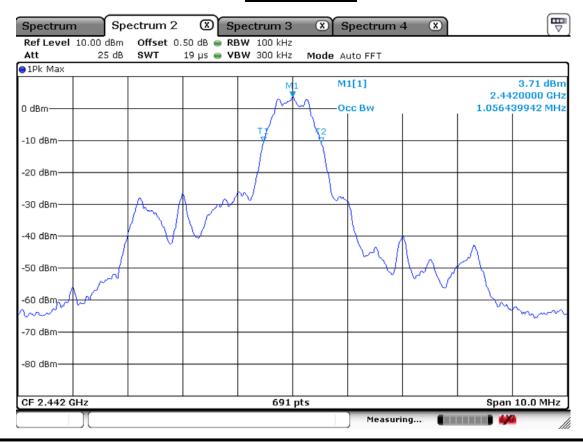

Minimum Standard:

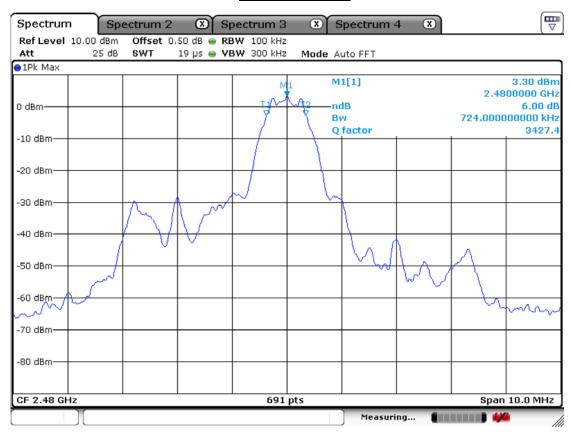
6 dB Bandwidth > 500kHz

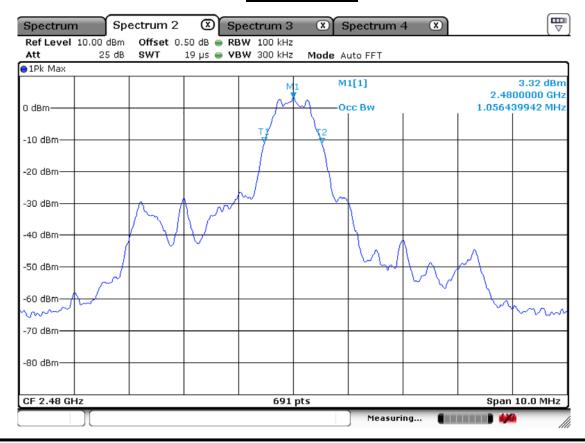
Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


Channel 0 6dB Bandwidth


99% Bandwidth


Channel 20 6 dB Bandwidth


99% Bandwidth

Channel 39 6 dB Bandwidth

99% Bandwidth

3.2.2 Peak Output Power Measurement

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April. The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

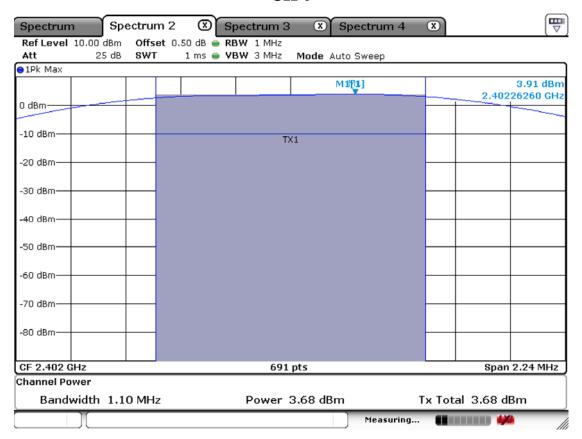
Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = 1.5 x DTS bandwidth

