

FCC Test Report

Equipment	:	Wireless 450N Dual Band USB Adapter
Brand Name	:	EDIMAX
Model No.	:	EW-7733UND / GWU-H733Und / EW-7733UnD
FCC ID	:	NDD9577331111
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz 5725 MHz – 5850 MHz
FCC Classification	:	UNII
Applicant Manufacturer	:	EDIMAX TECHNOLOGY CO., LTD. No.3,Wu-Chuan 3rd Road,Wu-Ku Industrial Park, New Taipei City, Taiwan

The product sample received on Jul. 05, 2011 and completely tested on Mar. 29, 2016. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Support Equipment	8
1.3	Testing Applied Standards	8
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	The Worst Case Power Setting Parameter	10
2.3	The Worst Case Measurement Configuration	11
2.4	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	15
3.1	AC Power-line Conducted Emissions	15
3.2	Emission Bandwidth	18
3.3	RF Output Power	21
3.4	Peak Power Spectral Density	24
3.5	Transmitter Radiated Bandedge Emissions	28
3.6	Transmitter Radiated Unwanted Emissions	32
3.7	Frequency Stability	69
4	TEST EQUIPMENT AND CALIBRATION DATA	71

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Result		
1.1.2	15.203	Antenna Requirement	Complied		
3.1	15.207	AC Power-line Conducted Emissions	Complied		
3.2	15.407(a)	Emission Bandwidth	Complied		
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Complied		
3.4	15.407(a)	Peak Power Spectral Density	Complied		
3.5	15.407(b)	Transmitter Bandedge Emissions	Complied		
3.6	15.407(b)	Transmitter Unwanted Emissions	Complied		
3.7	15.407(g)	Frequency Stability	Complied		

Revision History

Report No.	Version	Description	Issued Date
FR181701AN	Rev. 01	Initial issue of report	Sep. 16, 2011
FR181701-13AN	Rev. 01	Update standard version to 15.407	Apr. 19, 2016
FR181701-13AN	Rev. 02	Update Conducted Peak Output Power & Add Conducted (Average) Output Power	May 09, 2016

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information (5150-5250MHz band)					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{TX})	RF Output Power (dBm)
5150-5250	а	5180-5240	36-48 [4]	1	11.760
5150-5250	n (HT20)	5180-5240	36-48 [4]	3	15.869
5150-5250	n (HT40)	5190-5230	38-46 [2]	3	15.915

Note 1: RF output power specifies that Maximum Conducted Output Power.

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

RF General Information (5725-5850MHz band)						
Frequency Range (MHz)IEEE Std. 802.11Ch. Freq. (MHz)Channel NumberTransmit Chains (NTX)RF Output Power (dBn						
5725-5850	а	5745-5825	149-165 [5]	1	6.090	
5725-5850	n (HT20)	5745-5825	149-165 [5]	3	10.129	
5725-5850	n (HT40)	5755-5795	151-159 [2]	3	9.933	
		hat Maximum Cond				

Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.2 Antenna Information

	Antenna Category					
\square	Integral antenna (antenna permanently attached)					
	Temporary RF connector provided					
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.					
	External antenna (dedicated antennas)					
	Single power level with corresponding antenna(s).					
	Multiple power level and corresponding antenna(s).					

	Antenna General Information					
No.Ant. Cat.Ant. TypeGain (dBi)						
1	Integral	PIFA	4.00			
2	Integral	PIFA	4.00			
3	Integral	PCB	2.00			

Directional Gain (DG) Result					
Transmit Chair	1	2	3	-	
Maximum G _{ANT} (dBi)		4.00	4.00	2.00	-
Modulation Mode	DG (dBi)	Ν _{τχ}	N _{SS} (Min.)	STBC	Array Gain (dB)
11b	4.00	1	1	-	0
11g	4.00	1	1	-	0
HT20	3.43	3	1	-	0
HT40	3.43	3	1	-	0
Note 1: For all transmitter out	puts with equal ante	enna gains, dire	ectional gain is	to be computed	d as follows:

Any transmit signals are correlated, Directional Gain = G_{ANT} + 10 log(N_{TX})

All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} + 10 log(N_{TX}) All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = 10 log[$(10^{G1/20} + ... + 10^{GN/20})^2 / N_{TX}$] All transmit signals are completely uncorrelated, Directional Gain = 10 log[$(10^{G1/10} + ... + 10^{GN/10})^2 / N_{TX}$] Note 3: For Spatial Multiplexing, Directional Gain (DG) = G_{ANT} + 10 log(N_{TX}/N_{SS}),

where Nss = the number of independent spatial streams data.

Note 4: For CDD transmissions, directional gain is calculated as power measurements:

Directional Gain (DG) = G_{ANT} + Array Gain, where Array Gain is as follows: Array Gain = 0 dB (i.e., no array gain) for $N_{TX} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{TX};

1.1.3 Type of EUT

	Identify EUT				
EUT Serial Number N/A		N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
	Type of EUT				
\boxtimes	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)				
⊠ 100.00% - IEEE 802.11a	0.00			
⊠ 100.00% - IEEE 802.11n (HT20)	0.00			
⊠ 100.00% - IEEE 802.11n (HT40)	0.00			

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	
Type of DC Source	Internal DC supply	System	External DC adapter

1.2 Support Equipment

	Support Equipment - Conducted Emissions						
No. Equipment Brand Name Model Name FC				FCC ID			
1	Notebook	DELL	PP20L	DoC			
2	(USB) Mouse	Microsoft	1004	N/A			
3	iPod nano	Apple	A1199	N/A			
4	AP (Remote Workstation)	D-Link	DNS-G120	DoC			

	Support Equipment - RF Conducted						
No.	D. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5540	DoC			
2	2 AC Adapter for Notebook DELL HA65NM130 DoC						

Support Equipment - Radiation Emissions							
No.	No. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5540-05	DoC			
2	2 AC Adapter for Notebook DELL LA65NS2-01 DoC						

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 789033 D02 v01r02
- FCC KDB 644545 D03 v01
- FCC-14-30A1-UNII

1.4 Testing Location Information

	Testing Location									
\square	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.						
		TEL	:	886-3-327-3456 FAX	886-3-327-3456 FAX : 886-3-327-0973					
	Test site registered number [636805] with FCC.									
	Test Cond	lition		Test Site No.	Test Engineer	Test Environment				
	AC Conduction CO04-HY			CO04-HY	Jason	26.1°C / 56.8%				
	RF Conducted TH06-HY Jeremy 22.1°C / 61%				22.1°C / 61%					
Radiated Emission 03CH03-HY Jeff 22.3°C / 5			22.3°C / 51%							

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

I	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.26 dB
Emission bandwidth, 26dB bandwidth		±1.42 %
RF output power, conducted		±0.63 dB
Power density, conducted		±0.81 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.38 dB
	0.15 – 30 MHz	±0.42 dB
	30 – 1000 MHz	±0.51 dB
	1 – 18 GHz	±0.67 dB
	18 – 40 GHz	±0.83 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.49 dB
	0.15 – 30 MHz	±2.28 dB
	30 – 1000 MHz	±2.56 dB
	1 – 18 GHz	±3.59 dB
	18 – 40 GHz	±3.82 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±3 %
DC and low frequency voltages		±3 %
Time		±1.42 %
Duty Cycle		±1.42 %

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

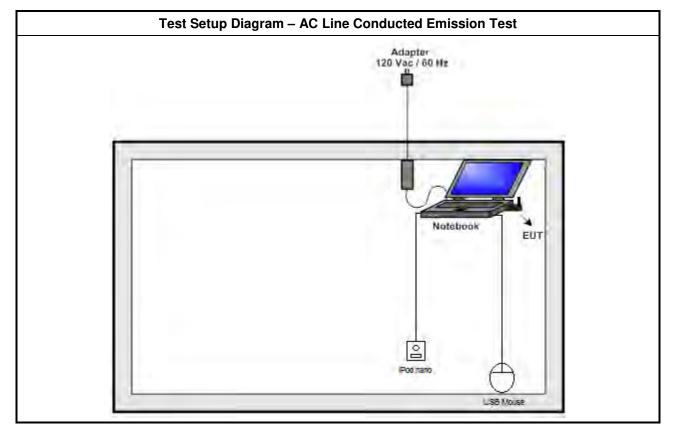
Worst Modulation Used for Conformance Testing							
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate / M							
11a,6-54Mbps	1	6-54Mbps	6 Mbps				
HT20,M16-23	3	M16-23	M16				
HT40,M16-23	3	M16-23	M16				

2.2 The Worst Case Power Setting Parameter

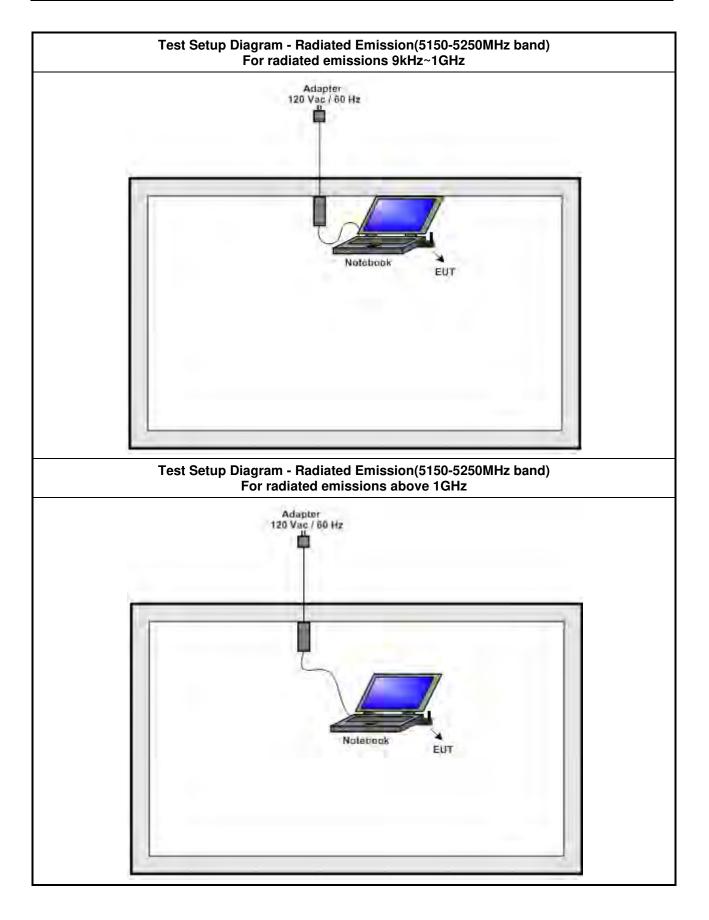
The Worst Case Power Setting Parameter (5150-5250MHz band)							
Test Software/Version			Ral	ink QA_ 3573			
			Test Frequency (MHz)				
Modulation Mode	N _{TX}		NCB: 20MHz		NCB:	40MHz	
		5180	5200	5240	5190	5230	
11a,6-54Mbps	1	1F	1F	1F	-	-	
HT20,M16-23	3	1F,1F,1F	1F,1F,1F	1F,1F,1F	-	-	
HT40,M16-23	3	-	-	-	1D,1D,1D	1F,1F,1F	

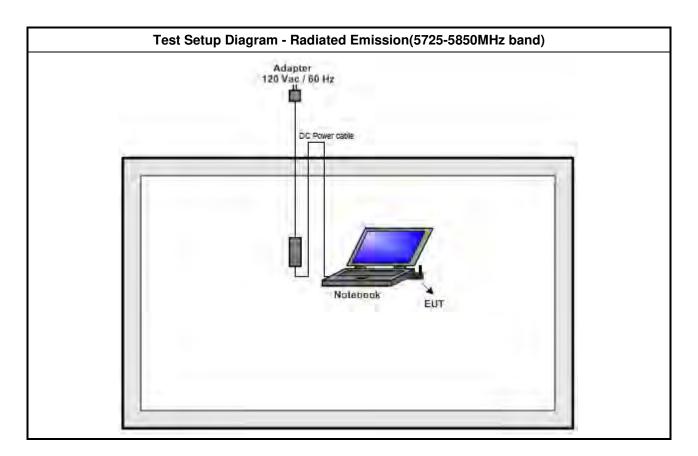
The Worst Case Power Setting Parameter (5725-5850MHz band)							
Test Software Version		Ralink QA_ 3573					
			Test Frequency (MHz)				
Modulation Mode	Ντχ		NCB: 20MHz		NCB: 40MHz		
		5745	5785	5825	5755	5795	
11a,6-54Mbps	1	10	11	11	-	-	
HT20,M16-23	3	0F,0F,0F	0F,0F,0F	11,11,11	-	-	
HT40,M16-23	3	-	-	-	10,10,10	10,10,10	

2.3 The Worst Case Measurement Configuration


TI	The Worst Case Mode for Following Conformance Tests				
Tests Item AC power-line conducted emissions					
Condition AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz					
Operating Mode Operating Mode Description					
1 AC power & Radio link					

The Worst Case Mode for Following Conformance Tests				
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion			
Test Condition	Conducted measurement at transmit chains			
Modulation Mode	Modulation Mode 11a, HT20, HT40			


Th	e Worst Case Mode for Fo	bllowing Conformance Te	sts		
Tests Item	Transmitter Radiated Unwa Transmitter Radiated Banc				
Test Condition	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.				
	EUT will be placed in	fixed position.			
User Position		mobile position and operati ee orthogonal planes.	ng multiple positions. EUT		
	EUT will be a hand-held or body-worn battery-powered devices and operating multiple positions. EUT shall be performed three orthogonal planes.				
Operating Mode	AC power & Transmit	er			
Modulation Mode	11a, HT20, HT40				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of EUT	of				
Worst Planes of EUT	V				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of Antenna					
Worst Planes of Antenna			V		


2.4 Test Setup Diagram

Transmitter Test Result 3

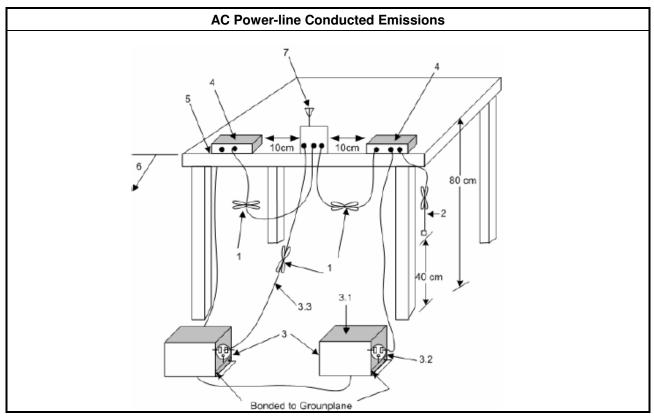
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

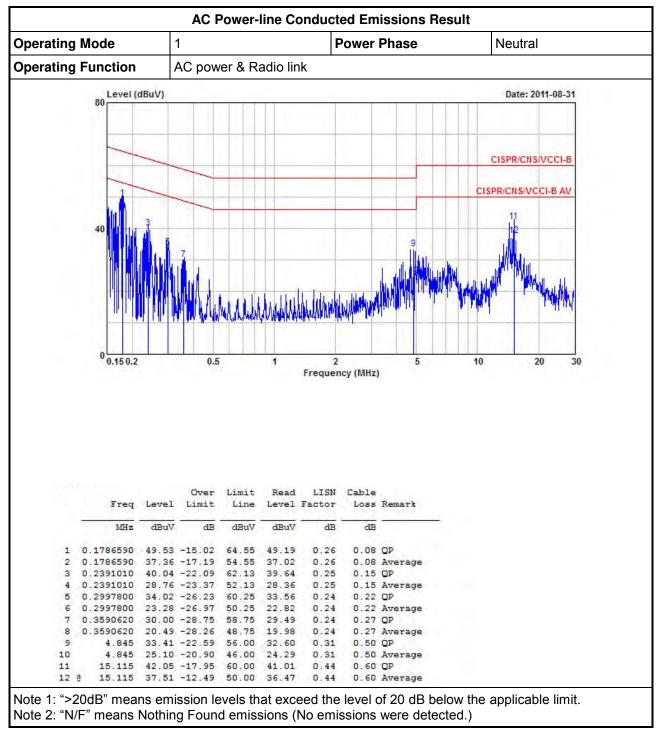
AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of	Note 1: * Decreases with the logarithm of the frequency.					

