

FCC PART 15.247 TEST REPORT

For

Inrico Technologies Co., Ltd

3/F, Building No.118, High Tech Industrial Park, 72 Guowei Road, Luohu District, Shenzhen, China

FCC ID: 2AIV6-2-S200

Report Type:

Original Report

Intelligent Two Way Radio

Report Number: SZGMA210719-29698E-RF-00B

Report Date: 2021-09-02

Alvin Huang

Reviewed By: Lab Manager

Prepared By: Bay Area Compliance Laboratories Corp. (Shenzhen)

1st Floor, East (3) Block, Laobing Building, Xingye Road, Baoan District, Shenzhen, Guangdong,

Sirm Many

P.R.C.

Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "★".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not

considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
EXTERNAL I/O CABLEBLOCK DIAGRAM OF TEST SETUP	10
SUMMARY OF TEST RESULTS	12
TEST EQUIPMENT LIST	13
FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE	15
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	16
APPLICABLE STANDARD	
Antenna Connector Construction	16
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	21
APPLICABLE STANDARD	21
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	_
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST DATA	

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	44
APPLICABLE STANDARD	44
TEST PROCEDURE	
Test Data	44
FCC §15.247(e) - POWER SPECTRAL DENSITY	50
APPLICABLE STANDARD	50
TEST PROCEDURE	50
Test Data	50

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Intelligent Two Way Radio
Tested Model	S200
Frequency Range	BLE: 2402-2480MHz Wi-Fi: 2412-2472MHz
Maximum Conducted Peak Output Power	BLE: 6.48dBm Wi-Fi: 11.68dBm
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM
Antenna Specification*	1.5dBi(provided by the applicant)
Voltage Range	DC5V from adapter or DC 3.8V From Battery
Date of Test	2021-07-31 to 2021-09-02
Sample serial number	SZGMA210719-29698E-RFA1-S1 SZGMA210719-29698E-RFA1-S2 (RF Conducted Test) (Assigned by BACL, Shenzhen)
Received date	2021-07-19
Sample/EUT Status	Good condition
Adapter information	Model: HJ-0502000W2-US Input: AC 100-240V, 50/60Hz, 0.3A Output: DC 5.0V, 2000mA

Report No.: SZGMA210719-29698E-RF-00B

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

FCC Part 15.247 Page 4 of 59

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.70dB
RF conducted to	est with spectrum	±1.4dB
AC Power Lines Conducted Emissions		±1.72dB
Emissions,	Below 1GHz	±4.40dB
Radiated	Above 1GHz	±4.60dB
Temp	erature	±1℃
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 1st Floor, East (3) Block, Laobing Building, Xingye Road, Baoan District, Shenzhen, Guangdong, P.R.C

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 27372.

FCC Part 15.247 Page 5 of 59

SYSTEM TEST CONFIGURATION

Description of Test Configuration

Wi-Fi

Report No.: SZGMA210719-29698E-RF-00B

Channel	Channel Frequency (MHz)		Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442	/	/

For 802.11b, 802.11g, 802.11n-HT20 mode, EUT was tested with Channel 1, 7 and 13

For 802.11n-HT40 mode, EUT was tested with Channel 3, 7 and 11

BLE

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

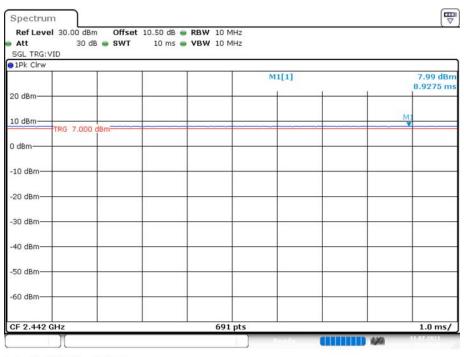
FCC Part 15.247 Page 6 of 59

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

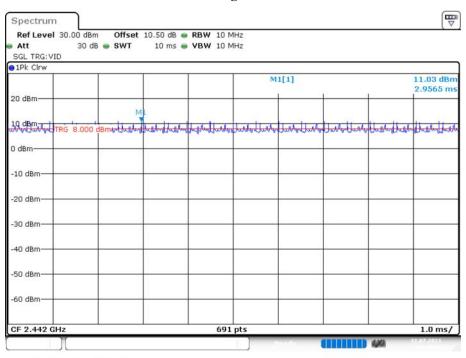
BLE & Wi-Fi test in the engineer mode.


The device was tested with the worst case was performed as below:

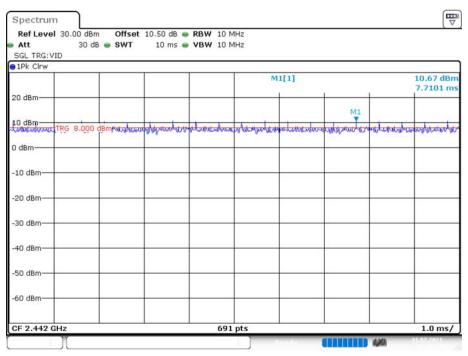
Mada	Data wata	Power level*			
Mode	Data rate	Low channel	Middle channel	High channel	
802.11b	1Mbps	9	9	9	
802.11g	6Mbps	5	5	5	
802.11n-HT20	MCS0	5	5	5	
802.11n-HT40	MCS0	5	5	5	
BLE	1Mbps		Default		

Report No.: SZGMA210719-29698E-RF-00B

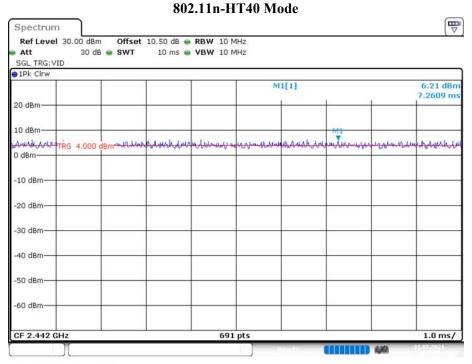
Duty cycle


802.11b mode

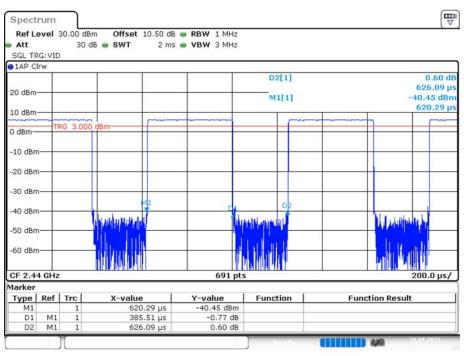
Date: 31.JUL.2021 16:18:45


FCC Part 15.247 Page 7 of 59

802.11g mode


Date: 31.JUL.2021 16:19:34

802.11n-HT20 Mode


Date: 31.JUL.2021 16:20:09

FCC Part 15.247 Page 8 of 59

Date: 31.JUL.2021 16:21:00

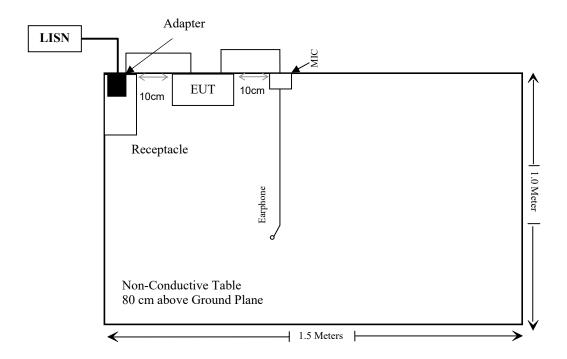
BLE

Date: 31.JUL.2021 13:56:22

FCC Part 15.247 Page 9 of 59

Support Equipment List and Details

Manufacturer Description		Model	Serial Number
Inrico	Earphone	Unknown	Unknown
Inrico	MIC	Unknown	Unknown


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-Shielding Un-Detachable AC Cable	1.2	LISN	Receptacle
Un-Shielding Detachable USB Cable	1.0	Adapter	EUT
Un-Shielding Detachable Earphone Cable	1.0	MIC	Earphone
Un-Shielding Detachable MIC Cable	1.0	EUT	MIC