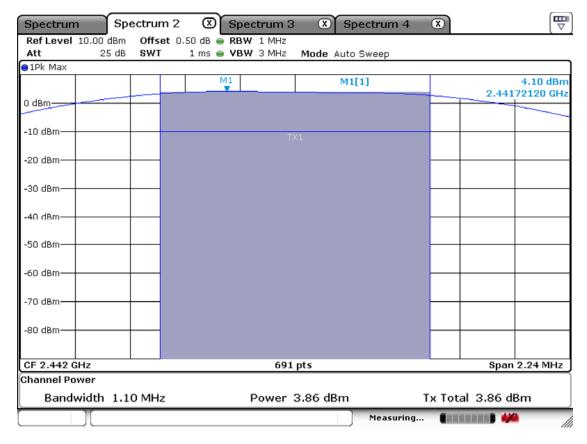
 $VBW = 3MHz (VBW \ge 3x RBW)$ Sweep = auto

Detector function = peak

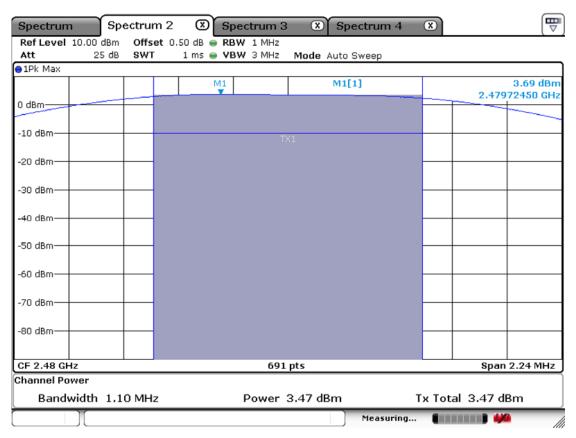
Measurement Data:


Frequency	Channel No.	Test Results				
(MHz)		Measured Data (dBm)	Measured Data (mW)	Result		
2402	0	3.68	2.33	Complies		
2442	20	3.86	2.43	Complies		
2480	39	3.47	2.22	Complies		

⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

Peak output power	< 1W


CH₀

CH 20

CH 39

3.2.3 Peak Power Spectral Density

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

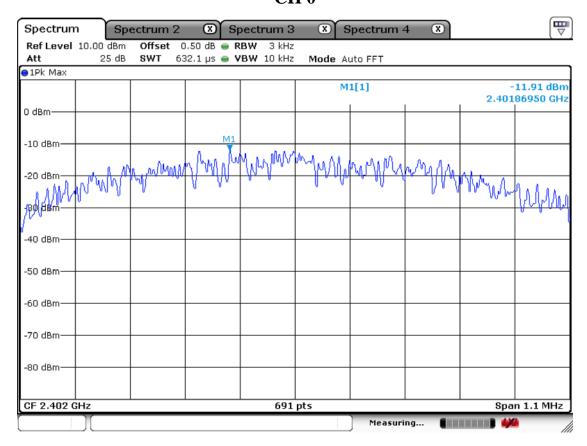
The spectrum analyzer is set to:

 $RBW = 3 \text{ kHz } (3\text{kHz} \le RBW \le 100\text{kHz}) \qquad Span = 1.1 \text{ MHz}$ $VBW = 10 \text{ kHz } (VBW \ge 3\text{x } RBW) \qquad Sweep = \text{auto}$ $Detector \text{ function} = \text{peak} \qquad Trace = \text{max hold}$

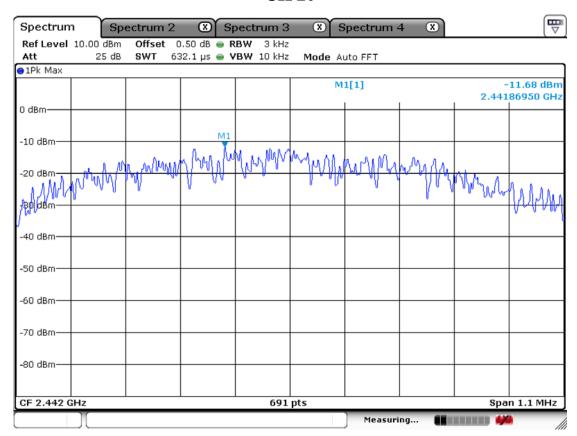
Measurement Data:

Frequency (MHz)	Ch.	Test Results			
		dBm	Result		
2402	0	-11.91	Complies		
2442	20	-11.68	Complies		
2480	39	-12.09	Complies		