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

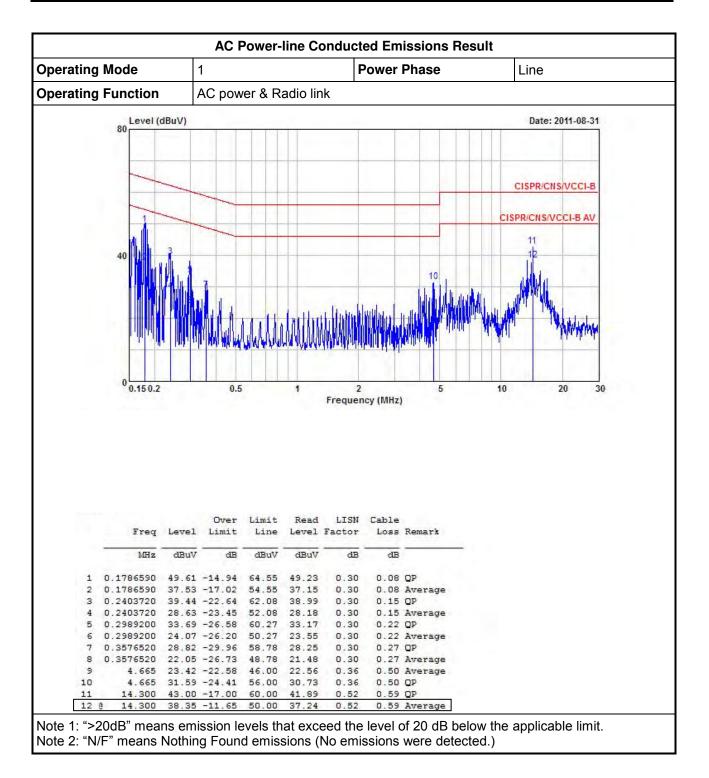

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth (EBW) Limit

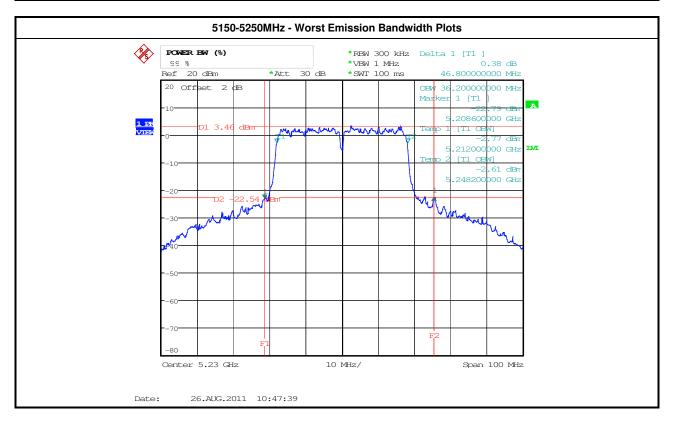
Emission Bandwidth Limit						
UNII Devices						
For the 5.15-5.25 GHz band, N/A						
For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.725-5.85 GHz band, 6 dB emission bandwidth \geq 500kHz.						
2.0.0 Macauring Instruments						

3.2.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

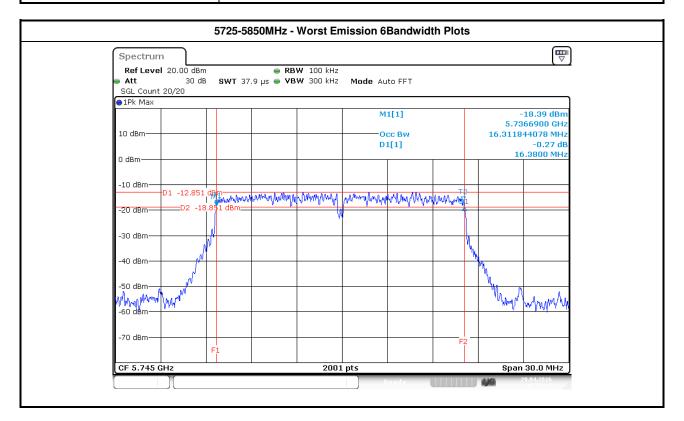
3.2.3 Test Procedures

	Test Method									
\boxtimes	For the emission bandwidth shall be measured using one of the options below:									
	\boxtimes	Refer as FCC KDB 789033, clause C for EBW and clause D for OBW measurement.								
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
		Refer as IC RSS-Gen, clause 6.6 for bandwidth testing.								
\boxtimes	For conducted measurement.									
		The EUT supports single transmit chain and measurements performed on this transmit chain port 1.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\boxtimes	The EUT supports multiple transmit chains using options given below:								
	Option 1: Multiple transmit chains measurements need to be performed on one transmit chains (antenna outputs). All measurement had be performed on transm									
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								



3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth


UNII Emission Bandwidth Result (5150-5250MHz band)										
Condit	ion			Emission Bandwidth (MHz)						
Modulation Mode	N	Freq.		99% Bandwidtl	ı	2	26dB Bandwidt	h		
modulation mode	Ν _{τx}	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 1	Chain- Port 2	Chain- Port 3		
11a	1	5180	17.00	-	-	24.20	-	-		
11a	1	5200	17.10	-	-	25.10	-	-		
11a	1	5240	17.10	-	-	24.80	-	-		
HT20	3	5180	17.70	17.60	17.70	20.80	20.00	22.10		
HT20	3	5200	17.70	17.60	17.80	20.50	20.00	22.50		
HT20	3	5240	17.70	17.60	17.70	20.30	20.20	22.00		
HT40	3	5190	36.00	36.00	36.00	40.00	40.00	40.60		
HT40	3	5230	36.00	36.00	36.20	40.00	40.00	46.80		
Resu	lt				Com	plied				

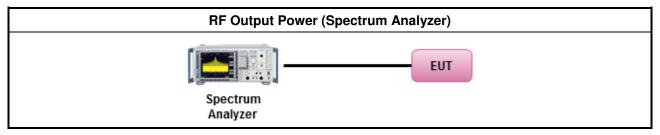
UNII Emission Bandwidth Result (5725-5850MHz band)										
Condit	ion			Emission Bandwidth (MHz)						
Modulation Mode	N	Freq.		99% Bandwidtl	ı		6dB Bandwidth	ı		
modulation mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 2	Chain- Port 3	Chain- Port 1	Chain- Port 2	Chain- Port 3		
11a	1	5745	16.31	-	-	16.38	-	-		
11a	1	5785	16.31	-	-	16.38	-	-		
11a	1	5825	16.35	-	-	16.39	-	-		
HT20	3	5745	17.43	17.42	17.43	17.35	17.29	17.55		
HT20	3	5785	17.42	17.48	17.45	17.53	17.56	17.55		
HT20	3	5825	17.36	17.48	17.45	17.32	17.55	17.55		
HT40	3	5755	35.62	35.54	35.58	35.40	35.40	34.84		
HT40	3	5795	35.62	35.62	35.66	35.40	35.04	34.96		
Resu	lt				Com	plied				

3.3 RF Output Power

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit								
UNI	UNII Devices								
\boxtimes	For the 5.15-5.25 GHz band:								
		Outdoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$. e.i.r.p. at any elevation angle above 30 degrees ≤ 125 mW [21dBm]							
	\boxtimes	Indoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6)							
		Point-to-point AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W If G_{TX} > 23 dBi, then P_{Out} = 30 – (G_{TX} – 23).							
		Mobile or Portable Client: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.							
	250	the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then $f = 24 - (G_{TX} - 6)$.							
	of 2	the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser 50 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If $G_{TX} > 6$ dBi, then $f = 24 - (G_{TX} - 6)$.							
\boxtimes	For	the 5.725-5.85 GHz band:							
	\boxtimes	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6).							
		Point-to-point systems (P2P): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W.							
		naximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi.							

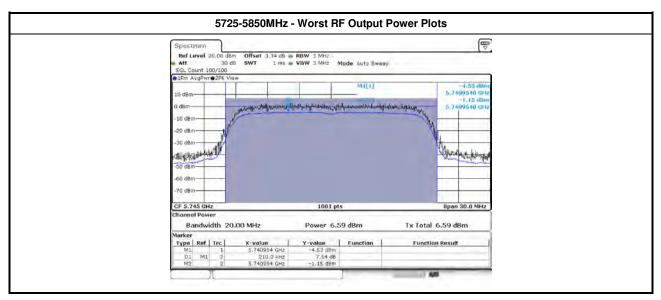
3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method
\square	Мах	imum Conducted Output Power
	[dut	y cycle ≥ 98% or external video / power trigger]
	\square	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)
	duty	cycle < 98% and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)
	Wid	eband RF power meter and average over on/off periods with duty factor
		Refer as FCC KDB 789033, clause E Method PM (using an RF average power meter).
\square	For	conducted measurement.
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG

3.3.4 Test Setup



Maximum Conducted (Average) Output Power (5150-5250MHz band)								
		Freq.		Output Po	ower (dBm)		Antenna Gain (dBi)	
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 1	Chain Port 1	Sum Chain		Power Limit
11a	1	5180	11.57	-	-	11.57	4.00	24.00
11a	1	5200	11.76	-	-	11.76	4.00	24.00
11a	1	5240	11.65	-	-	11.65	4.00	24.00
HT20	3	5180	11.12	10.97	10.79	15.73	3.43	24.00
HT20	3	5200	10.78	11.58	10.89	15.87	3.43	24.00
HT20	3	5240	10.74	11.47	10.45	15.68	3.43	24.00
HT40	3	5190	10.54	11.24	11.44	15.86	3.43	24.00
HT40	3	5230	10.39	11.36	11.59	15.91	3.43	24.00
Resu			•	•	Complied			

3.3.5 Test Result of Maximum Conducted Output Power

	Maximum Conducted (Average) Output Power (5725-5850MHz band)							
		F	Output Power (dBm)				Antonio Osia	
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 1	Chain Port 1	Sum Chain	Antenna Gain (dBi)	Power Limit
11a	1	5745	6.09	-	-	6.09	4.00	30.00
11a	1	5785	5.60	-	-	5.60	4.00	30.00
11a	1	5825	5.51	-	-	5.51	4.00	30.00
HT20	3	5745	6.59	4.93	4.20	10.13	3.43	30.00
HT20	3	5785	6.00	4.34	4.19	9.69	3.43	30.00
HT20	3	5825	5.51	3.63	4.09	9.26	3.43	30.00
HT40	1	5755	6.43	4.69	3.99	9.93	3.43	30.00
HT40	3	5795	6.27	3.95	4.09	9.68	3.43	30.00
Resu					Complied			

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

	Peak Power Spectral Density Limit								
UN	UNII Devices								
\boxtimes	⊠ For the 5.15-5.25 GHz band:								
		Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.							
		Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.							
		Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 17 - (G_{TX} - 23)$.							
		Mobile or Portable Client: the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6).							
		the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, n PPSD= 11 - (G _{TX} - 6).							
		the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, n PPSD= 11 - (G _{TX} - 6).							
\boxtimes	For	the 5.725-5.85 GHz band:							
		Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= 30 – ($G_{TX} - 6$).							
		Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 30 dBm/500kHz.							
pov	ver sł	peak power spectral density that he same method as used to determine the conducted output nall be used to determine the power spectral density. And power spectral density in dBm/MHz e maximum transmitting antenna directional gain in dBi.							

3.4.2 Measuring Instruments

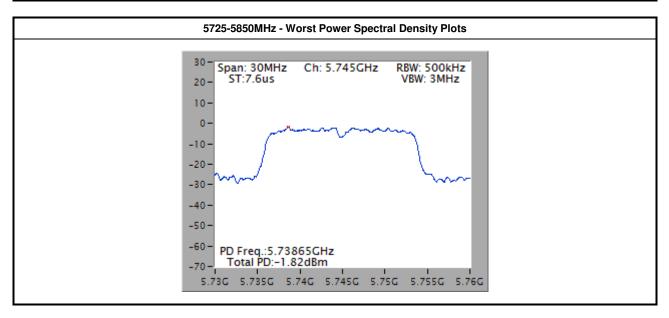
Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

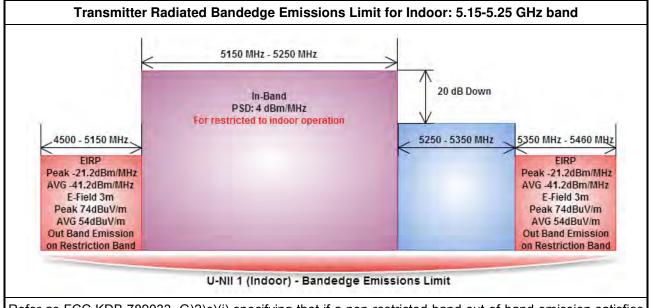
		Test Method							
	output power shall be used to determine the peak power spectral density and use the peak search function on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density shall be measured using below options:								
	\boxtimes	Refer as FCC KDB 789033, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth							
	[duty	/ cycle ≥ 98% or external video / power trigger]							
	\boxtimes	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).							
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)							
	duty	cycle < 98% and average over on/off periods with duty factor							
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).							
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)							
\square	For	conducted measurement.							
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
	\boxtimes	The EUT supports multiple transmit chains using options given below:							
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.							
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: PPSD _{total} = PPSD ₁ + PPSD ₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG							
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.							