FCC Part 15.247 Page 10 of 59

Block Diagram of Test Setup

For conducted emission

FCC Part 15.247 Page 11 of 59

§15.247 (a)(2)

§15.247(b)(3)

§15.247(d)

§15.247(e)

FCC Rules Description of Test Result §15.247 (i), §1.1307 (b) (1)& RF Exposure Compliant §2.1093 §15.203 Compliant Antenna Requirement §15.207 (a) AC Line Conducted Emissions Compliant §15.205, §15.209, Spurious Emissions Compliant §15.247(d)

6 dB Emission Bandwidth

Maximum Conducted Output Power

100 kHz Bandwidth of Frequency Band Edge

Power Spectral Density

Report No.: SZGMA210719-29698E-RF-00B

Compliant

Compliant

Compliant

Compliant

FCC Part 15.247 Page 12 of 59

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
	Conducted Emissions Test								
Rohde & Schwarz	EMI Test Receiver	ESCI	ESCI 100784		2022/02/02				
Rohde & Schwarz	LISN	ENV216	101748	2021/02/03	2022/02/02				
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2020/11/29	2021/11/28				
Rohde & Schwarz	CE Test software	ES-K1	V8.53.0	NCR	NCR				
		Radiated Emission	Test						
R&S	EMI Test Receiver	ESR3	100784	2021/02/02	2022/02/02				
Sonoma instrument	Pre-amplifier	310 N	186014	2021/08/03	2022/08/02				
SCHWARZBECK	Broadband Antenna	VULB 9163	9163-872	2020/1/5	2023/1/4				
Unknown	Cable	Chamber Cable 1	UFB311A-0- 0788- 50V50VTV	2021/02/03	2022/02/03				
Unknown	Cable	Chamber Cable 2	UFB311A-0- 0789- 50V50VTV	2021/02/03	2022/02/03				
Unknown	Cable 2	RF Cable 2	UFB311A-0- 0787- 50V50VTV	2021/02/03	2022/02/03				
Rohde & Schwarz	Auto test software	EZ_EMC.db	1.1.4.2	NCR	NCR				
CHIGO	Temperature & Humidity Meter	HTC-1S	T-03-EM458	2021/4/12	2022/4/11				
Rohde & Schwarz	Spectrum Analyzer	FSV40	101590	2020/12/14	2021/12/13				
Preamplifer	Pre-amplifier	PAM-0118	226	2020/11/29	2021/11/28				
Quinstar	Amplifier	QLW-18405536- J0	15964001002	2021/06/29	2022/06/29				
Agilent	Horn Antenna	AHA-118S	3017	2021-02-25	2022-2-24				
Unknown	Cable	Chamber Cable 1	UFB311A-0- 0788- 50V50VTV	2021/02/03	2022/02/03				
Unknown	Cable	Chamber Cable 2	UFB311A-0- 0789- 50V50VTV	2021/02/03	2022/02/03				
Unknown	Cable 2	RF Cable 2	UFB311A-0- 0787- 50V50VTV	2021/02/03	2022/02/03				
Ducommun Technolagies	Horn antenna	ARH-4223-02	1007726-02 1304	2020/12/06	2023/12/05				
wainwrigh	Band Reject filter	WRCG2400	2.4G filter	2021/04/20	2022/04/20				

FCC Part 15.247 Page 13 of 59

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
RF Conducted Test					
R&S	EMI Test Receiver	ESR3	100784	2021/02/02	2022/02/02
Rohde & Schwarz	Spectrum Analyzer	FSV40	101590	2020/12/14	2021/12/13
Agilent	USB wideband power sensor	U2021XA	MY54250007	2021/6/25	2022/6/24
narda	10dB Attenuator	769-10	03407	2020/11/29	2021/11/28
Unknown	RF Cable	Unknown	24533	2020/11/29	2021/11/28

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 14 of 59

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: SZGMA210719-29698E-RF-00B

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- 1. f(GHz) is the RF channel transmit frequency in GHz.
- 2. Power and distance are rounded to the nearest mW and mm before calculation.
- 3. The result is rounded to one decimal place for comparison.
- 4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

Mode	Frequency (MHz)	Max Tune-up Conducted Power (dBm)	Max Tune-up Conducted Power (mW)	Calculated Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BLE	2402-2480	7.0	5.01	5	1.6	3.0	Yes
Wi-Fi	2412-2472	8.0	6.31	5	2.0	3.0	Yes

Result: No Standalone SAR test is required

FCC Part 15.247 Page 15 of 59

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: SZGMA210719-29698E-RF-00B

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

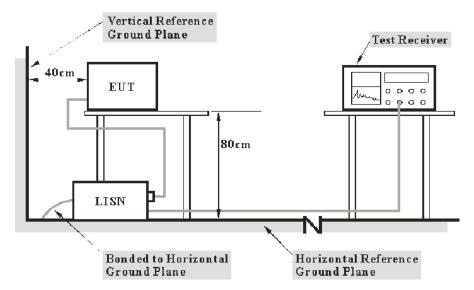
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has an internal antenna arrangement, which was permanently attached and the antenna gain is 1.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.


FCC Part 15.247 Page 16 of 59

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

FCC Part 15.247 Page 17 of 59

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

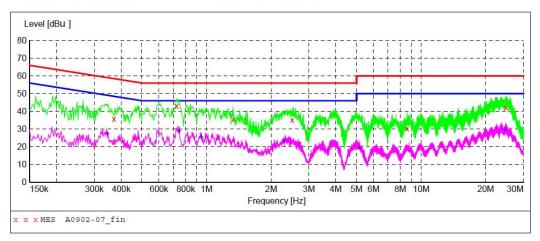
Report No.: SZGMA210719-29698E-RF-00B

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	25 ℃			
Relative Humidity:	70 %			
ATM Pressure:	101.0 kPa			


The testing was performed by LYA Liu on 2021-09-02.

EUT operation mode: Transmitting

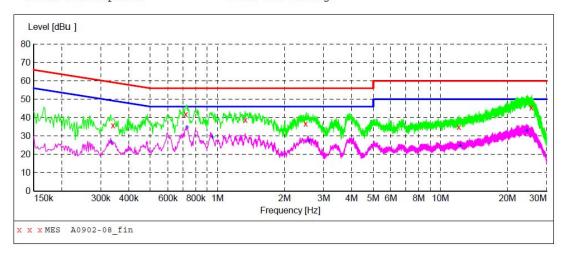
FCC Part 15.247 Page 18 of 59

AC 120V/60 Hz, Line

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "A0902-07_fin"

9/2/2021	10:21AM						
Freque	ncy Leve MHz dBu			Margin dB	Detector	Line	PE
0.370	000 35.8	30 10.1	. 59	23.2	QP	L1	GND
0.725	000 43.2	20 10.1	. 56	12.8	QP	L1	GND
1.335	000 35.4	10 10.1	. 56	20.6	QP	L1	GND
2.505	000 35.2	20 10.1	. 56	20.8	QP	L1	GND
8.590	000 30.4	10 10.2	60	29.6	QP	L1	GND
24.795	000 42.2	20 10.3	60	17.8	QP	L1	GND


MEASUREMENT RESULT: "A0902-07_fin2"

9/2/2021 10:2	1AM						
Frequency MHz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.345000	27.70	10.1	49	21.3	AV	L1	GND
0.745000	29.10	10.1	46	16.9	AV	L1	GND
0.945000	25.60	10.1	46	20.4	AV	L1	GND
2.290000	23.30	10.1	46	22.7	AV	L1	GND
5.160000	19.50	10.1	50	30.5	AV	L1	GND
24.575000	29.70	10.3	50	20.3	AV	L1	GND

FCC Part 15.247 Page 19 of 59

AC 120V/60 Hz, Neutral:

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

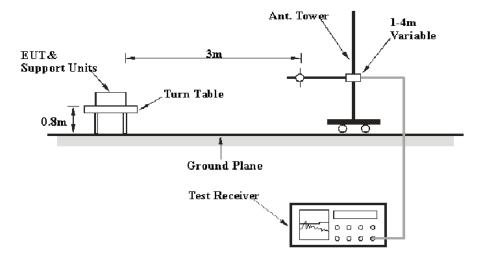
MEASUREMENT RESULT: "A0902-08 fin"

9/2/2021	10:24	AM						
Freque	ncy MHz	Level dBuv	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.340	000	35.80	10.1	59	23.2	QP	N	GND
0.720	000	41.70	10.1	56	14.3	QP	N	GND
1.335	000	38.80	10.1	56	17.2	QP	N	GND
2.485	000	36.50	10.1	56	19.5	QP	N	GND
12.090	000	34.70	10.2	60	25.3	QP	N	GND
25.605	000	45.30	10.3	60	14.7	QP	N	GND

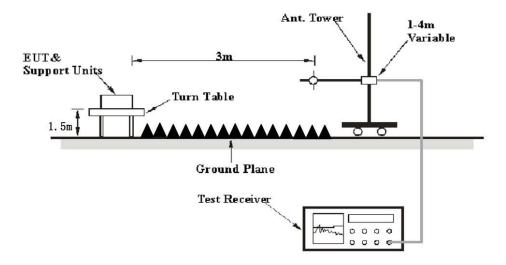
MEASUREMENT RESULT: "A0902-08_fin2"

9/2/2021	10:24	AM						
Frequenc M	cy Hz	Level dBuV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.33500	00	26.60	10.1	49	22.4	AV	N	GND
0.73000	00	34.80	10.1	46	11.2	AV	N	GND
0.95000	00	29.40	10.1	46	16.6	AV	N	GND
2.57000	0.0	27.50	10.1	46	18.5	AV	N	GND
12.26500	00	24.90	10.2	50	25.1	AV	N	GND
24.45000	00	33.10	10.3	50	16.9	AV	N	GND

FCC Part 15.247 Page 20 of 59


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

FCC Part 15.247 Page 21 of 59

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: SZGMA210719-29698E-RF-00B

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

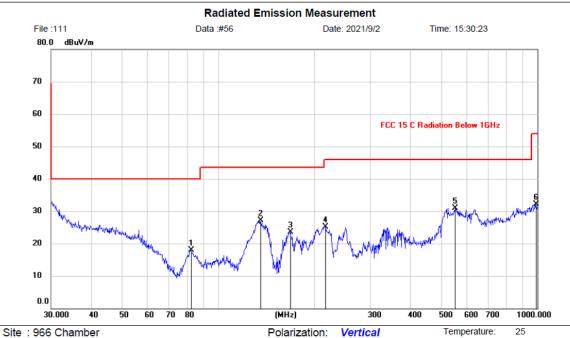
Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions


Temperature:	25℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Mark Guo on 2021-09-02 for below 1GHz and on 2021-08-23 for above 1GHz.

EUT operation mode: Transmitting

FCC Part 15.247 Page 22 of 59

30 MHz~1 GHz:

Limit: FCC 15 C Radiation Below 1GHz

EUT: Intelligent Two Way Radio

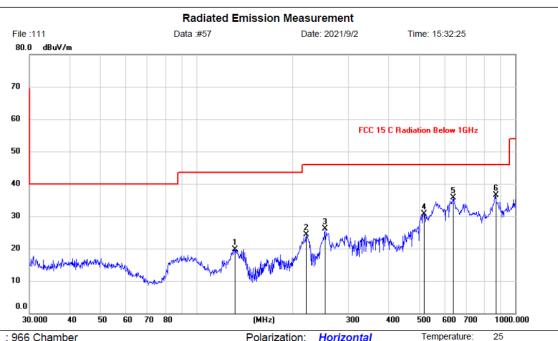
M/N: S200

Mode: Charging& transmitting

Note: SZGMA210719-29698E-RF

Inrico Technologies Co., Ltd.

Polarization: Vertical Temperature: 2


Power: AC 110V/60Hz Humidity: 56 %

Distance: 3m

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dBuV/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		82.2146	34.20	-16.28	17.92	40.00	-22.08	peak			
2		135.5062	42.57	-15.40	27.17	43.50	-16.33	peak			
3		168.1188	39.29	-15.70	23.59	43.50	-19.91	peak			
4		217.1632	37.73	-12.56	25.17	46.00	-20.83	peak			
5	*	552.8832	35.83	-4.91	30.92	46.00	-15.08	peak			
6		991.2719	28.72	3.36	32.08	54.00	-21.92	peak			

FCC Part 15.247 Page 23 of 59

^{*:}Maximum data x:Over limit !:over margin

Site: 966 Chamber

Limit: FCC 15 C Radiation Below 1GHz EUT: Intelligent Two Way Radio

M/N: S200

Mode: Charging& transmitting

Note: SZGMA210719-29698E-RF

Inrico Technologies Co., Ltd.

Polarization: Horizontal Temperature:
Power: AC 110V/60Hz Humidity:

56 %

Distance: 3m

	Times recimiologics es., Etc.											
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree		
		MHz	dBu∨	dBuV/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment	
1		132.2205	34.95	-15.15	19.80	43.50	-23.70	peak				
2		221.3921	36.72	-12.35	24.37	46.00	-21.63	peak				
3		253.8366	37.29	-11.14	26.15	46.00	-19.85	peak				
4		516.3418	36.03	-5.29	30.74	46.00	-15.26	peak				
5		638.3686	38.65	-2.99	35.66	46.00	-10.34	peak				
6	*	867.6077	35.94	0.59	36.53	46.00	-9.47	peak				

FCC Part 15.247 Page 24 of 59

^{*:}Maximum data x:Over limit !:over margin

DLE:												
Frequency	Re	ceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin			
(MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	(dBµV/m)	(dB)			
	Low Channel(2402MHz)											
2328.00	29.65	PK	167	1.2	Н	30.83	60.48	74.0	13.52			
2328.00	15.75	Ave.	167	1.2	Н	30.83	46.58	54.0	7.42			
2484.80	29.88	PK	125	2.0	Н	30.72	60.60	74.0	13.40			
2484.80	15.98	Ave.	125	2.0	Н	30.72	46.70	54.0	7.30			
4804.00	51.56	PK	216	2.4	Н	-3.52	48.04	74.0	25.96			
4804.00	38.75	Ave.	216	2.4	Н	-3.52	35.23	54.0	18.77			
			Middle (Channel((2440M	Hz)						
4880.00	51.50	PK	17	1.7	Н	-2.94	48.56	74.0	25.44			
4880.00	38.46	Ave.	17	1.7	Н	-2.94	35.52	54.0	18.48			
			High Cl	hannel(2	2480 MI	Hz)						
2387.54	29.84	PK	14	1.5	Н	30.91	60.75	74.0	13.25			
2387.54	17.84	Ave.	14	1.5	Н	30.91	48.75	54.0	5.25			
2491.43	29.78	PK	173	1.8	Н	30.72	60.50	74.0	13.50			
2491.43	16.27	Ave.	173	1.8	Н	30.72	46.99	54.0	7.01			
4960.00	50.79	PK	257	1.1	Н	-2.73	48.06	74.0	25.94			
4960.00	37.81	Ave.	257	1.1	Н	-2.73	35.08	54.0	18.92			