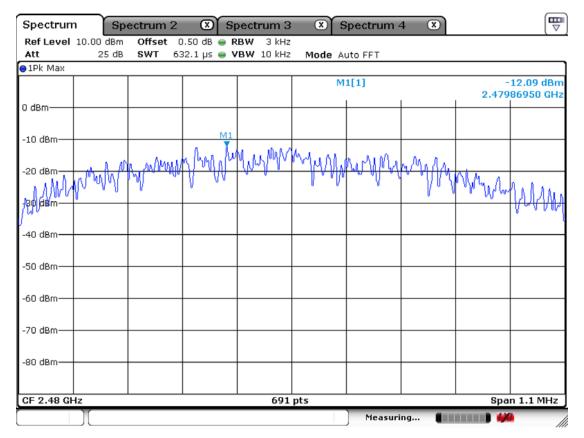
⁻ See next pages for actual measured spectrum plots.


Minimum Standard:

Power Spectral Density


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


Peak Power Density Measurement CH 0

CH 20

CH 39

3.2.4 Band - edge

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 20-40 MHz Detector function = peak

Trace = \max hold Sweep = auto

Radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)

The spectrum analyzer is set to:

Frequency = the highest, middle and the lowest channels

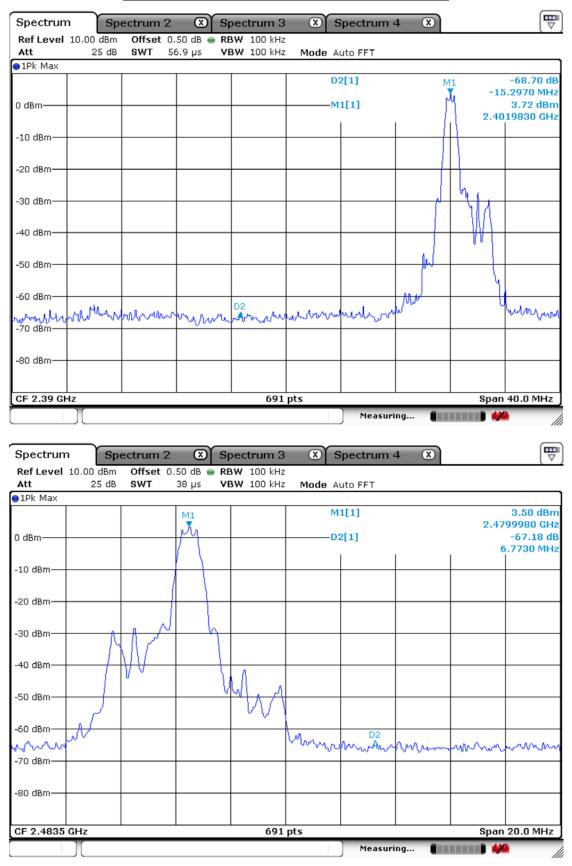
PEAK: RBW = VBW = 1MHz, Sweep=Auto

Average: RBW = 1MHz, VBW=10Hz, Sweep=Auto

Measurement Distance: 3m

Polarization: Horizontal / Vertical

Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement

	F	Rea	ding		Correction		Limits		Result		Margin	
	Frequency	[dBuV/m]		Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
l	[MHz]	AV / Peak			Antenna	Amp. Gain+CableLoss	AV /	' Peak	AV /	Peak	AV /	Peak
	2385.7	33.6	47.6	V	22.22	21.98	54.0	74.0	33.8	47.8	20.2	26.2

Band-edges in the restricted band 2483.5-2500 MHz measurement (Ant M/N: AN2400-3306RS)

Reading Frequency			Correction		Limits	Result	Margin	
Frequency	[dBuV/m] Pol.		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp. Gain+CableLoss	AV / Peak	AV / Peak	[MHz]	
2483.5	34.5 51.5	V	22.22	21.98	54.0 74.0	34.7 51.7	19.3 22.3	

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented.

3.2.5 Conducted Spurious Emissions

Procedure:

The test follows KDB558074. The conducted spurious emissions were measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels..

After the trace being stable, set the marker on the peak of any spurious emission recorded.