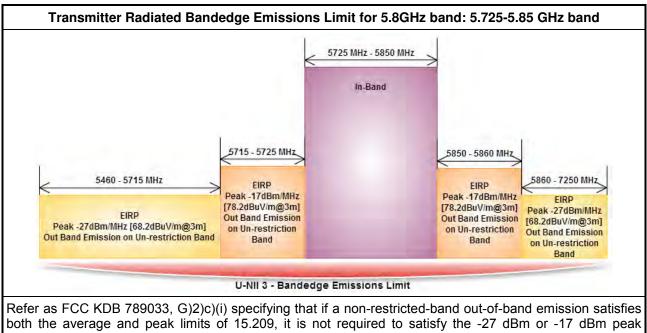
3.4.4 Test Setup

Power Spectral Density					
	EUT				
Spectrum Analyzer					


3.4.5 Test Result of Peak Power Spectral Density

	Peak Power Spectral Density Result (5150-5250MHz band)								
Modulation Mode	ation Mode N _{TX} Freq. (MHz)		Peak Power Spectral Density (dBm)	PSD Limit	Antenna Gain (dBi)				
11a	1	5180	2.13	11.00	4.00				
11a	1	5200	1.14	11.00	4.00				
11a	1	5240	0.80	11.00	4.00				
HT20	3	5180	3.44	8.80	8.20				
HT20	3	5200	3.77	8.80	8.20				
HT20	3	5240	3.18	8.80	8.20				
HT40	3	5190	2.69	8.80	8.20				
HT40	3	5230	2.86	8.80	8.20				
Resu	lt			Complied					


		Peak P	ower Spectral Density Result (5725-5850MHz band)	
Modulation Mode	Ντχ	Freq. (MHz)	Peak Power Spectral Density (dBm/500kHz)	PSD Limit	Antenna Gain (dBi)
11a	1	5745	-6.24	30.00	4.00
11a	1	5785	-5.80	30.00	4.00
11a	1	5825	-5.93	30.00	4.00
HT20	3	5745	-1.82	27.80	8.20
HT20	3	5785	-3.38	27.80	8.20
HT20	3	5825	-3.70	27.80	8.20
HT40	3	5755	-5.32	27.80	8.20
HT40	3	5795	-4.43	27.80	8.20
Resu	ult		·	Complied	



3.5 Transmitter Radiated Bandedge Emissions

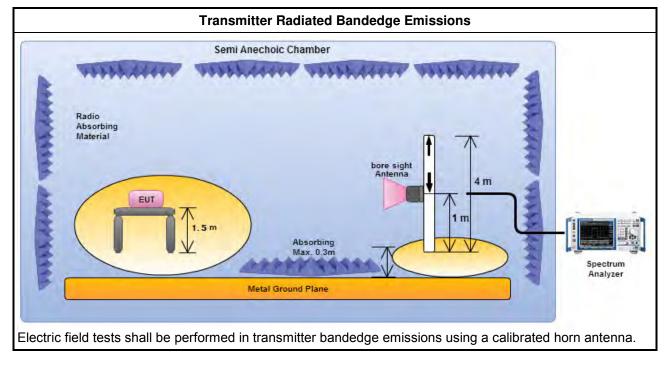
3.5.1 Transmitter Radiated Bandedge Emissions Limit

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

	Test Method
\square	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
	Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
	If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
	Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
	Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
	If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
	Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
	Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
\square	For the transmitter unwanted emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
	Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
	Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
	⊠ Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \ge 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
	Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\square	For the transmitter bandedge emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)3)d) for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	Refer as ANSI C63.10, clause 6.10 for band-edge testing.
	Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.
\bowtie	For radiated measurement, refer as ANSI C63.10, clause 6.6. Test distance is 3m.
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions (with Antenna)

Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11a	1	5180	3	5101.400	57.48	74	5127.000	43.68	54	V
11a	1	5240	3	5373.000	57.28	74	5359.800	44.07	54	V
HT20	3	5180	3	5118.400	58.50	74	5148.400	44.78	54	V
HT20	3	5240	3	5364.600	57.87	74	5359.800	44.18	54	V
HT40	3	5190	3	5147.080	66.21	74	5149.940	52.62	54	V
HT40	3	5230	3	5132.400	58.81	74	5125.800	44.84	54	V

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Pol.
11a	1	5745	3	5690.740	58.75	68.2	V
11a	1	5745	3	5720.560	58.85	78.2	V
11a	1	5825	3	5893.960	58.78	68.2	V
11a	1	5825	3	5856.790	57.46	78.2	V
HT20	3	5745	3	5701.030	60.40	68.2	V
HT20	3	5745	3	5720.560	63.84	78.2	V
HT20	3	5825	3	5898.370	58.99	68.2	V
HT20	3	5825	3	5850.280	58.26	78.2	V
HT40	3	5755	3	5711.880	65.24	68.2	V
HT40	3	5755	3	5724.620	67.33	78.2	V
HT40	3	5795	3	5911.300	58.48	68.2	V
HT40	3	5795	3	5853.400	57.98	78.2	V

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emiss	sions below 1 GHz and re	estricted band emissions a	bove 1GHz limit
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

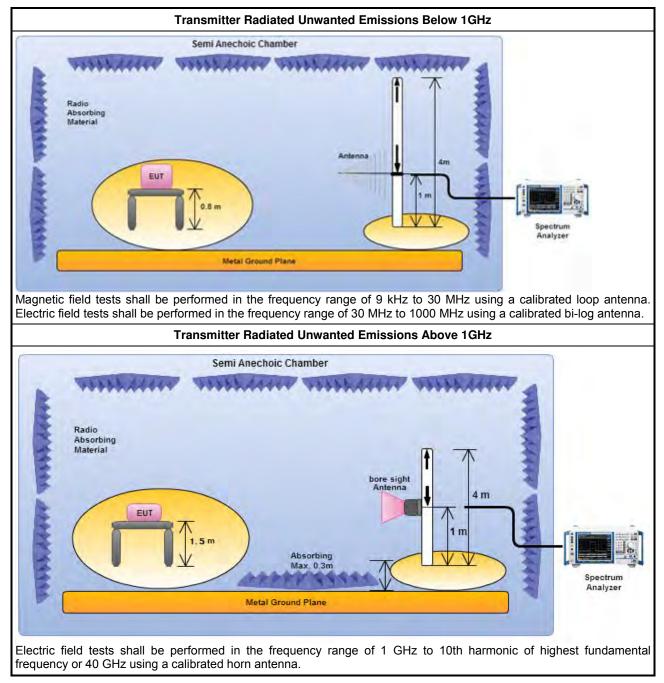
	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.825 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.825 5.835 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]
performed in the need in the needed	by be performed at a distance other than the limit distance provided they are not ear field and the emissions to be measured can be detected by the measuremen performing measurements at a distance other than that specified, the results sha the specified distance using an extrapolation factor of 20 dB/decade (inverse of

linear distance for field-strength measurements, inverse of linear distance-squared for power-density

3.6.2 Measuring Instruments

measurements).

Refer a test equipment and calibration data table in this test report.

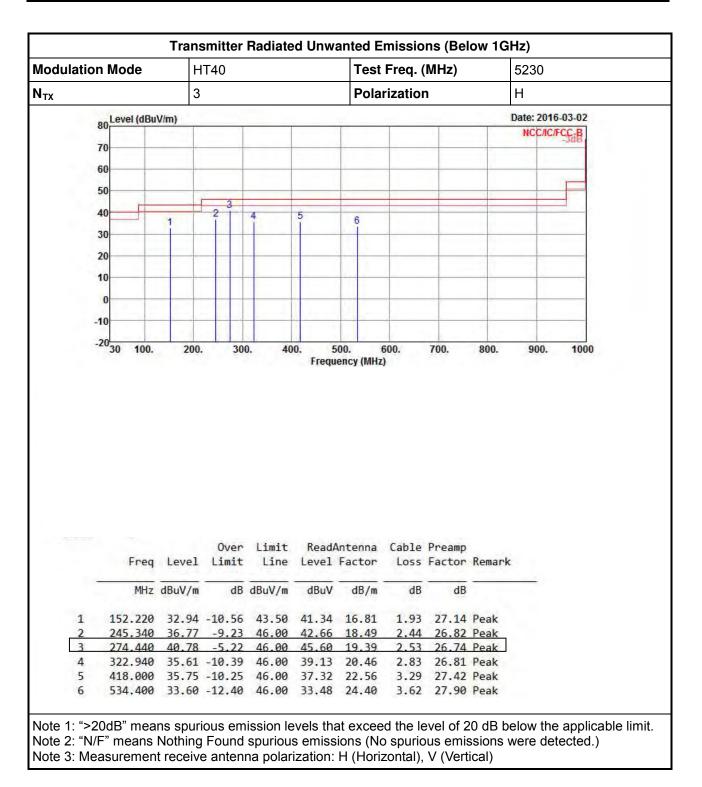


3.6.3 Test Procedures

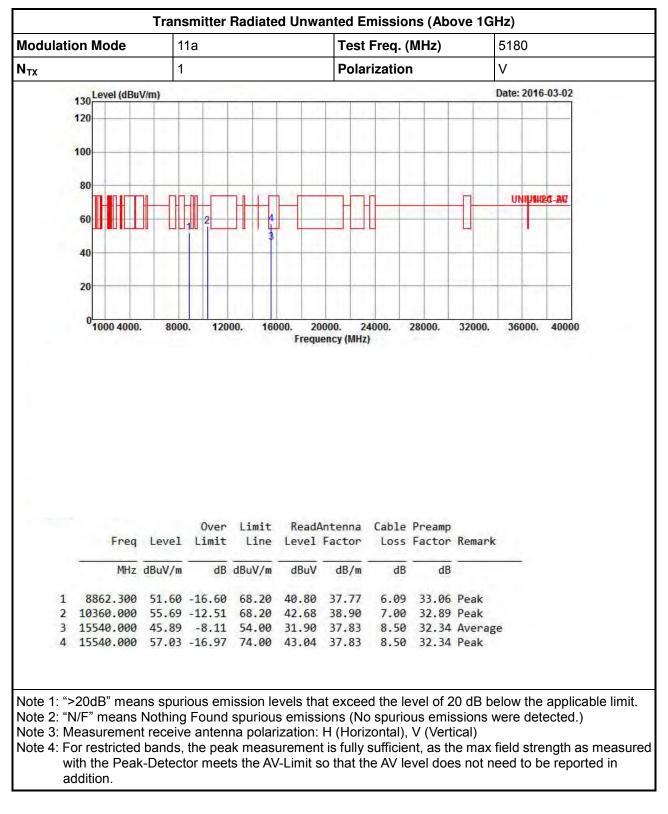
		Test Method
	perfe equi abov are i be e dista	isurements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement ipment. Measurements shall not be performed at a distance greater than 30 m for frequencies ve 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less impractical. When performing measurements at a distance other than that specified, the results shall extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density asurements).
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\square	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\square	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\bowtie	For	radiated measurement.
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 5 GHz, test distance is 3m; For 5 GHz to 40 GHz, test distance is 3m.
\square	The	any unwanted emissions level shall not exceed the fundamental emission level.
\bowtie		implitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

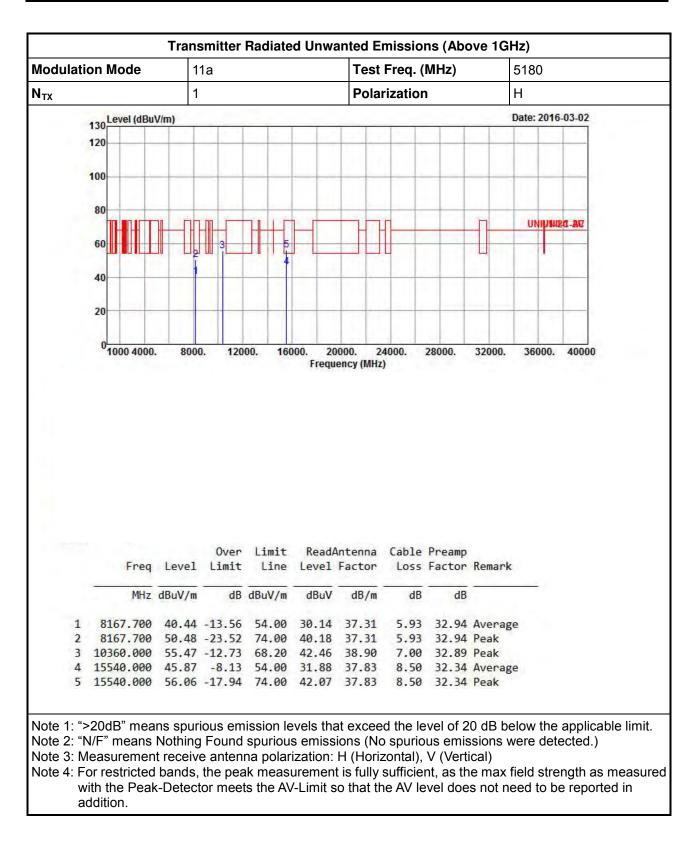
3.6.4 Test Setup

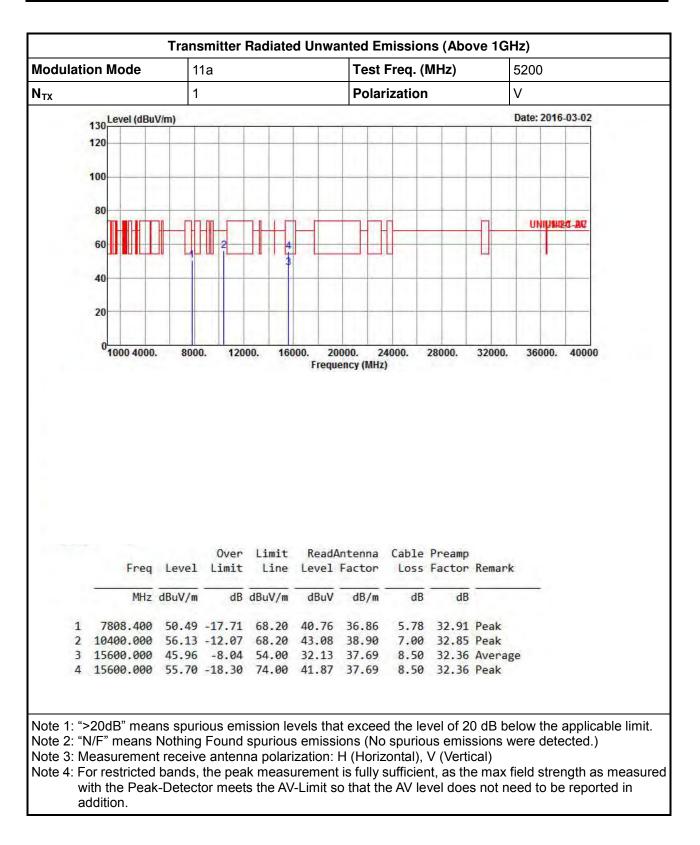
3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)