FCC Part 15.247 Page 25 of 59

F	Re	ceiver	T4.1.1.	Rx An	itenna	Corrected	Corrected	T **4	Marita			
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	Low Channel (2412 MHz)											
2390.00	28.82	PK	166	1.4	Н	30.91	59.73	74.0	14.27			
2390.00	14.07	Ave.	166	1.4	Н	30.91	44.98	54.0	9.02			
2488.63	29.78	PK	66	1.0	Н	30.72	60.50	74.0	13.50			
2488.63	16.27	Ave.	66	1.0	Н	30.72	46.99	54.0	7.01			
7236.00	48.83	PK	175	2.2	Н	5.22	54.05	74.0	19.95			
7236.00	31.14	Ave.	175	2.2	Н	5.22	36.36	54.0	17.64			
			Middle (Channel	(2442M	Hz)						
7326.00	47.41	PK	145	2.2	Н	6.46	53.87	74.0	20.13			
7326.00	29.68	Ave.	145	2.2	Н	6.46	36.14	54.0	17.86			
			High Cl	hannel(2	472 MI	Hz)						
2389.76	29.53	PK	177	1.9	Н	30.91	60.44	74.0	13.56			
2389.76	14.28	Ave.	177	1.9	Н	30.91	45.19	54.0	8.81			
2490.50	29.36	PK	326	1.9	Н	30.72	60.08	74.0	13.92			
2490.50	14.28	Ave.	326	1.9	Н	30.72	45.00	54.0	9.00			
7416.00	45.25	PK	351	2.4	Н	8.35	53.60	74.0	20.40			
7416.00	27.56	Ave.	351	2.4	Н	8.35	35.91	54.0	18.09			

FCC Part 15.247 Page 26 of 59

Емодионом	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	
	Low Channel (2412 MHz)								
2387.63	29.06	PK	195	1.9	Н	30.91	59.97	74.0	14.03
2387.63	15.86	Ave.	195	1.9	Н	30.91	46.77	54.0	7.23
2488.60	29.67	PK	180	1.1	Н	30.72	60.39	74.0	13.61
2488.60	16.27	Ave.	180	1.1	Н	30.72	46.99	54.0	7.01
7236.00	46.97	PK	34	2.4	Н	5.22	52.19	74.0	21.81
7236.00	30.74	Ave.	176	2.3	Н	5.22	35.96	54.0	18.04
	Middle Channel(2442MHz)								
7326.00	46.24	PK	22	1.6	Н	6.46	52.70	74.0	21.30
7326.00	28.65	Ave.	22	1.6	Н	6.46	35.11	54.0	18.89
	High Channel(2472 MHz)								
2386.40	29.53	PK	269	2.2	Н	30.91	60.44	74.0	13.56
2386.40	14.28	Ave.	269	2.2	Н	30.91	45.19	54.0	8.81
2490.61	29.36	PK	99	1.9	Н	30.72	60.08	74.0	13.92
2490.61	14.28	Ave.	99	1.9	Н	30.72	45.00	54.0	9.00
7416.00	45.98	PK	199	1.3	Н	8.35	54.33	74.0	19.67
7416.00	27.54	Ave.	199	1.3	Н	8.35	35.89	54.0	18.11

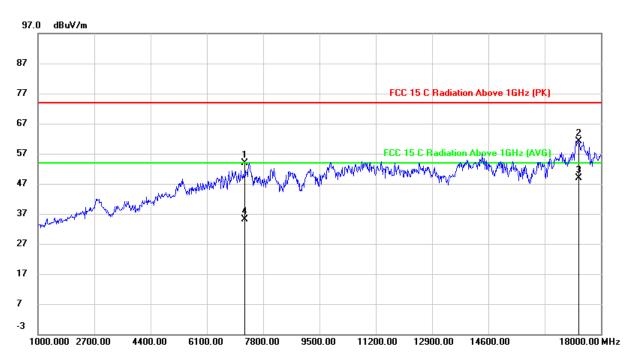
FCC Part 15.247 Page 27 of 59

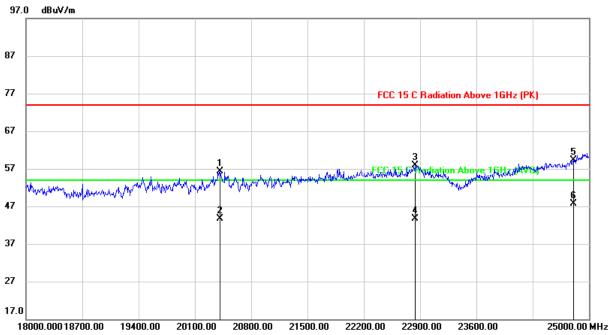
Frequency (MHz)	Receiver		Tuuntahla	Rx Antenna		Corrected	Corrected	T ::4	M
	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	nannel (2	412 MI	Hz)			
2388.96	29.06	PK	77	1.8	Н	30.91	59.97	74.0	14.03
2388.96	14.04	Ave.	77	1.8	Н	30.91	44.95	54.0	9.05
2492.31	29.58	PK	232	1.6	Н	30.72	60.30	74.0	13.70
2492.31	14.87	Ave.	232	1.6	Н	30.72	45.59	54.0	8.41
7236.00	45.84	PK	228	2.5	Н	5.22	51.06	74.0	22.94
7236.00	30.15	Ave.	228	2.5	Н	5.22	35.37	54.0	18.63
			Middle (Channel((2442M	Hz)			
7326.00	46.34	PK	133	1.8	Н	6.46	52.80	74.0	21.20
7326.00	29.71	Ave.	133	1.8	Н	6.46	36.17	54.0	17.83
			High Cl	hannel(2	472 MI	Hz)			
2391.64	29.46	PK	252	1.9	Н	30.91	60.37	74.0	13.63
2391.64	14.20	Ave.	252	1.9	Н	30.91	45.11	54.0	8.89
2483.56	29.68	PK	252	1.4	Н	30.72	60.40	74.0	13.60
2483.56	14.29	Ave.	252	1.4	Н	30.72	45.01	54.0	8.99
7416.00	45.63	PK	129	2.2	Н	8.35	53.98	74.0	20.02
7416.00	27.18	Ave.	129	2.2	Н	8.35	35.53	54.0	18.47

FCC Part 15.247 Page 28 of 59

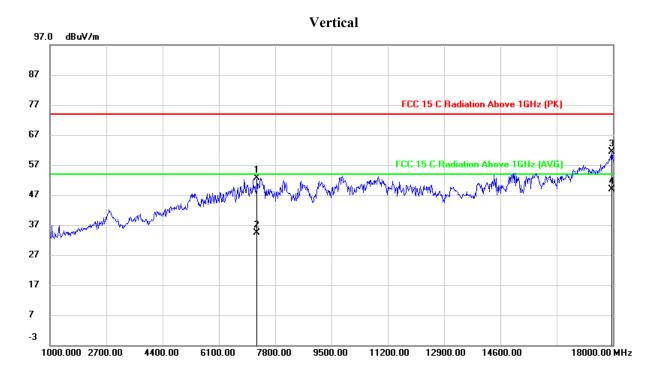
Fraguanay	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
	Low Channel (2422 MHz)								
2387.60	29.20	PK	277	1.2	Н	30.91	60.11	74.0	13.89
2387.60	14.07	Ave.	277	1.2	Н	30.91	44.98	54.0	9.02
2488.04	29.36	PK	105	1.6	Н	30.72	60.08	74.0	13.92
2488.04	14.16	Ave.	105	1.6	Н	30.72	44.88	54.0	9.12
7266.00	45.90	PK	153	1.9	Н	6.26	52.16	74.0	21.84
7266.00	29.81	Ave.	153	1.9	Н	6.26	36.07	54.0	17.93
	Middle Channel(2442MHz)								
7326.00	45.20	PK	32	2.3	Н	6.46	51.66	74.0	22.34
7326.00	29.26	Ave.	32	2.3	Н	6.46	35.72	54.0	18.28
	High Channel(2462 MHz)								
2384.20	29.75	PK	176	1.1	Н	30.91	60.66	74.0	13.34
2384.20	14.29	Ave.	176	1.1	Н	30.91	45.20	54.0	8.80
2490.30	29.52	PK	284	1.5	Н	30.72	60.24	74.0	13.76
2490.30	14.27	Ave.	284	1.5	Н	30.72	44.99	54.0	9.01
7386.00	45.08	PK	123	1.1	Н	8.25	53.33	74.0	20.67
7386.00	27.55	Ave.	123	1.1	Н	8.25	35.80	54.0	18.20

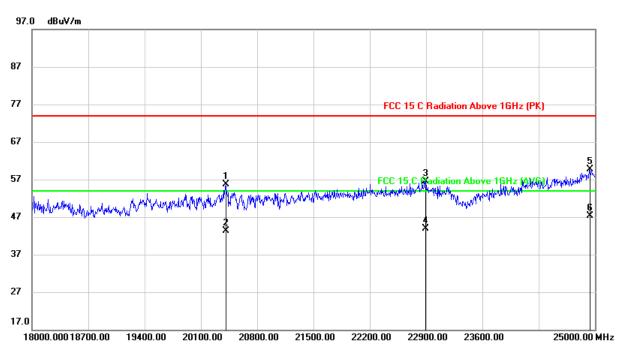
Note:


 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$ Corrected Amplitude = Corrected Factor + Reading


Margin = Limit - Corrected. Amplitude
The other spurious emission which is 20dB to the limit was not recorded.