The spectrum analyzer is set to:

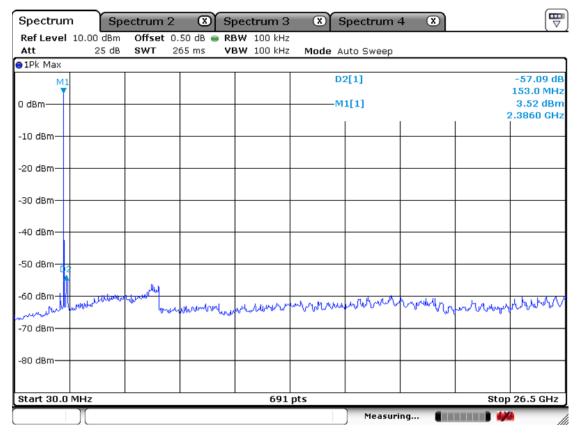
Span = wide enough to capture the peak level of the in-band emission and all spurious emissions

RBW = 100 kHz Sweep = auto

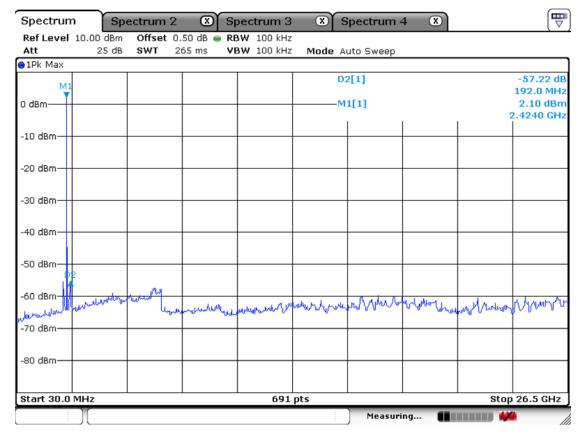
VBW = 100 kHz Detector function = peak

Trace = max hold

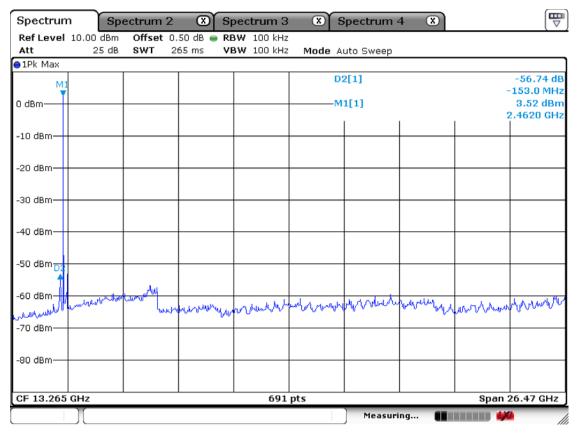
Measurement Data: Complies


- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Minimum Standard: > 20 dBc


Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)


$\label{eq:Low channel} Low channel $$ Frequency Range = 30 MHz \sim 10^{th} \ harmonic.$

 $\label{eq:midchannel} Mid \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

$\label{eq:High channel} High \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

3.2.6 Field Strength of Harmonics-Transmitter

Procedure:

*The testing follows TCB Workshop 2012, April and fulfills ANSI C63.4-2003 and the guidelines in ANSI C63.10-2009 test requirement. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = $9 \text{ KHz} \sim 10^{\text{th}} \text{ harmonic.}$

 $RBW = 120 \text{ kHz} (9 \text{ KHz} \sim 1 \text{ GHz})$

Peak:VBW ≥ RBW Average:VBW=10Hz

= 1 MHz (1 GHz $\sim 10^{th}$ harmonic)

Detector function = Peak and Average

Span = 100 MHz Trace = max hold

Sweep = auto

Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit.
- The three antennas were used with this EUT during the Testing.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F (kHz) @ 300m
0.490 ~ 1.705	24000/F (kHz) @ 30m
1.705 ~ 30	30 @ 30m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data: (Above 1GHz)