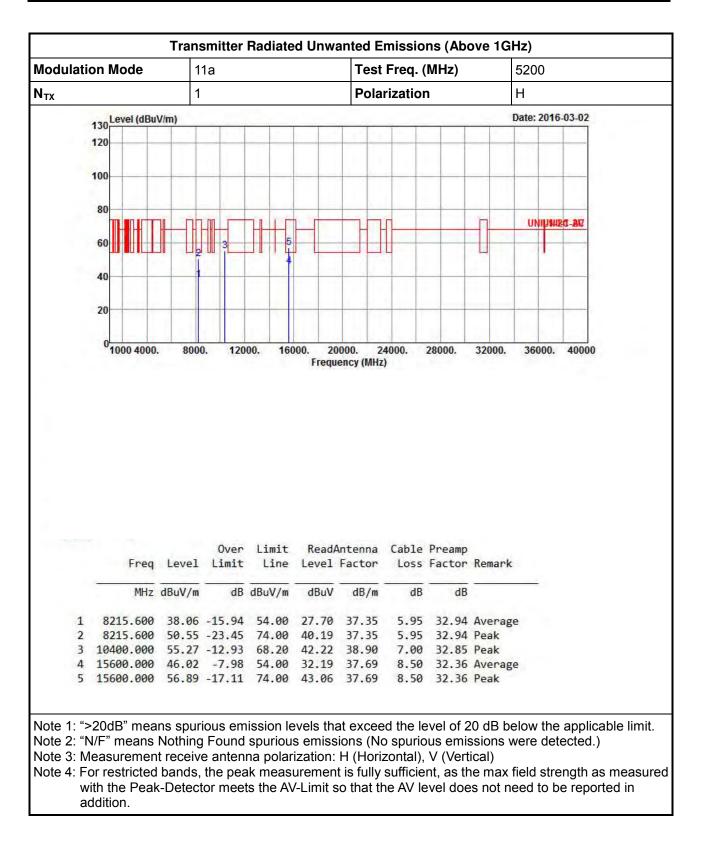

All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

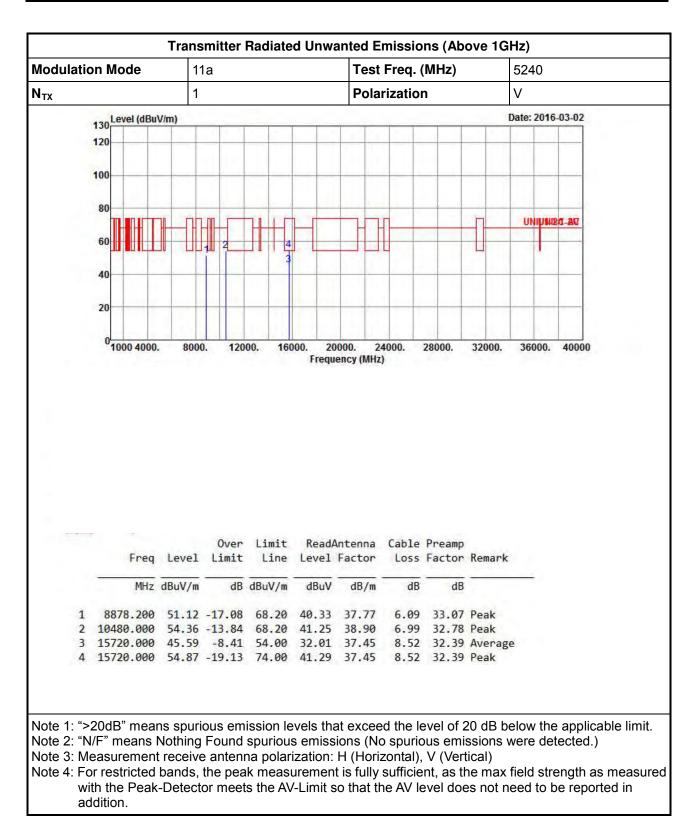
	on Mode	H	IT40			Test	Freq. (MHz)		5230	
x		3				Pola	rizatio	า		V	
	80 Level (dBu	V/m)							-		016-03-02
										NCC	IC/FCC-B
	70										
	60					1	-		_		
	50								-		_
	40										
	40	2	2		4	-	6		-		
	30	Í	3			1	Ť	7	- 11		
	20					-		-			
	10										
	0		1			1					
	-10					-	-			-	
	-20 <mark>30 100.</mark>	200.	. 300	0. 40		500. iency (MHz	600. :)	700.	800.	900). 100
	-20 <mark>30 100.</mark>	200.	. 30	0. 40				700.	800.	900). 100
	-20 30 100.	200.	Over		Frequ)		800.	900). 100
			Over		Frequ Read/	ency (MHz Antenna) Cable	Preamp). 100
	Freq		Over Limit	Limit	Frequ Read/	Antenna Factor) Cable	Preamp Factor). 100
1	Freq	Level dBuV/m	Over Limit dB	Limit Line	Frequ Read/ Leve1 dBuV	Antenna Factor dB/m	Cable Loss 	Preamp Factor dB	Remark). 100
1 2	Freq	Level dBuV/m 27.54	Over Limit dB -12.46	Limit Line dBuV/m 40.00	Frequ Read/ Leve1 dBuV	Antenna Factor dB/m 25.01	Cable Loss dB 0.79	Preamp Factor	Remark). 100
2 3	Freq MHz 30.970 132.820 270.560	Level dBuV/m 27.54 29.20 28.51	Over Limit dB -12.46 -14.30 -17.49	Limit Line dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 29.30 36.23 33.39	Antenna Factor dB/m 25.01 18.40 19.35	Cable Loss dB 0.79 1.79 2.52	Preamp Factor dB 27.56 27.22 26.75	Remark Peak Peak Peak). 100
2 3 4	Freq MHz 30.970 132.820 270.560 456.800	Level dBuV/m 27.54 29.20 28.51 31.37	Over Limit dB -12.46 -14.30 -17.49 -14.63	Limit Line dBuV/m 40.00 43.50 46.00 46.00	Read/ Level dBuV 29.30 36.23 33.39 32.54	Antenna Factor dB/m 25.01 18.40 19.35 23.04	Cable Loss dB 0.79 1.79 2.52 3.41	Preamp Factor dB 27.56 27.22 26.75 27.62	Remark Peak Peak Peak Peak Peak). 100
2 3	Freq MHz 30.970 132.820 270.560	Level dBuV/m 27.54 29.20 28.51 31.37 28.83	Over Limit dB -12.46 -14.30 -17.49 -14.63 -17.17	Limit Line dBuV/m 40.00 43.50 46.00 46.00 46.00	Read/ Level dBuV 29.30 36.23 33.39 32.54 28.75	Antenna Factor dB/m 25.01 18.40 19.35	Cable Loss dB 0.79 1.79 2.52 3.41 3.61	Preamp Factor dB 27.56 27.22 26.75	Remark Peak Peak Peak Peak Peak Peak). 100