And for the pre-scan is performed with the 2400-2483.5MHz band filter.


FCC Part 15.247 Page 29 of 59


Pre-scan with 802.11b Mode, Middle channel Horizontal

FCC Part 15.247 Page 30 of 59

FCC Part 15.247 Page 31 of 59

FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: SZGMA210719-29698E-RF-00B

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

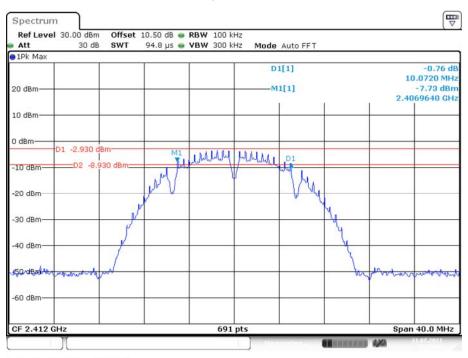
Temperature:	25 ℃		
Relative Humidity:	56 ℃		
ATM Pressure:	101.0 kPa		

The testing was performed by LYA Liu on 2021-07-31.

Test Result: Pass.

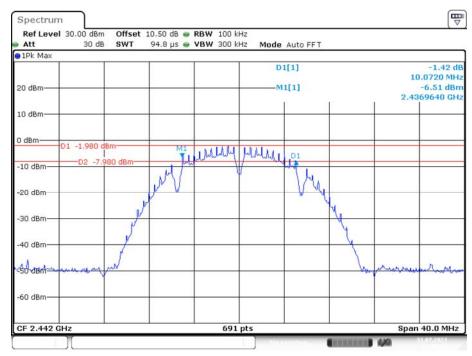
Please refer to the following table and plots.

FCC Part 15.247 Page 32 of 59


EUT operation mode: Transmitting

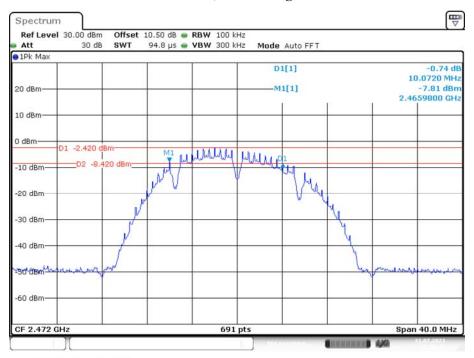
Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)					
	802.11b mode							
Low	2412	10.072	≥500					
Middle	2442	10.072	≥500					
High	2472	10.072	≥500					
	802.11g mode							
Low	2412	16.440	≥500					
Middle	2442	16.324	≥500					
High	2472	16.382	≥500					
802.11n-HT20 mode								
Low	2412	17.598	≥500					
Middle	2442	17.424	≥500					
High	2472	17.540	≥500					
802.11n-HT40 mode								
Low	2422	36.320	≥500					
Middle	2442	35.660	≥500					
High	2462	35.570	≥500					

Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (kHz)					
BLE 1M								
Low	2402	0.718	≥500					
Middle	2440	0.718	≥500					
High	2480	0.718	≥500					