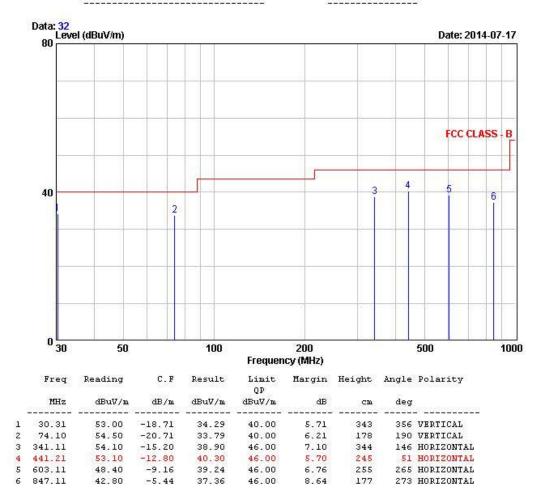
Frequency	Rea	ding		C	Correction Limits Result		Limits		sult	Margin		
rrequeries	[dBu	V/m]	Pol.		Factor	D.C.F	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/	Peak	AV/Peak		AV / Peak	
4804	48.6	58.1	V	33.3	21.98	-30.54	54.0	74.0	29.4	38.9	24.6	35.1
Fraguanas	Frequency [dBuV/m] Pol.			Correction			Lim	nits	Res	sult	Margin	
Frequency			Pol.	Factor		D.C.F	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	Peak		Antenna Amp.Gain+Cable			AV/Peak		AV/Peak		AV / Peak	
4882	48.2	58.6	V	33.3	21.98	-30.54	54.0	74.0	29.0	39.4	25.0	34.6
		·										
Frequency	Rea	ding		C	Correction		Lim	nits	Res	sult	Mai	gin
rrequency	[dBu	V/m]	Pol.		Factor	D.C.F	[dBu	V/m]	[dBu	V/m]	[d	В]
[MHz]	AV /	Peak		Antenna	Amp.Gain+Cable		AV/	Peak	AV/	Peak	AV /	Peak
4960	48.1	57.9	V	33.3	21.98	-30.54	54.0	74.0	28.9	38.7	25.1	35.3
		'										

- No other emissions were detected at a level greater than 20dB below limit.
- D.C.F (Duty Cycle Correction Factor) = 20log(The worst Case DWELL Time/100ms)

 $= 20\log(2.971 \text{ms}/100 \text{ms}) = -30.54$

Measurement Data: (9kHz - 30MHz)

Frequency			Correction Factor				Margin				
[dBuV/m]		Pol.			[dBuV/m]	[dBuV/m]	[dB] AV / Peak				
[MHz]	AV / Peak		Antenna Amp.Gain+Cable		AV / Peak	AV / Peak AV / Peak					
-		-	-	-							
No emissions were detected at a level greater than 20dB below limit.											
-		-	-	-							
-		-	-	-							


^{*}No emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – BT + Charging mode

4, Songjuro236Beon-gil, Yangji-myeon, Cheoin-gu, Youngin-si, Gyeonggi-do, 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: SCAlO TEST MODE: BT + Charging mode
Temp Humi : 33 / 55 Tested by: Y00 B C

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.7 Field Strength of Harmonics - Receivers

Definition:

The field strength of emissions from intentional radiators was measured. In case of the air temperature of the test site is out of the range is 10 to 40°C before the testing proceeds the warm-up time of EUT maintain adequately

Test method : FCC Part 15.209

Frequency Range : $9 \text{ KHz} \sim 10^{\text{th}} \text{ harmonic.}$

Bandwidth : 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna : 3 meters

Test mode : Rx mode

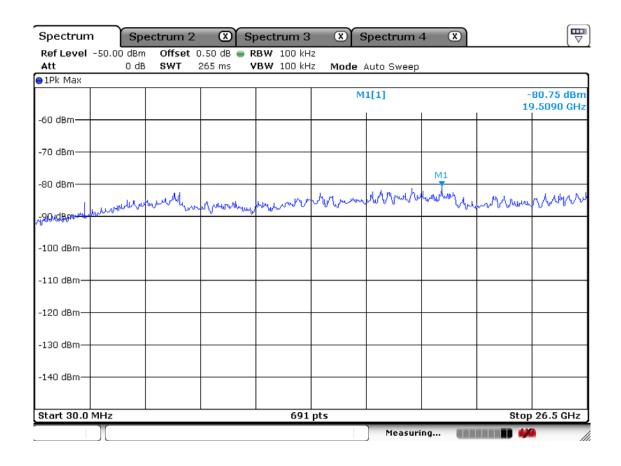
Result : Complies

Measurement Data:

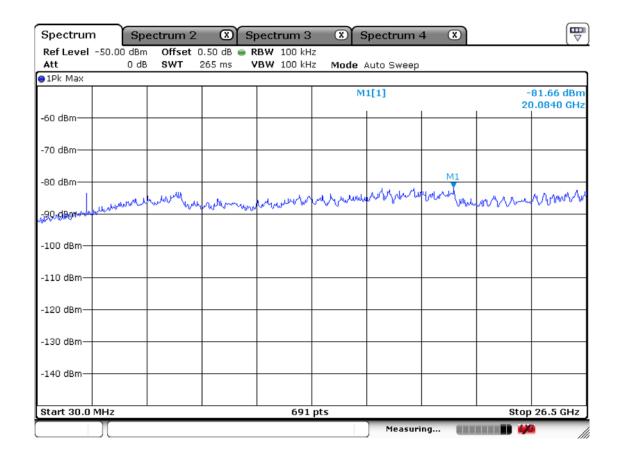
- Refer to the next page.

- No other emissions were detected at a level greater than 20dB below limit

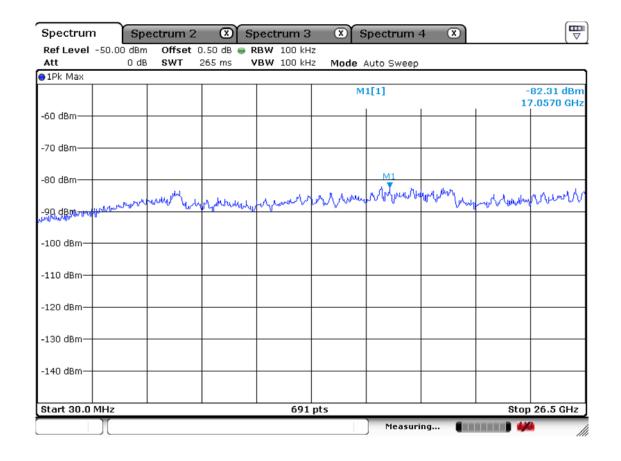
It gave the worse case emissions.


Field Strength Limit

Part 15.209 LIMIT:


Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz)
0.490 ~ 1.705	24000/F(kHz)
1.705 ~ 30	30
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.


<u>Conducted Emission – Low channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Conduceted Emission – Middle channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

<u>Conduceted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

Measurement Data: (30MHz ~ 10th harmonic.)

Frequency	Rea	ding		Correction Limits Result		Limits		sult	Març	gin	
Frequency	[dBu	[dBuV/m]		Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV / Peak		Pol.	Antenna	Amp. Gain	AV / Peak		AV / Peak		AV / F	Peak
					+Cable	,					
		No em	issions	were detect	ted at a level greater th	an 20dE	B below	limit.	ı		
Frequency	Rea	_		(Correction	Lin	nits	Res	sult	Marg	gin
	[dBu	V/m]	Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB	3]
[MHz]	AV /	' Peak		Amp. Gain Antenna +Cable		AV / Peak		AV / Peak		AV / F	Peak
		No em	issions	were detect	ted at a level greater th	an 20dB below l		limit.			
Frequency	Rea	ding		(Correction	Lin	nits	Res	sult	Marg	gin
. ,	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[dB	3]
[MHz]	AV / Peak			Antenna	Amp. Gain +Cable	AV A	/ Peak	AV /	Peak	AV / F	Peak
15 15 15	No emis			1 ((-1-4-11	20.15	1 - 1	11			
			issions 	were detect	ted at a level greater th	an 20dE 	below	iimit. 			