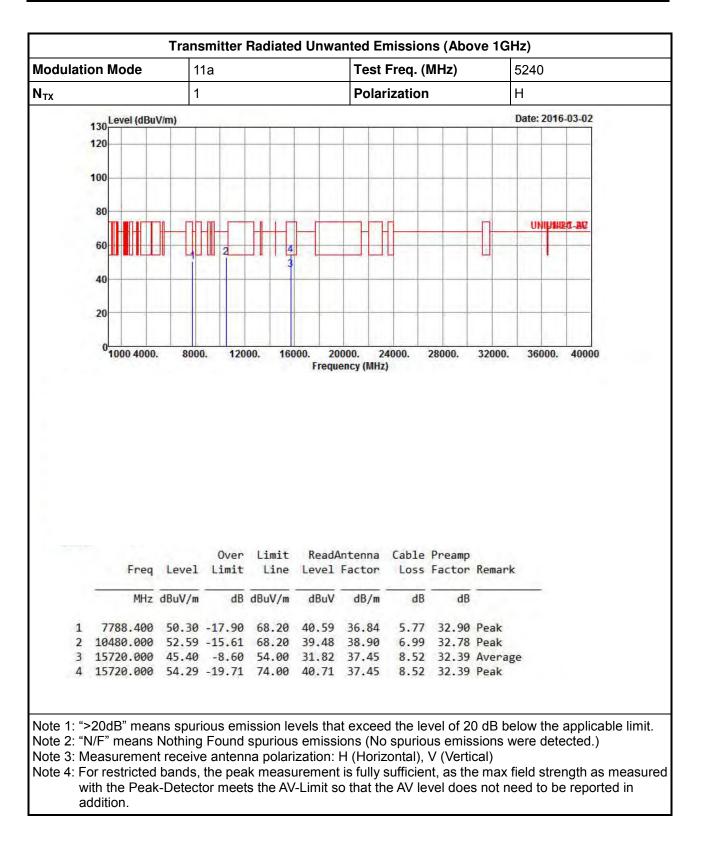

3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

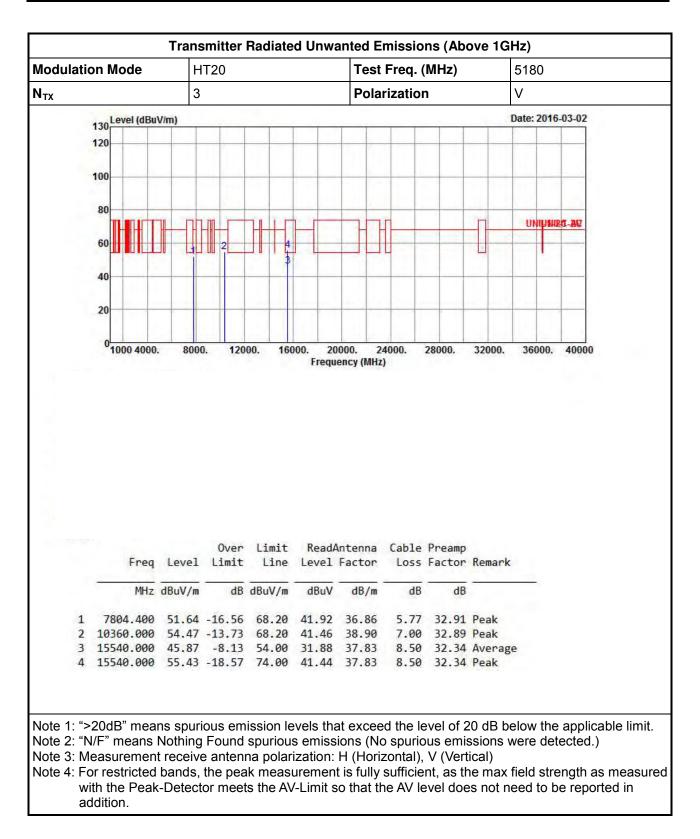


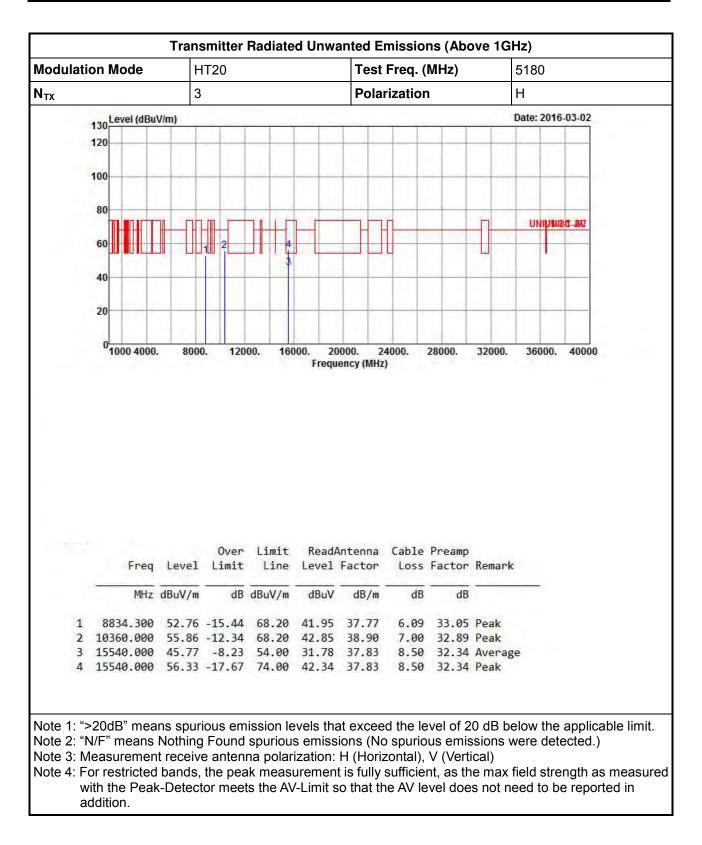

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5150-5250MHz

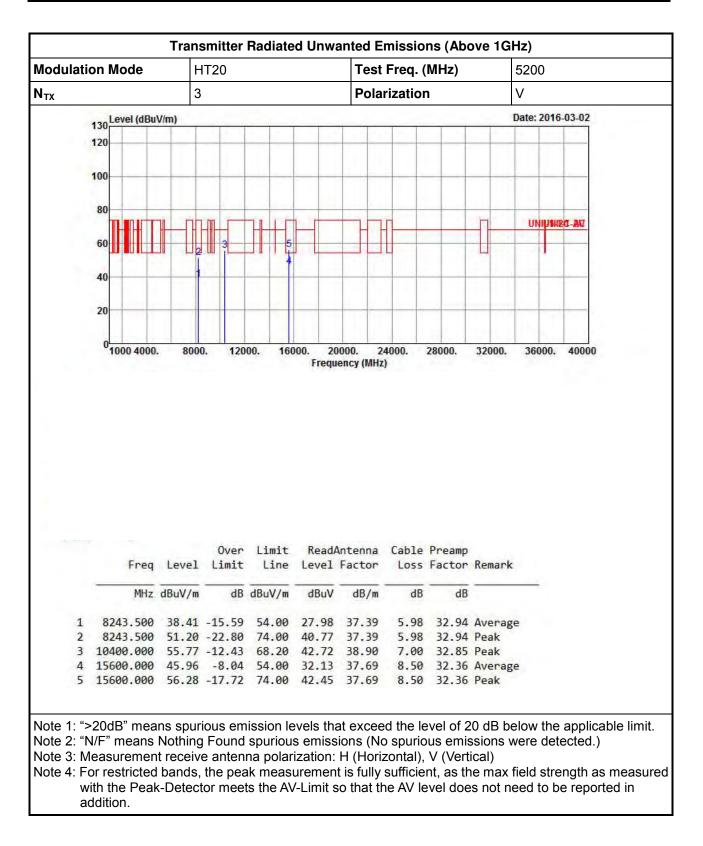


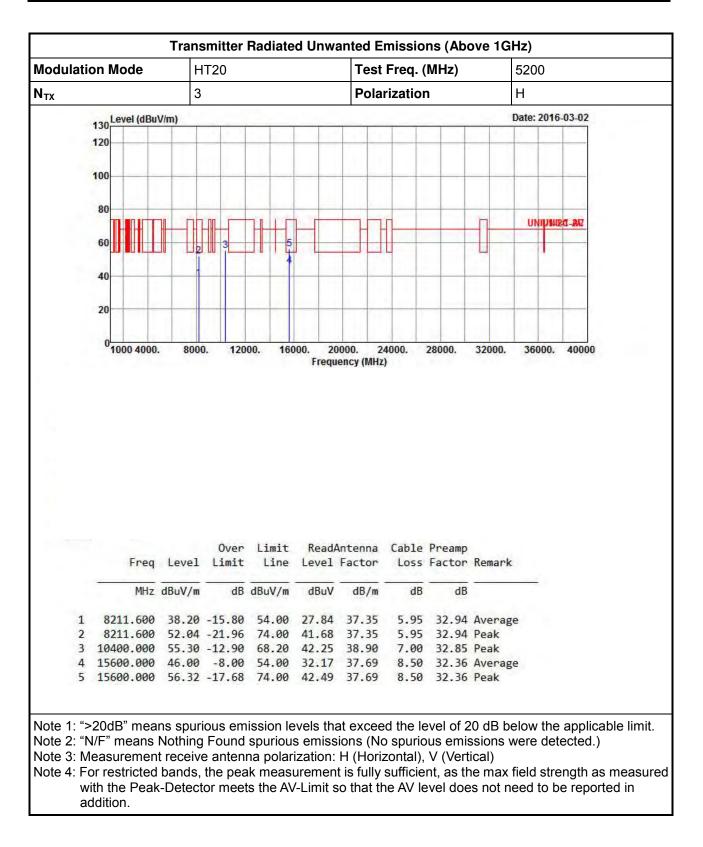


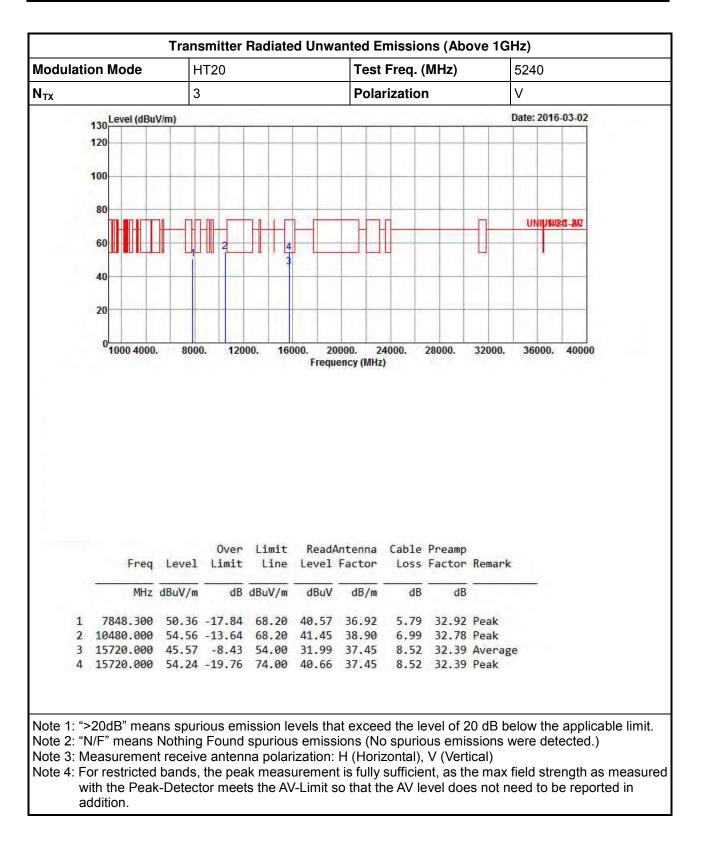


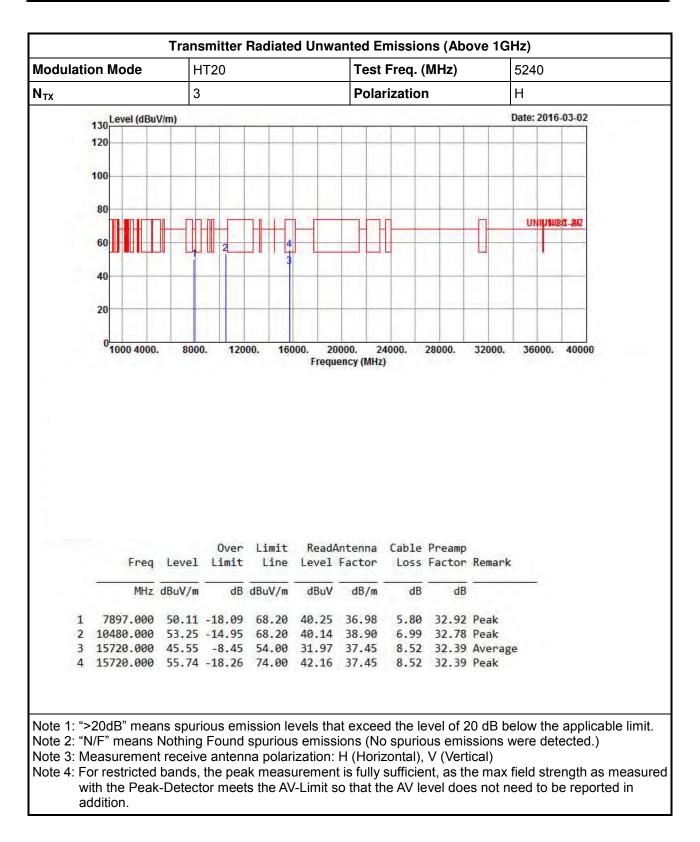


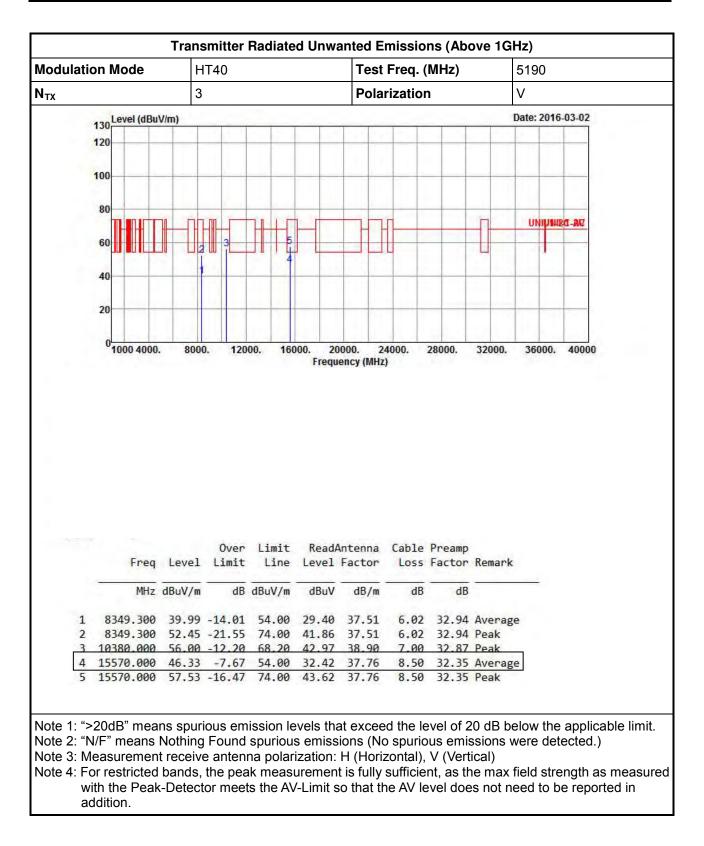


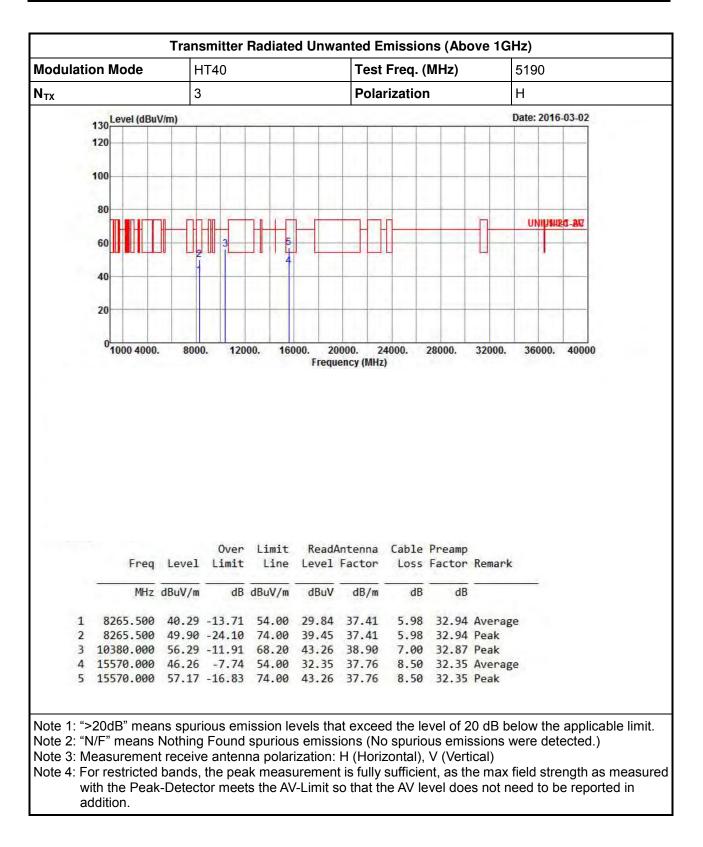


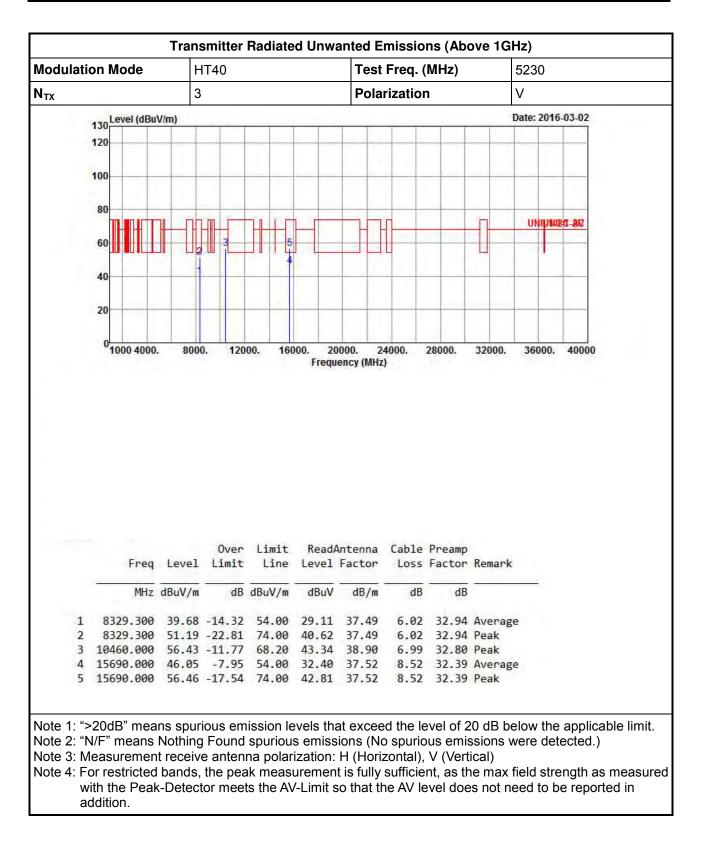


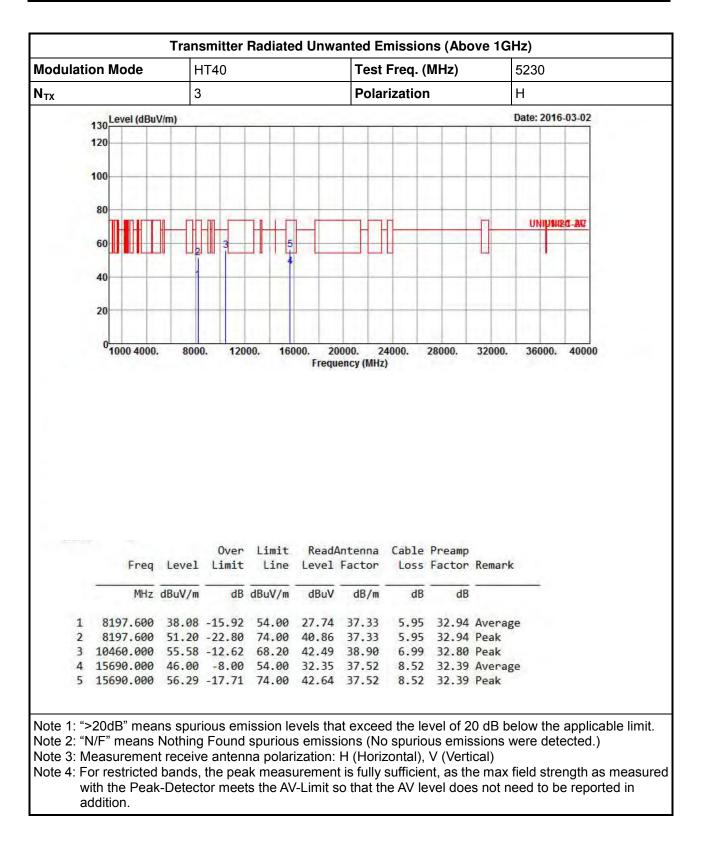


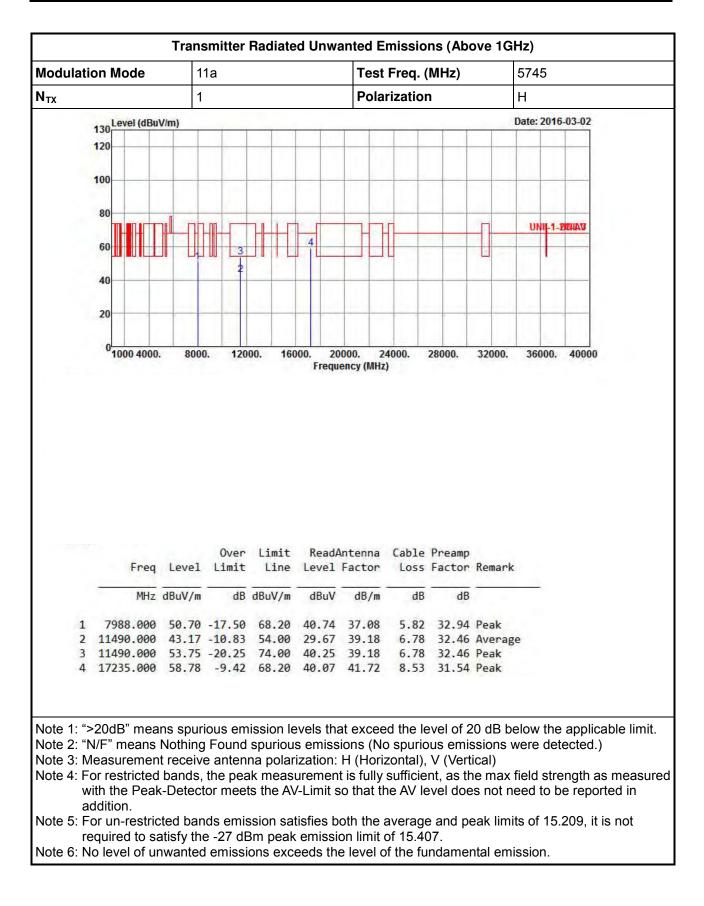


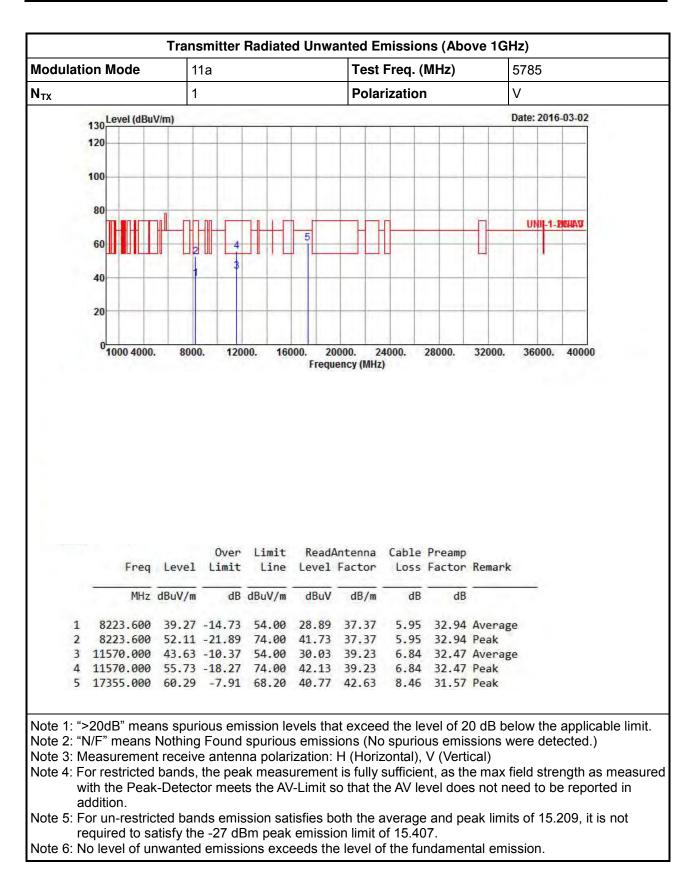




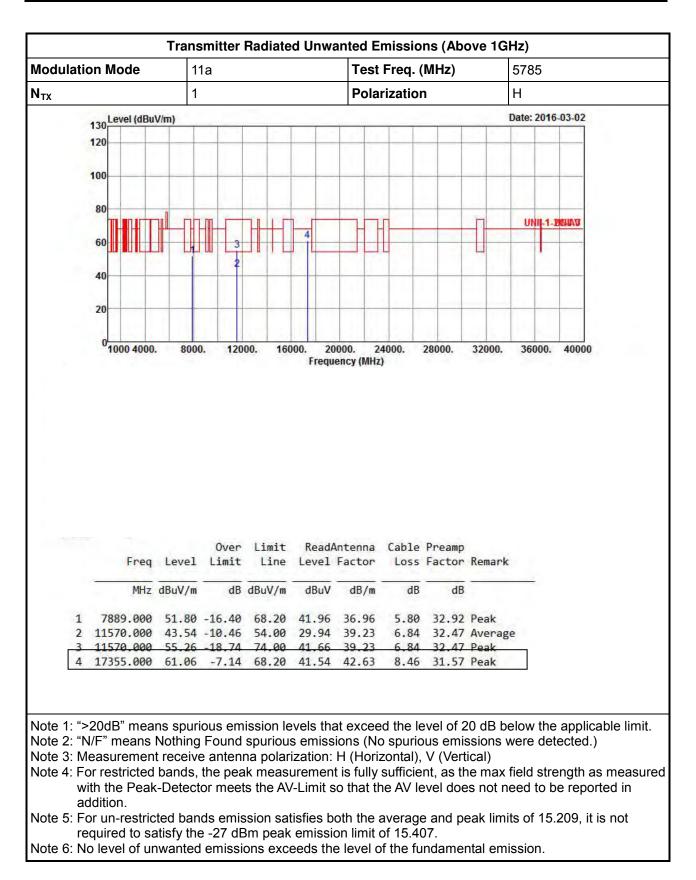


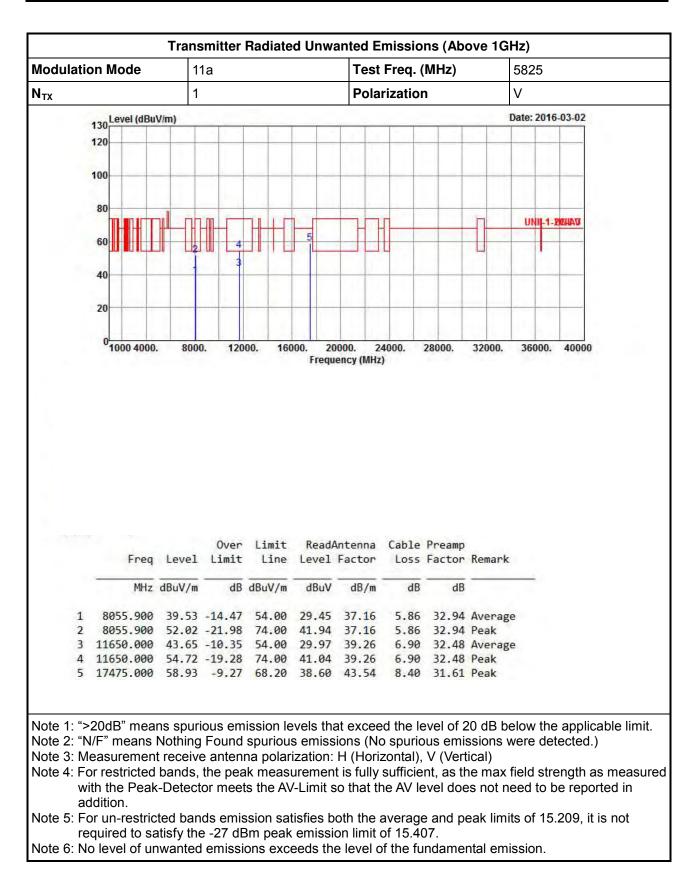


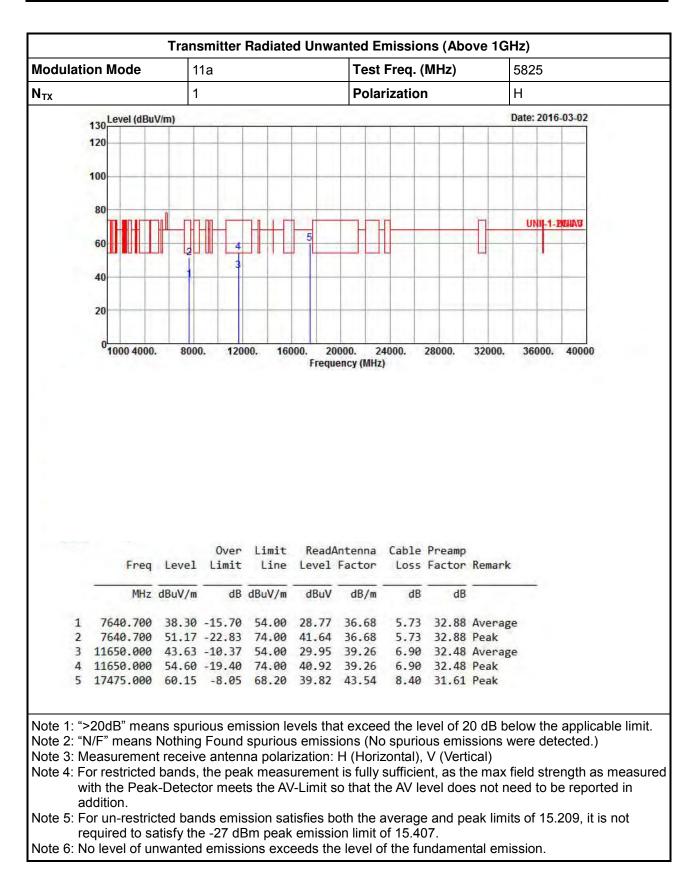


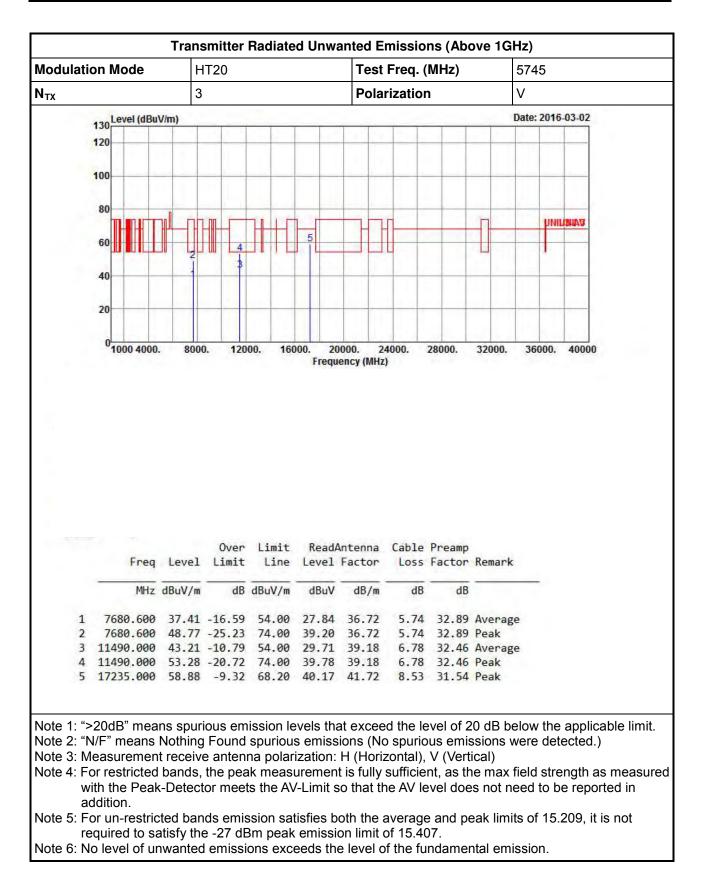

3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5725-5850MHz

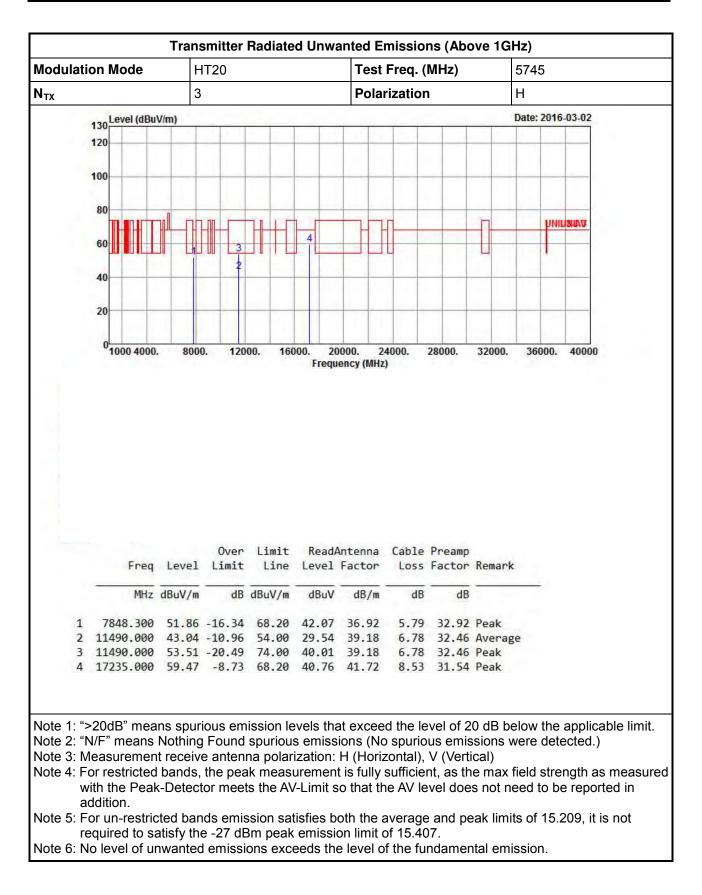
NTX 1 Polarization V 100 Date: 2016-03-02 Date: 2016-03-02 Date: 2016-03-02 100 000 000 000 000 000 00 00 000 000 000 000 000 00 00 000 1000 1000 2000 2400 28000 32000 40000 00 000 12000 16000 20000 24000 28000 32000 40000 1000 4000 8000 12000 16000 20000 24000 28000 32000 40000 Freq Level Limit Line Level Factor Loss Factor Remark Miz dBuV/m dB dBuV/m dBuV dB/m dB dB 1 7784.400 51.38 16.82 68.20 41.67 36.84 5.77 32.90 Peak 1 1490.000 53.45 -20.55 74.00 39.55 39.18 6.78 32.46 Average </th <th></th> <th>on Mode</th> <th>1⁻</th> <th>1a</th> <th></th> <th></th> <th>Test</th> <th>Freq. (</th> <th>(MHz)</th> <th>:</th> <th>5745</th> <th></th>		on Mode	1 ⁻	1a			Test	Freq. ((MHz)	:	5745	
$\frac{10^{-1}}{10^{-1}} \frac{1}{10^{-1}} \frac{1}{10^$	N _{TX}		1				Pola	rizatio	n	`	V	
$\frac{10^{-1}}{10^{-1}} \frac{10^{-1}}{10^{-1}} 10$		120 Level (dBu	V/m)					-	_	D	ate: 2016	5-03-02
$\frac{100}{000} \underbrace{1000}{000} \underbrace{1000}{00} \underbrace{1000}{0} 1000$		1.20						1.00				
$\frac{1}{17784.400} \underbrace{\text{Over Limit ReadAntenna Cable Preamp}_{\text{Hz} dBUV/m}}{\text{dB dBUV/m dBuV dB/m dB dB}}$ $\frac{1}{17784.400} \underbrace{\text{51.38}}_{13.8} \underbrace{-16.82}_{16.82} \underbrace{68.20}_{14.67} \underbrace{41.67}_{36.84} \underbrace{5.77}_{32.90} \underbrace{732.90}_{\text{Peak}}$		120										
$\frac{1}{17784.400} \underbrace{\text{Over Limit ReadAntenna Cable Preamp}_{\text{Hz} dBUV/m}}{\text{dB dBUV/m dBuV dB/m dB dB}}$ $\frac{1}{17784.400} \underbrace{\text{51.38}}_{13.8} \underbrace{-16.82}_{16.82} \underbrace{68.20}_{14.67} \underbrace{41.67}_{36.84} \underbrace{5.77}_{32.90} \underbrace{732.90}_{\text{Peak}}$		100										
$\frac{1}{1} \frac{1}{7784.400} \frac{1}{51.38} \frac{1}{-16.32} \frac{1}{68.20} \frac{1}{41.67} \frac{1}{36.84} \frac{1}{5.77} \frac{1}{32.90} \frac{1}{2.90} \frac$		100										
$\frac{1}{1} \frac{1}{7784.400} \frac{1}{51.38} \frac{1}{-16.32} \frac{1}{68.20} \frac{1}{41.67} \frac{1}{36.84} \frac{1}{5.77} \frac{1}{32.90} \frac{1}{2.90} \frac$		80								_		
20 0			ul nh		TILE					Π	UNI-1-	EIGHAN
20 0		60				4						
20 0								4			1	
20 0		40		2								
Over Limit ReadAntenna Cable Preamp Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV dBuV dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 1 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak												
0 1000 4000. 8000. 12000. 16000. 20000. 24000. 28000. 32000. 36000. 40000 Frequency (MHz) Ver Limit ReadAntenna Cable Preamp Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 1 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak		20										