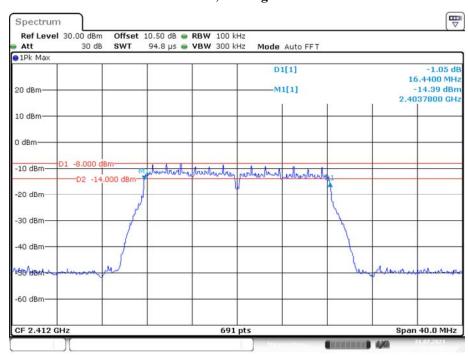

FCC Part 15.247 Page 33 of 59

6dB Bandwidth, 802.11b Low Channel

Date: 31.JUL.2021 15:17:38

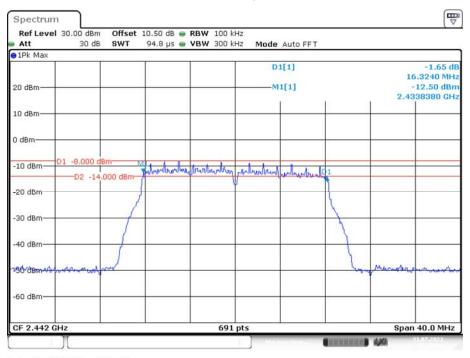

6dB Bandwidth, 802.11b Middle Channel

Date: 31.JUL.2021 15:20:07

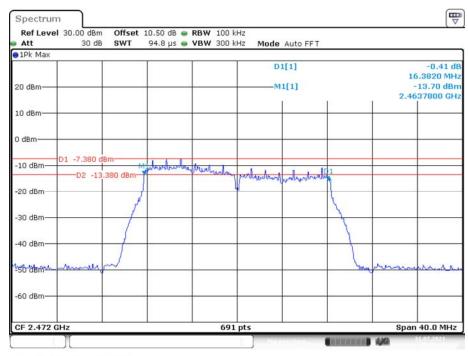

FCC Part 15.247 Page 34 of 59

6dB Bandwidth, 802.11b High Channel

Date: 31.JUL.2021 15:22:48

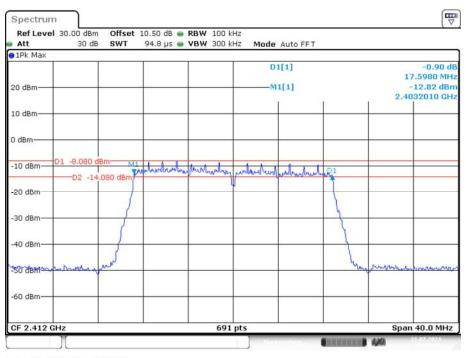

6dB Bandwidth, 802.11g Low Channel

Date: 31.JUL.2021 15:28:37

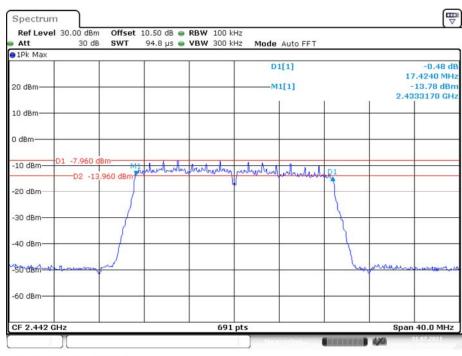

FCC Part 15.247 Page 35 of 59

6dB Bandwidth, 802.11g Middle Channel

Date: 31.JUL.2021 15:27:21

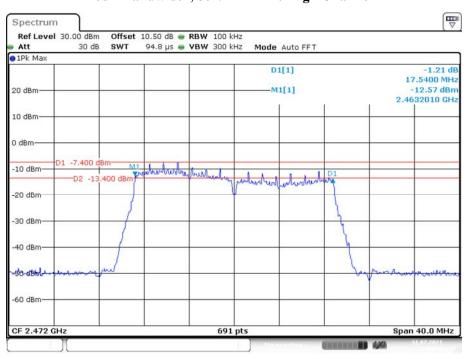

6dB Bandwidth, 802.11g High Channel

Date: 31.JUL.2021 15:25:17

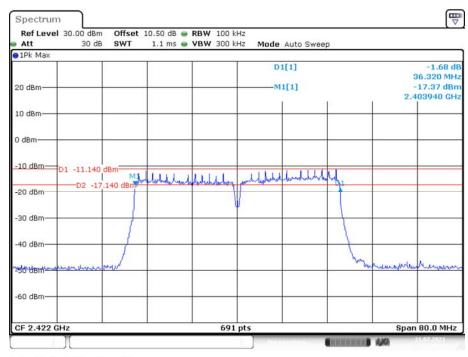

FCC Part 15.247 Page 36 of 59

6dB Bandwidth, 802.11n-HT20 Low Channel

Date: 31.JUL.2021 15:30:46

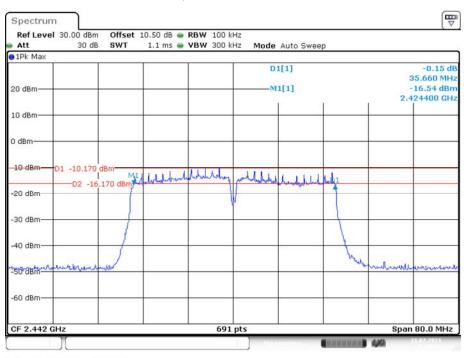

6dB Bandwidth, 802.11n-HT20 Middle Channel

Date: 31.JUL.2021 15:33:51

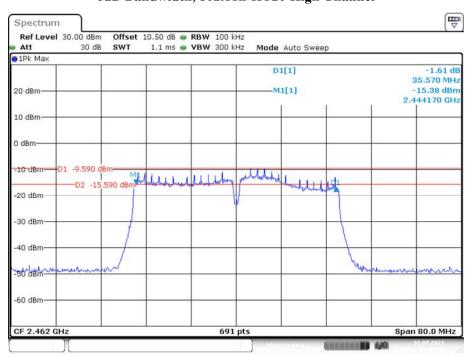

FCC Part 15.247 Page 37 of 59

6dB Bandwidth, 802.11n-HT20 High Channel

Date: 31.JUL.2021 15:38:21


6dB Bandwidth, 802.11n-HT40 Low Channel

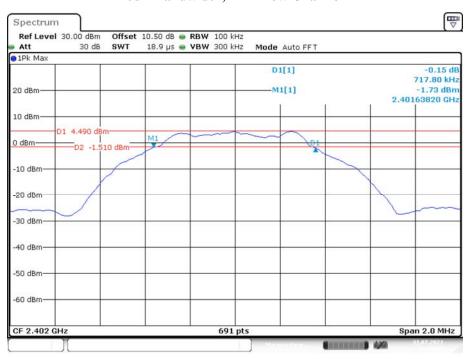
Date: 31.JUL.2021 15:40:21


FCC Part 15.247 Page 38 of 59

6dB Bandwidth, 802.11n-HT40 Middle Channel

Date: 31.JUL.2021 15:45:18

6dB Bandwidth, 802.11n-HT20 High Channel



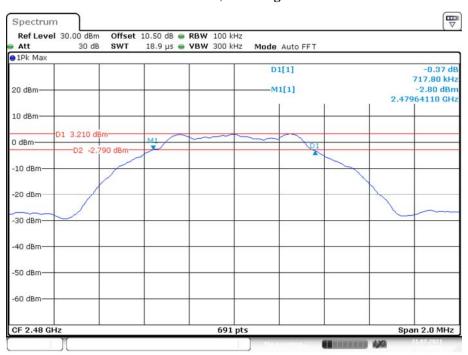
Date: 31.JUL.2021 15:47:47

FCC Part 15.247 Page 39 of 59

Report No.: SZGMA210719-29698E-RF-00B

6dB Bandwidth, BLE Low Channel

Date: 31.JUL.2021 13:43:57


6dB Bandwidth, BLE Middle Channel

Date: 31.JUL.2021 13:46:04

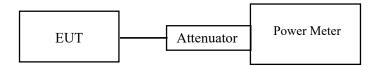
FCC Part 15.247 Page 40 of 59

6dB Bandwidth, BLE High Channel

Date: 31.JUL.2021 13:47:15

FCC Part 15.247 Page 41 of 59

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER


Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Report No.: SZGMA210719-29698E-RF-00B

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	56 ℃	
ATM Pressure:	101.0 kPa	

The testing was performed by LYA Liu on 2021-07-31.

EUT operation mode: Transmitting

FCC Part 15.247 Page 42 of 59

Wi-Fi mode

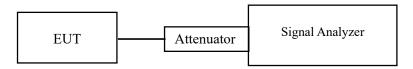
Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Max Conducted Average Output Power (dBm)	Limit (dBm)
	802.11b mode			
Low	2412	9.14	7.31	30
Middle	2442	9.64	7.81	30
High	2472	9.45	7.54	30
		802.11g mode		
Low	2412	11.16	7.75	30
Middle	2442	11.05	7.77	30
High	2472	10.69	7.39	30
	802.11n HT20 mode			
Low	2412	11.20	7.79	30
Middle	2442	11.60	7.79	30
High	2472	10.74	7.47	30
802.11n HT40 mode				
Low	2422	11.09	7.53	30
Middle	2442	11.68	7.88	30
High	2462	11.54	7.76	30

BLE mode

Channel	Frequency (MHz)	Max Conducted Peak Output Power (dBm)	Limit (dBm)
BLE 1M			
Low	2402	4.96	30
Middle	2440	6.48	30
High	2480	3.92	30

FCC Part 15.247 Page 43 of 59

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE


Report No.: SZGMA210719-29698E-RF-00B

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

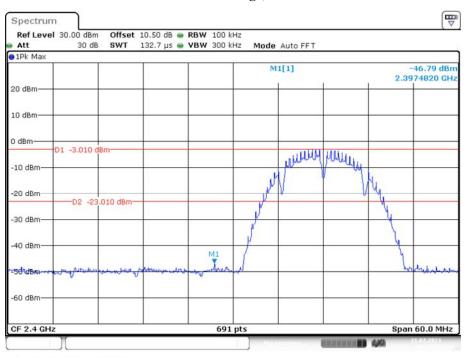
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

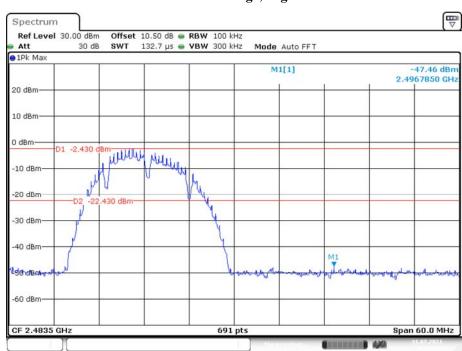
Temperature:	25 ℃	
Relative Humidity:	56 ℃	
ATM Pressure:	101.0 kPa	

The testing was performed by LYA Liu on 2021-07-31.


EUT operation mode: Transmitting

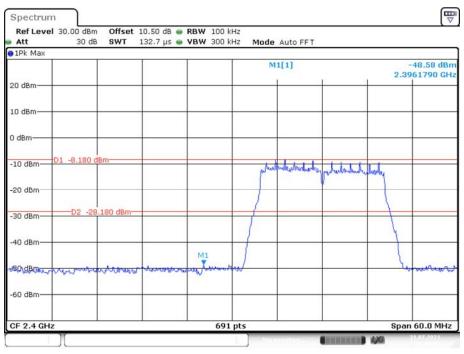
Test Result: Compliant

Please refer to the following plots.