Measurement Data: (9kHz - 30MHz)

Frequency	[dBuV/m] Pol.		Correction Factor						Result		Margin [dB]
[MHz]				Antenna	Amp.Gain+Cable	AV / Peak				AV / Peak	
-	-	-	-	-	-	-	-	-	-		
No emissions were detected at a level greater than 20dB below limit.											
-	-	-	_	-	-	-	-	-	-		
-	-	-	-	-	-	-	-	-	-		

^{*}No emissions were detected at a level greater than 20dB below limit.

3.2.8 AC Conducted Emissions

Procedure:

*The testing follows the guidelines in ANSI C63.4-2003 and ANSI C63.10-2009. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

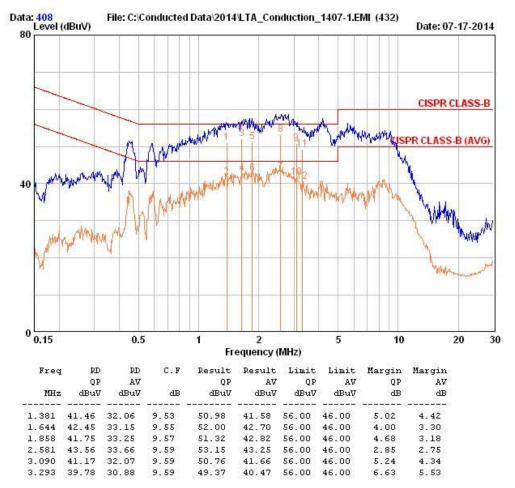
Conducted Emissions – BT + Charging mode – LINE

4, Songjuro236Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : SCA10 Phase : LINE

Test Mode : BT + Charging mode Test Power : 120 / 60

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss


Conducted Emissions – BT + Charging mode – NEUTRAL

4, Songjuro236Beon-gil, Yangji-myeon Cheoin-gu, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : SCA10 Phase : NEUTRAL

Test Mode : BT + Charging mode Test Power : 120 / 60

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Signal Analyzer (9kHz~30GHz)	FSV-30	100757	R&S	1 year	2014-01-16
2	Spectrum Analyzer (9kHz~2.9GHz)	8594E	3649A03649	НР	2 year	2014-03-25
3	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year	2014-03-25
4	SYNTHESIZED CW GENERATOR	83711B	US34490456	НР	1 year	2014-03-25
5	Attenuator (3dB)	8491A	37822	НР	2 year	2012-09-22
6	Attenuator (10dB)	8491A	63196	НР	2 year	2012-09-22
7	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2014-03-25
8	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2013-09-16
9	RF Amplifier (~1.3GHz)	8447D OPT 010	2944A07684	НР	1 year	2013-09-16
10	RF Amplifier (1~26.5GHz)	8449B	3008A02126	НР	1 year	2014-03-25
11	Horn Antenna (1~18GHz)	3115	00114105	ETS	2 year	2013-05-13
12	DRG Horn (Small)	3116B	81109	ETS-Lindgren	2 year	2014-02-26
13	DRG Horn (Small)	3116B	133350	ETS-Lindgren	2 year	2014-02-26
14	TRILOG Antenna	VULB 9160	9160-3237	SCHWARZBECK	2 year	2013-05-03
15	Temp.Humidity Data Logger	SK-L200TH II A	00801	SATO	1 year	2014-03-26
16	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
17	Power Divider	11636A	06243	НР	2 year	2012-09-22
18	DC Power Supply	6674A	3637A01657	Agilent	-	-
19	Frequency Counter	5342A	2826A12411	HP	1 year	2014-03-26
20	Power Meter	EPM-441A	GB32481702	HP	1 year	2014-03-26
21	Power Sensor	8481A	US41030291	HP	1 year	2013-09-16
22	Audio Analyzer	8903B	3729A18901	HP	1 year	2013-09-16
23	Modulation Analyzer	8901B	3749A05878	НР	1 year	2013-09-16
24	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2013-09-16
25	Stop Watch	HS-3	601Q09R	CASIO	1 year	2013-09-26
26	LISN	KNW-407	8-1430-1	Kyoritsu	1 year	2013-09-16
27	Two-Lime V-Network	ESH3-Z5	893045/017	R&S	1 year	2014-03-26
28	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	1 year	2014-07-25
29	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
30	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-
31	Loop Antenna	6502	00118166	ETS LINDGREN	2 year	2014-01-07