Frequency (MHz) Freq Over Limit ReadAntenna Cable Preamp Image: Freq Level Limit Line Level Factor Loss Factor Remark Image: MHz MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak												
Frequency (MHz) Freq Over Limit ReadAntenna Cable Preamp Image: Freq Level Limit Line Level Factor Loss Factor Remark Image: MHz MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak		0										
Over Limit ReadAntenna Cable Preamp Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak		1000 4000		. 120	00. 100			S.C. S. S. S. S.	20000.	52000.	50000.	40000
Freq Level Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dBuV dB/m dB dB dB 1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak												
1 7784.400 51.38 -16.82 68.20 41.67 36.84 5.77 32.90 Peak 2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak												
2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak		Freq	Level							Remark		
2 11490.000 43.09 -10.91 54.00 29.59 39.18 6.78 32.46 Average 3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak				Limit	Line	Level	Factor	Loss	Factor	Remark		
3 11490.000 53.45 -20.55 74.00 39.95 39.18 6.78 32.46 Peak	1	MHz	dBuV/m	Limit	Line dBuV/m	Level dBuV	Factor 	Loss dB	Factor dB			
4 17235.000 57.89 -10.31 68.20 39.18 41.72 8.53 31.54 Peak		MHz 7784.400	dBuV/m 51.38	Limit dB -16.82	Line dBuV/m 68.20	Level dBuV 41.67	Factor dB/m 36.84	Loss dB 5.77	Factor dB 32.90	Peak		
	2	MHz 7784.400 11490.000	dBuV/m 51.38 43.09	Limit dB -16.82 -10.91	Line dBuV/m 68.20 54.00	Level dBuV 41.67 29.59	Factor dB/m 36.84 39.18	Loss dB 5.77 6.78	Factor dB 32.90 32.46	Peak Average		
	2 3	MHz 7784.400 11490.000 11490.000	dBuV/m 51.38 43.09 53.45	Limit dB -16.82 -10.91 -20.55	Line dBuV/m 68.20 54.00 74.00	Level dBuV 41.67 29.59 39.95	Factor dB/m 36.84 39.18 39.18	Loss dB 5.77 6.78 6.78	Factor dB 32.90 32.46 32.46	Peak Average Peak		
	2 3	MHz 7784.400 11490.000 11490.000	dBuV/m 51.38 43.09 53.45	Limit dB -16.82 -10.91 -20.55	Line dBuV/m 68.20 54.00 74.00	Level dBuV 41.67 29.59 39.95	Factor dB/m 36.84 39.18 39.18	Loss dB 5.77 6.78 6.78	Factor dB 32.90 32.46 32.46	Peak Average Peak		
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit	2 3 4	MHz 7784.400 11490.000 11490.000 17235.000	dBuV/m 51.38 43.09 53.45 57.89	Limit dB -16.82 -10.91 -20.55 -10.31	Line dBuV/m 68.20 54.00 74.00 68.20	Level dBuV 41.67 29.59 39.95 39.18	Factor dB/m 36.84 39.18 39.18 41.72	Loss dB 5.77 6.78 6.78 8.53	Factor dB 32.90 32.46 32.46 31.54	Peak Average Peak Peak		applicable limi
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected)	2 3 4 Note 1: ">	MHz 7784.400 11490.000 11490.000 17235.000	dBuV/m 51.38 43.09 53.45 57.89 ns spuri	Limit dB -16.82 -10.91 -20.55 -10.31	Line dBuV/m 68.20 54.00 74.00 68.20	Level dBuV 41.67 29.59 39.95 39.18 evels that	Factor dB/m 36.84 39.18 39.18 41.72	Loss dB 5.77 6.78 6.78 8.53 ed the le	Factor dB 32.90 32.46 32.46 31.54	Peak Average Peak Peak	low the	
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)	2 3 4 Note 1: "> Note 2: "N	MHz 7784.400 11490.000 11490.000 17235.000 >20dB" mea	dBuV/m 51.38 43.09 53.45 57.89 ns spuri Nothing	Limit dB -16.82 -10.91 -20.55 -10.31 ious em	Line dBuV/m 68.20 54.00 74.00 68.20 tission le spuriou	Level dBuV 41.67 29.59 39.95 39.18 evels that s emiss	Factor dB/m 36.84 39.18 39.18 41.72 at exceed sions (N	Loss dB 5.77 6.78 6.78 8.53 ed the le o spurio	Factor dB 32.90 32.46 32.46 31.54 evel of 2 bus emis	Peak Average Peak Peak 20 dB be ssions w	low the	