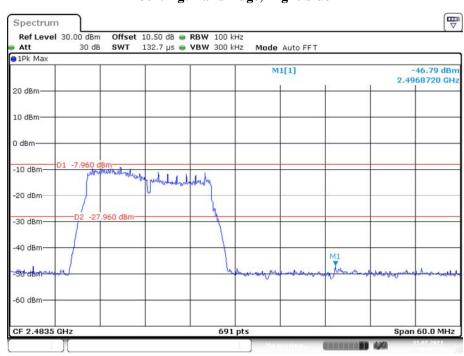

FCC Part 15.247 Page 44 of 59

802.11b: Band Edge, Left Side

Date: 31.JUL.2021 16:12:27


802.11b: Band Edge, Right Side

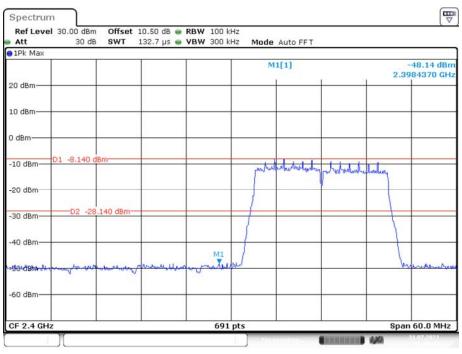
Date: 31.JUL.2021 16:13:59


FCC Part 15.247 Page 45 of 59

802.11g: Band Edge, Left Side

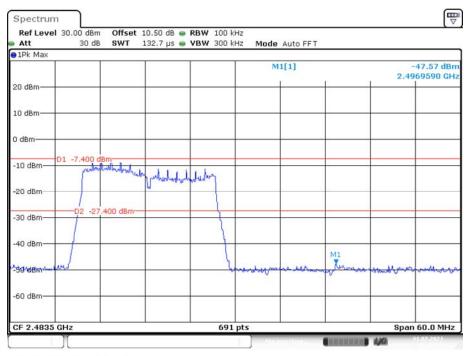
Date: 31.JUL.2021 16:09:58

802.11g: Band Edge, Right Side



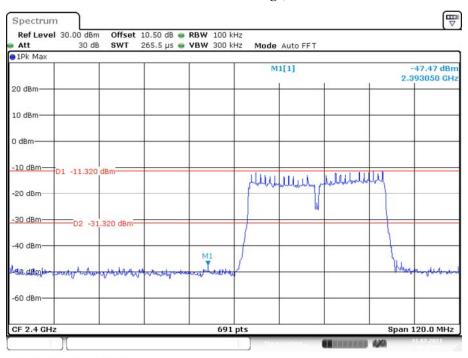
Date: 31.JUL.2021 16:08:37

FCC Part 15.247 Page 46 of 59

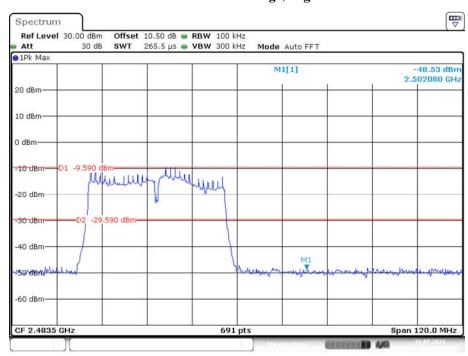

Report No.: SZGMA210719-29698E-RF-00B

802.11n-HT20: Band Edge, Left Side

Date: 31.JUL.2021 16:06:12

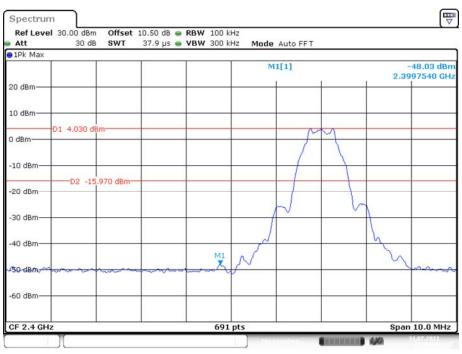

802.11n-HT20: Band Edge, Right Side

Date: 31.JUL.2021 16:07:37

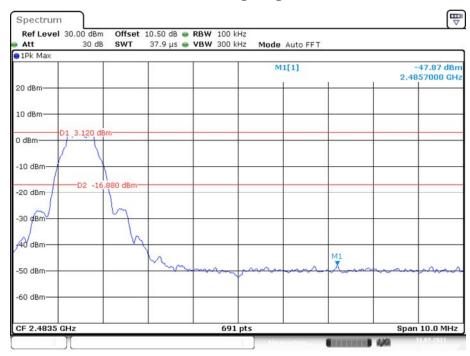

FCC Part 15.247 Page 47 of 59

802.11n-HT40: Band Edge, Left Side

Date: 31.JUL.2021 16:04:44


802.11n-HT40: Band Edge, Right Side

Date: 31.JUL.2021 16:00:11


FCC Part 15.247 Page 48 of 59

BLE: Band Edge, Left Side

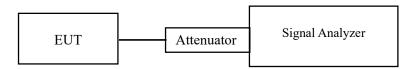
Date: 31.JUL.2021 13:50:29

BLE: Band Edge, Right Side

Date: 31.JUL.2021 13:49:09

FCC Part 15.247 Page 49 of 59

FCC §15.247(e) - POWER SPECTRAL DENSITY


Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: SZGMA210719-29698E-RF-00B

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 \text{ kHz}$.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

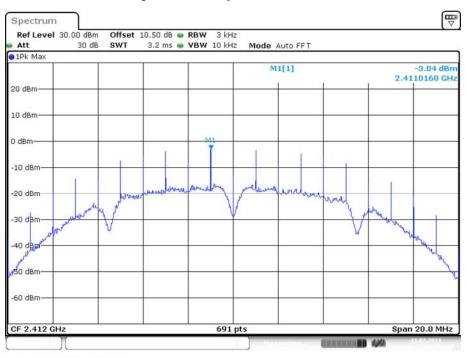
Environmental Conditions

Temperature:	25 ℃	
Relative Humidity:	56 ℃	
ATM Pressure:	101.0 kPa	

The testing was performed by LYA Liu on 2021-07-31.

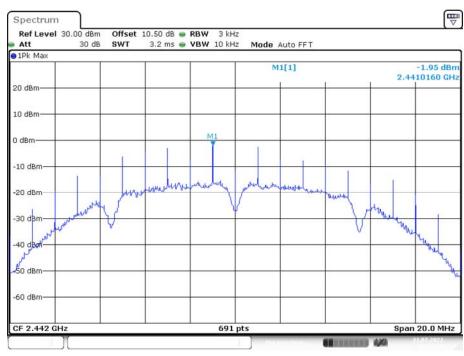
EUT operation mode: Transmitting

Test Result: Pass


FCC Part 15.247 Page 50 of 59

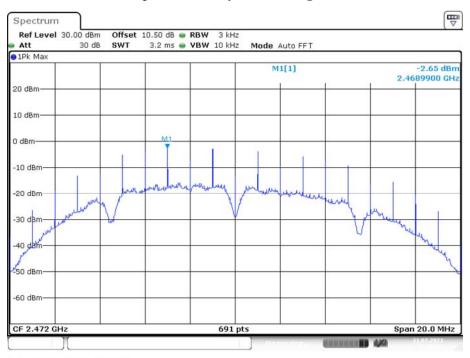
Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	
	802.11b mode			
Low	2412	-3.04	≤8	
Middle	2442	-1.95	≤8	
High	2472	-2.65	≤8	
	802.11g mode			
Low	2412	-20.72	≤8	
Middle	2442	-20.25	≤8	
High	2472	-19.83	≤8	
	802.11n-HT20 mode			
Low	2412	-21.23	≤8	
Middle	2442	-20.05	≤8	
High	2472	-20.57	≤8	
802.11n-HT40 mode				
Low	2422	-24.49	≤8	
Middle	2442	-24.27	≤8	
High	2462	-22.23	≤8	

Channel	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)
BLE 1M			
Low	2402	-11.06	≤8
Middle	2440	-9.40	≤8
High	2480	-12.01	≤8