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)	2 3 4 Note 1: "> Note 2: "N Note 3: M	MHz 7784.400 11490.000 11490.000 17235.000 >20dB" mea V/F" means leasuremen	dBuV/m 51.38 43.09 53.45 57.89 ns spuri Nothing t receive	Limit dB -16.82 -10.91 -20.55 -10.31 ious em Found e anten	Line dBuV/m 68.20 54.00 74.00 68.20 nission le spuriou na polar	Level dBuV 41.67 29.59 39.95 39.18 evels that s emiss ization:	Factor dB/m 36.84 39.18 39.18 41.72 at exceed sions (N H (Hori	Loss dB 5.77 6.78 6.78 8.53 ed the le o spurio zontal),	Factor dB 32.90 32.46 32.46 31.54 evel of 2 ous emis V (Vert	Peak Average Peak Peak 20 dB be ssions w ical)	low the ere def	tected.)
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)	2 3 4 Note 1: "> Note 2: "N Note 3: M Note 4: Fo	MHz 7784.400 11490.000 11490.000 17235.000 >20dB" mea V/F" means leasuremen or restricted	dBuV/m 51.38 43.09 53.45 57.89 ns spuri Nothing t receive bands,	Limit dB -16.82 -10.91 -20.55 -10.31 ious em Found e anten the pea	Line dBuV/m 68.20 54.00 74.00 68.20 iission le spuriou na polar ak meas	Level dBuV 41.67 29.59 39.95 39.18 evels that s emisse ization: uremen	Factor dB/m 36.84 39.18 39.18 41.72 at exceed sions (N H (Hori t is fully	Loss dB 5.77 6.78 6.78 8.53 ed the le o spuric zontal), sufficie	Factor dB 32.90 32.46 32.46 31.54 evel of 2 bus emis V (Vert ent, as th	Peak Average Peak Peak 20 dB be ssions w ical) ne max fi	low the ere def eld stre	tected.) ength as measu
 Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measu with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in addition. 	2 3 4 Note 1: "> Note 2: "N Note 3: M Note 4: Fe W ad	MHz 7784.400 11490.000 11490.000 17235.000 >20dB" mea V/F" means leasuremen or restricted vith the Peak ddition.	dBuV/m 51.38 43.09 53.45 57.89 ns spuri Nothing t receive bands, c-Detect	Limit dB -16.82 -10.91 -20.55 -10.31 ious em Found e anten the pea	Line dBuV/m 68.20 54.00 74.00 68.20 tission le spuriou na polar ak meas ts the AV	Level dBuV 41.67 29.59 39.95 39.18 evels that s emisses ization: urement /-Limit s	Factor dB/m 36.84 39.18 39.18 39.18 41.72 at exceed sions (N H (Hori t is fully so that the	Loss dB 5.77 6.78 6.78 8.53 ed the le o spuric zontal), sufficie he AV le	Factor dB 32.90 32.46 32.46 31.54 evel of 2 bus emis ov (Vert ent, as the evel doe	Peak Average Peak Peak 20 dB be ssions w ical) ne max fi ss not ne	low the ere def eld stre ed to b	tected.) ength as measu be reported in
Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: For restricted bands, the peak measurement is fully sufficient, as the max field strength as measu with the Peak-Detector meets the AV-Limit so that the AV level does not need to be reported in	2 3 4 Note 1: "> Note 2: "N Note 3: M Note 3: M Note 4: Fe W ac Note 5: Fe	MHz 7784.400 11490.000 11490.000 17235.000 >20dB" mea V/F" means leasuremen or restricted vith the Peak ddition. or un-restric	dBuV/m 51.38 43.09 53.45 57.89 ns spuri Nothing t receive bands, c-Detect	Limit dB -16.82 -10.91 -20.55 -10.31 ious em Found e anten the pea or meet ds emis	Line dBuV/m 68.20 54.00 74.00 68.20 tission le spuriou na polar ak meas ts the AV	Level dBuV 41.67 29.59 39.95 39.18 evels that s emissions ization: urement /-Limit s	Factor dB/m 36.84 39.18 39.18 39.18 41.72 at exceed sions (N H (Hori t is fully so that the	Loss dB 5.77 6.78 6.78 8.53 ed the le o spuric zontal), sufficie he AV le average	Factor dB 32.90 32.46 32.46 31.54 evel of 2 bus emis ov (Vert ent, as the evel doe e and po	Peak Average Peak Peak 20 dB be ssions w ical) ne max fi ss not ne	low the ere def eld stre ed to b	tected.) ength as measu be reported in

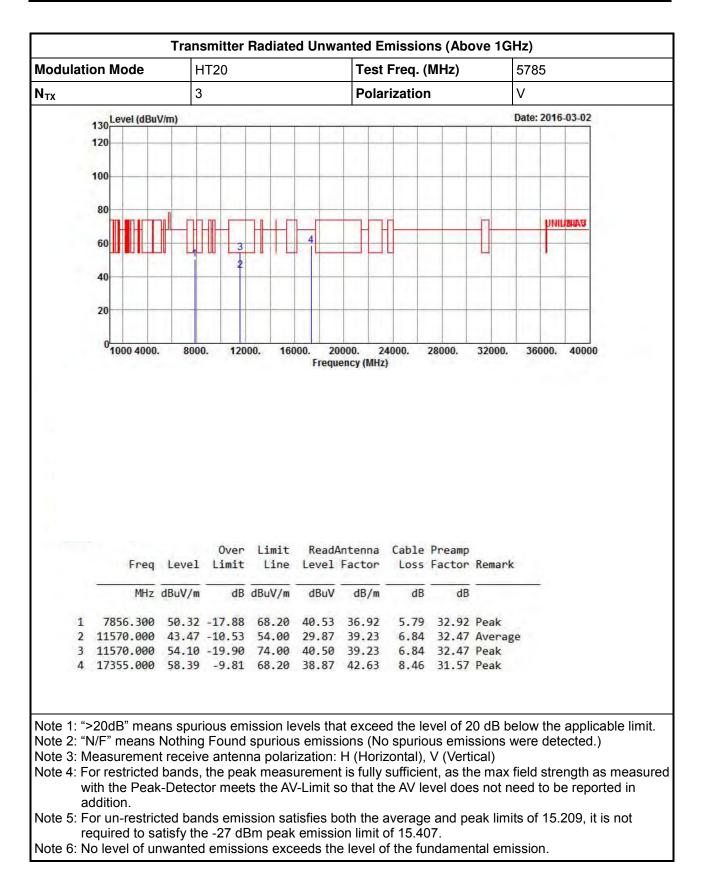


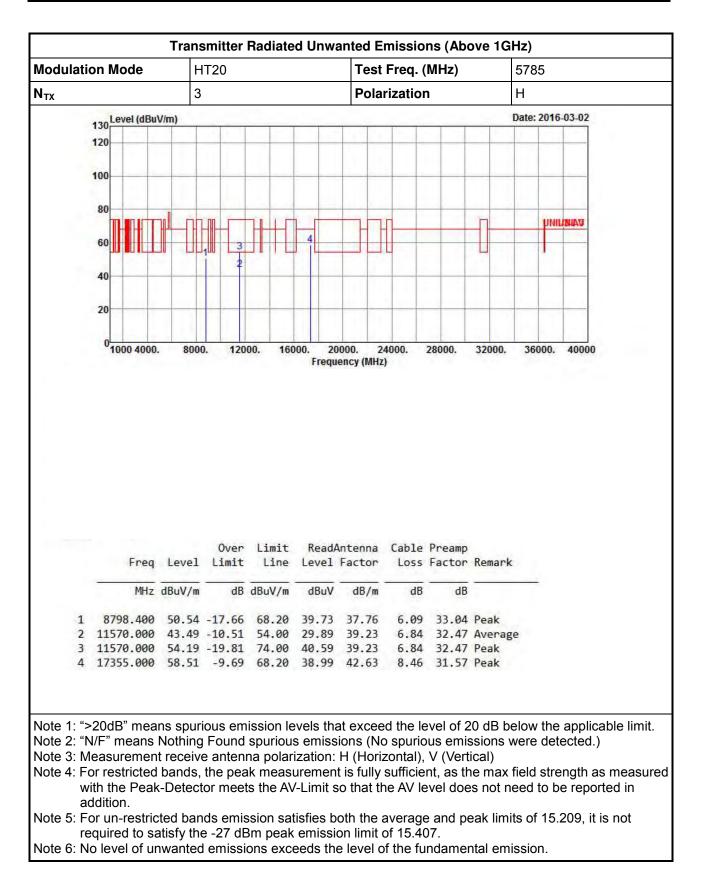


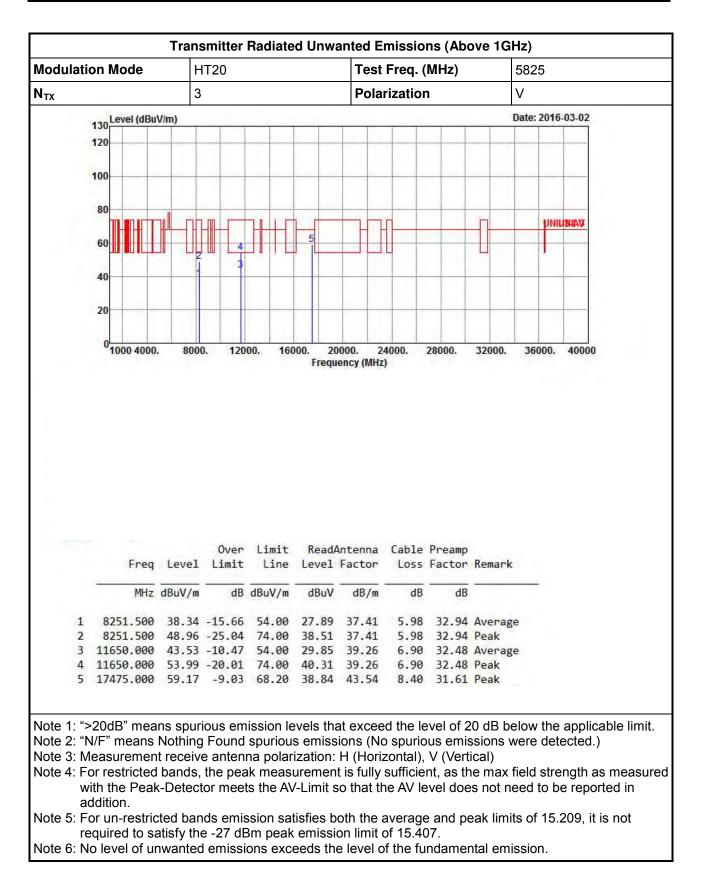


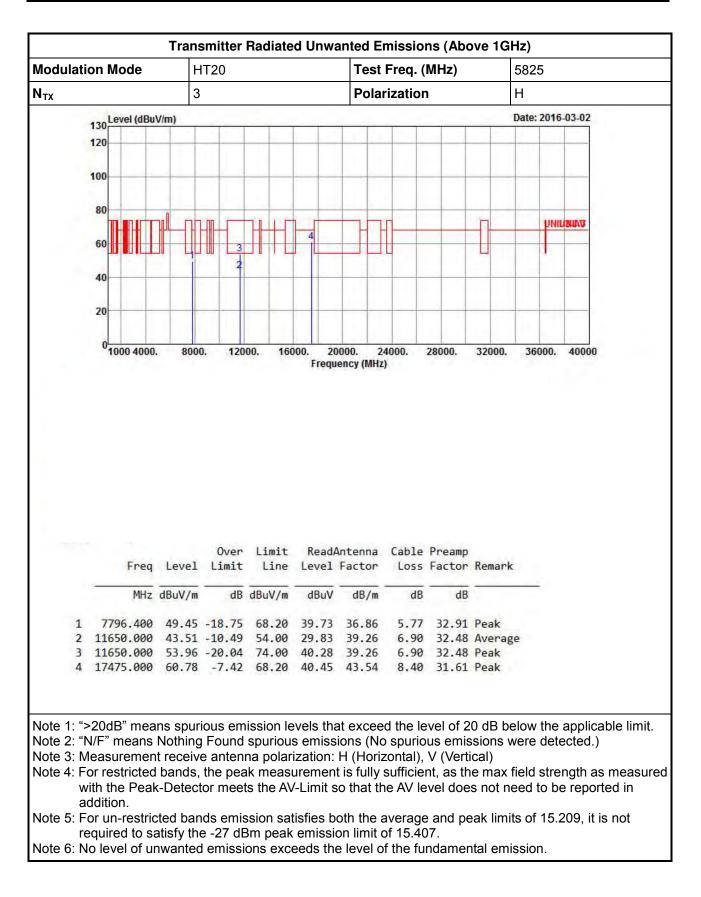


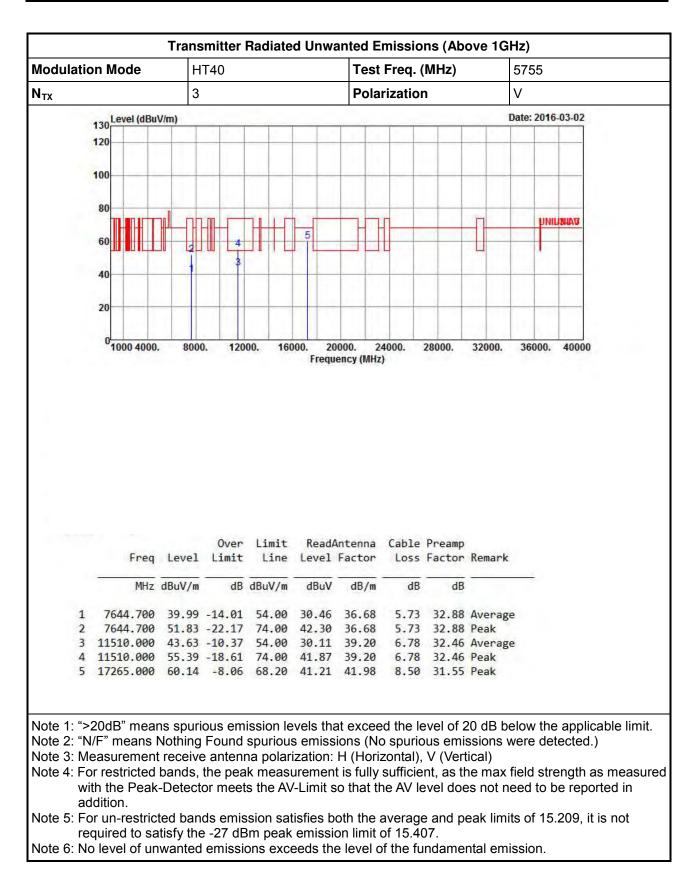


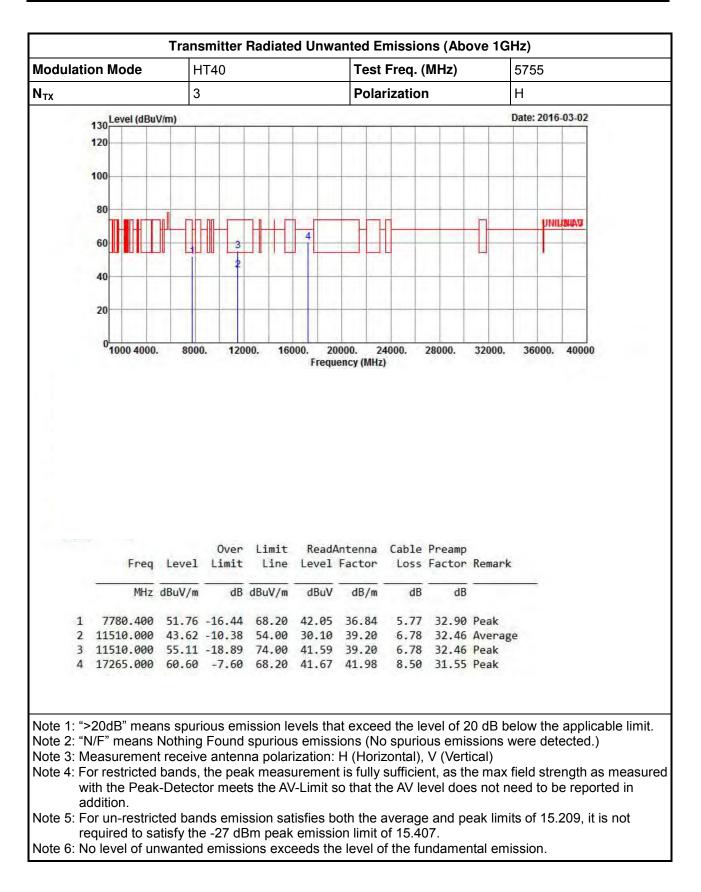


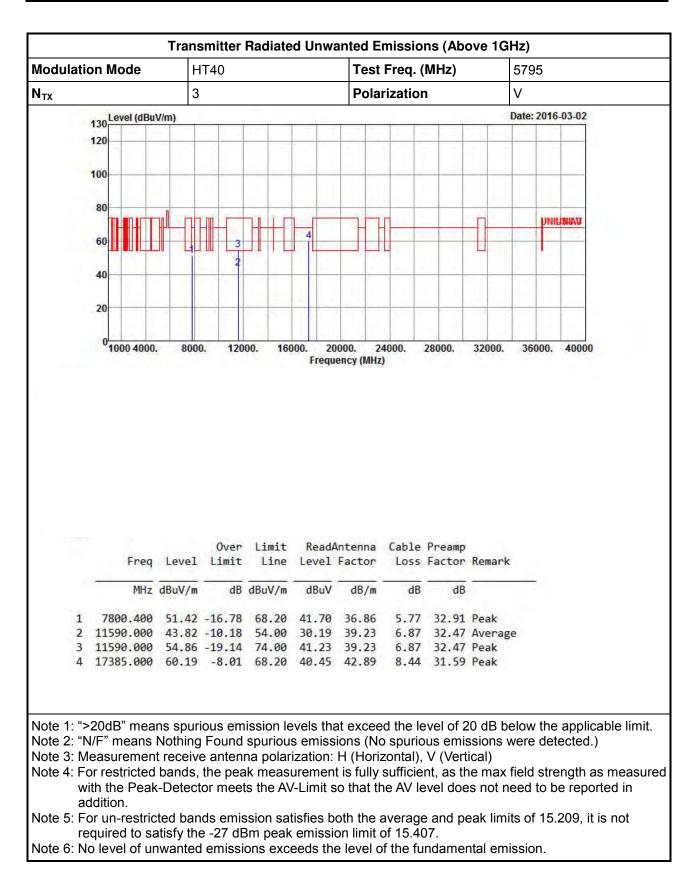


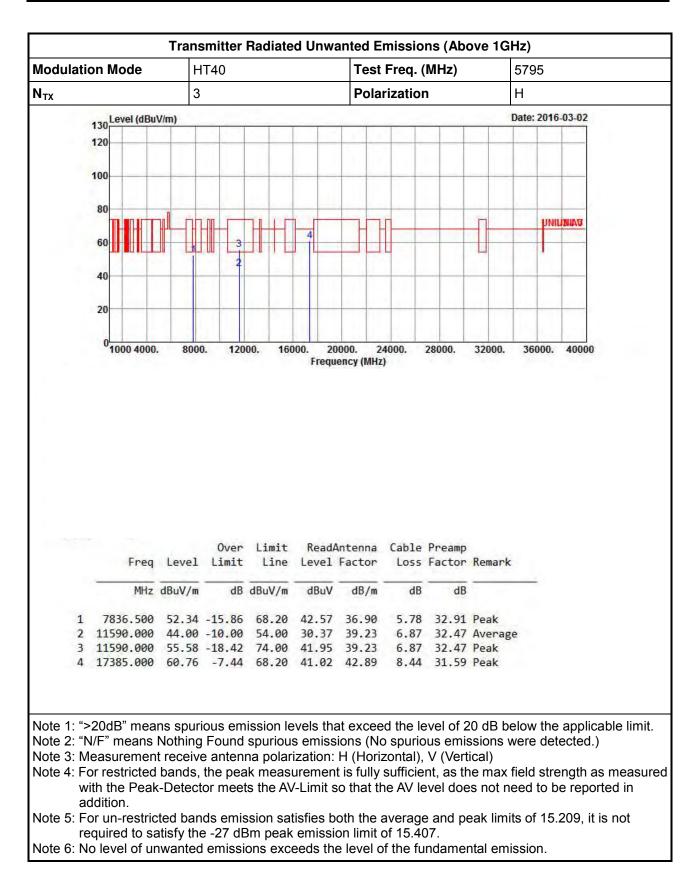








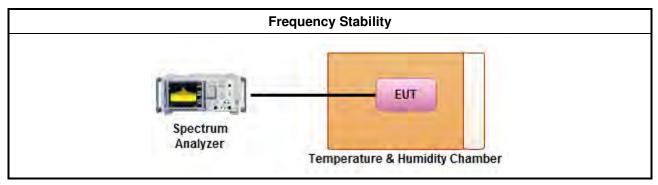




3.7 Frequency Stability

3.7.1 Frequency Stability Limit

	Frequency Stability Limit						
UNI	II Devices						
	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.						
LE-	LE-LAN Devices						
\square	N/A						
IEE	E Std. 802.11n-2009						
	The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band and \pm 25 ppm maximum for the 2.4 GHz band.						


3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.7.3 Test Procedures

	Test Method							
\square	Refe	er as ANSI C63.10, clause 6.8 for frequency stability tests						
	\boxtimes	Frequency stability with respect to ambient temperature						
	\boxtimes	Frequency stability when varying supply voltage						
\square	For	conducted measurement.						
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)						
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.						

3.7.4 Test Setup

3.7.5 Test Result of Frequency Stability

				Frequency St	ability Result				
Мо	de				Frequency St	ability (ppm)			
O an diti an			Test Frequ	ency (MHz)			Frequency S	tability (ppm)	
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min	0 min	2 min	5 min	10 min
T20°CVmax	5180	5744.89276	5744.89190	5744.89190	5744.89146	-18.6667	-18.8164	-18.8164	-18.8930
T20°CVmin	5180	5744.89190	5744.89233	5744.89233	5744.89103	-18.8164	-18.7415	-18.7415	-18.9678
T50°CVnom	5180	5744.93401	5744.93444	5744.93444	5744.93488	-11.4865	-11.4117	-11.4117	-11.3351
T40°CVnom	5180	5744.90492	5744.90535	5744.90622	5744.90622	-16.5500	-16.4752	-16.3238	-16.3238
T30°CVnom	5180	5744.89233	5744.89276	5744.89320	5744.89363	-18.7415	-18.6667	-18.5901	-18.5152
T20°CVnom	5180	5744.89276	5744.89146	5744.89146	5744.89103	-18.6667	-18.8930	-18.8930	-18.9678
T10°CVnom	5180	5744.89711	5744.89711	5744.89667	5744.89624	-17.9095	-17.9095	-17.9861	-18.0609
T0°CVnom	5180	5744.90883	5744.90839	5744.90796	5744.90753	-15.8695	-15.9460	-16.0209	-16.0957
T-10°CVnom	5180	5744.92272	5744.92229	5744.92229	5744.92185	-13.4517	-13.5265	-13.5265	-13.6031
T-20°CVnom	5180	5744.93184	5744.93227	5744.93271	5744.93271	-11.8642	-11.7894	-11.7128	-11.7128
Limit	(ppm)			-			±	20	
Res	sult				Com	plied			

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 20, 2011	Apr. 19, 2012
LISN	MessTec	NNB-2/16Z	99041	9kHz ~ 30MHz	Mar. 10, 2011	Mar. 09, 2012
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	May 04, 2011	May 03, 2012
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9kHz ~ 30MHz	Apr. 21, 2011	Apr. 20, 2012
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	N/A

< AC Power-line Conducted Emissions >

< RF Conducted > (5150-5250MHz band)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSP 30	100023	9KHz ~ 30GHz	Mar. 15, 2011	Mar. 14, 2012
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jun. 03, 2011	Jun. 02, 2012
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	N/A	Oct. 22, 2010	Oct. 21, 2011
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 02, 2010	Dec. 01, 2011
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 02, 2010	Dec. 01, 2011
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jun. 07, 2011	Jun. 06, 2012
Power Sensor	Anritsu	MA2411B	0917017	300MHz~40GHz	Jan. 06, 2011	Jan. 05, 2012
Power Meter	Anritsu	ML2495A	0949003	300MHz~40GHz	Jan. 06, 2011	Jan. 05, 2012
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jun. 09, 2011	Jun. 08, 2012

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9kHz ~ 40GHz	May 06, 2015	May 05, 2016
Temp. and Humidity Chamber	Giant Force	GTH-225-20-S	MAB0103-001	-20 ~ 100 ℃	Jun. 12, 2015	Jun. 11, 2016
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Feb. 22, 2016	Feb. 21, 2017
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Feb. 22, 2016	Feb. 21, 2017
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Jul. 22, 2015	Jul. 21, 2016

<Radiation Emissions > (5150-5250MHz band)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSP40	100305/040	9 kHz ~ 40 GHz	Feb. 11, 2011	Feb. 10, 2012
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30 MHz ~ 1 GHz 3m	May 11, 2011	May 10, 2012
Amplifier	SCHAFFNER	COA9231A	18667	9 kHz ~ 2 GHz	Jan. 25, 2011	Jan. 24, 2012
Amplifier	Agilent	8449B	3008A02120	1 GHz ~ 26.5 GHz	Aug. 04, 2011	Aug. 03, 2012
Horn Antenna	ETS-LINDGREN	3117	00091920	1 GHz ~ 18 GHz	Nov. 11, 2010	Nov. 10, 2011
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz ~ 1 GHz	Mar. 07, 2011	Mar. 06, 2012
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1 GHz ~ 40 GHz	Mar. 07, 2011	Mar. 06, 2012
Bilog Antenna	SCHAFFNER	CBL61128	2723	30 MHz ~ 2 GHz	Oct. 16, 2010	Oct. 15, 2011
Turn Table	HD	DS 420	420/649/00	0 - 360 degree	N/A	N/A
Antenna Mast	HD	MA 240	240/559/00	1 m - 4 m	N/A	N/A
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	Jul. 29, 2010	Jul. 28, 2011

(5725-5850MHz band)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz ~ 1GHz 3m	Nov. 28, 2015	Nov. 27, 2016
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	1GHz ~ 18GHz 3m	Dec. 16, 2015	Dec. 15, 2016
Amplifier	HP	8447D	2944A08033	10kHz ~ 1.3GHz	May 11, 2015	May 10, 2016
Amplifier	Agilent	8449B	3008A02120	1GHz ~ 26.5GHz	Sep. 02, 2015	Sep. 01, 2016
Spectrum	R&S	FSV40	101513	9kHz ~ 40GHz	Feb. 16, 2016	Feb. 15, 2017
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30MHz ~ 1GHz	Sep. 18, 2015	Sep. 17, 2016
Horn Antenna	ETS · LINDGREN	3115	6741	1GHz ~ 18GHz	Jul. 15, 2015	Jul. 14, 2016
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 29, 2016	Jan. 28, 2017