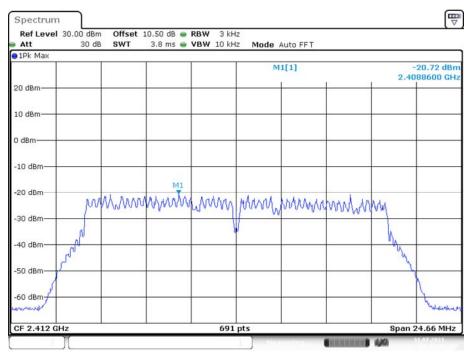

FCC Part 15.247 Page 51 of 59

Power Spectral Density, 802.11b Low Channel

Date: 31.JUL.2021 17:11:26

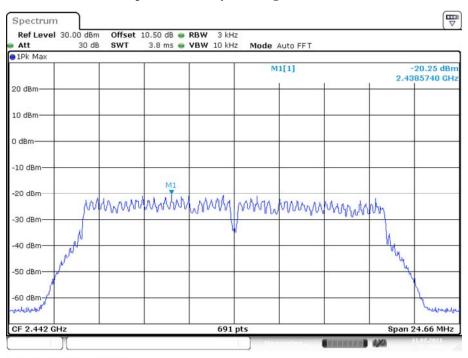

Power Spectral Density, 802.11b Middle Channel

Date: 31.JUL.2021 17:13:00

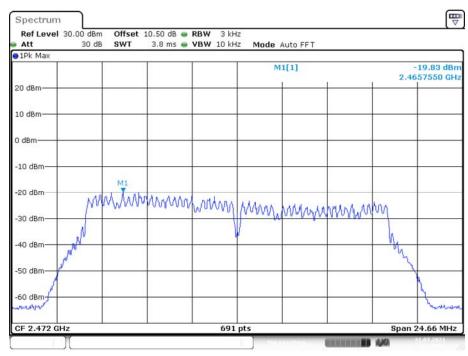

FCC Part 15.247 Page 52 of 59

Power Spectral Density, 802.11b High Channel

Date: 31.JUL.2021 17:09:10

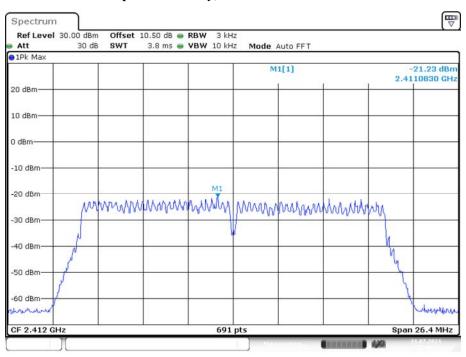

Power Spectral Density, 802.11g Low Channel

Date: 31.JUL.2021 17:16:39

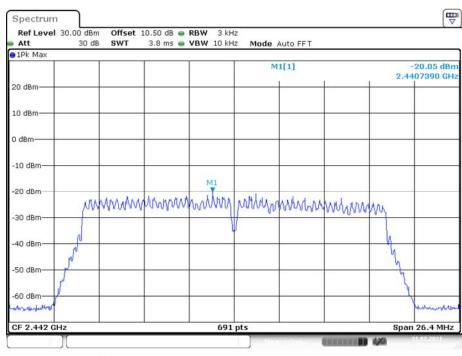

FCC Part 15.247 Page 53 of 59

Power Spectral Density, 802.11g Middle Channel

Date: 31.JUL.2021 17:17:36

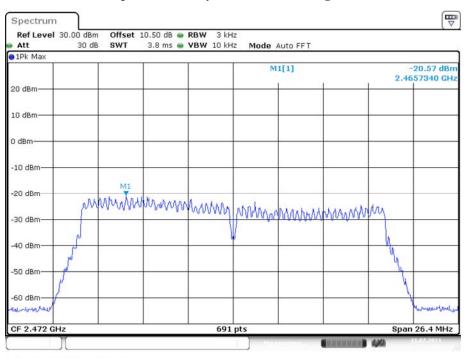

Power Spectral Density, 802.11g High Channel

Date: 31.JUL.2021 17:19:50

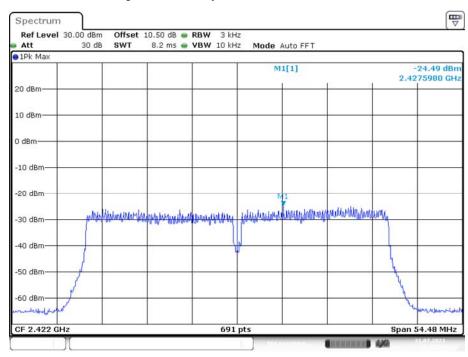

FCC Part 15.247 Page 54 of 59

Power Spectral Density, 802.11n-HT20 Low Channel

Date: 31.JUL.2021 17:20:37

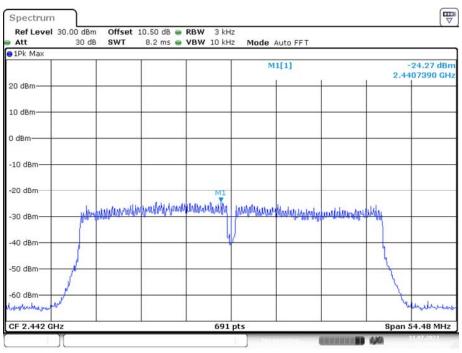

Power Spectral Density, 802.11n-HT20 Middle Channel

Date: 31.JUL.2021 17:21:10

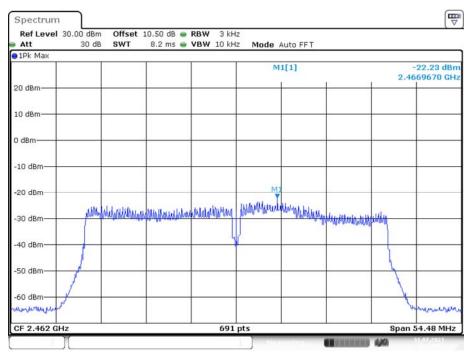

FCC Part 15.247 Page 55 of 59

Power Spectral Density, 802.11n-HT20 High Channel

Date: 31.JUL.2021 17:21:52

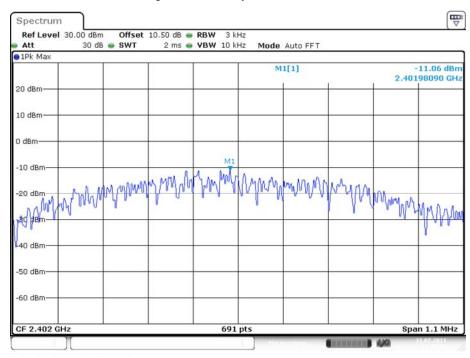

Power Spectral Density, 802.11n-HT40 Low Channel

Date: 31.JUL.2021 17:22:33

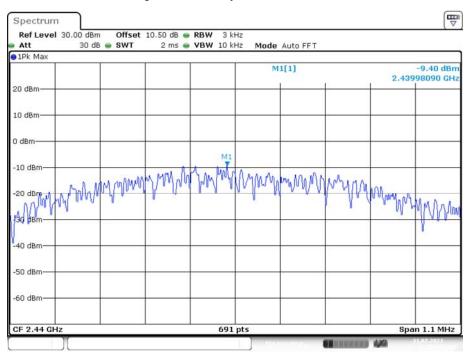

FCC Part 15.247 Page 56 of 59

Power Spectral Density, 802.11n-HT40 Middle Channel

Date: 31.JUL.2021 17:23:30

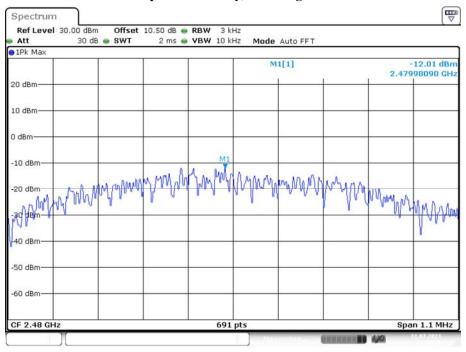

Power Spectral Density, 802.11n-HT40 High Channel

Date: 31.JUL.2021 17:24:12


FCC Part 15.247 Page 57 of 59

Power Spectral Density, BLE Low Channel

Date: 31.JUL.2021 13:59:06


Power Spectral Density, BLE Middle Channel

Date: 31.JUL.2021 13:58:37

FCC Part 15.247 Page 58 of 59

Power Spectral Density, BLE High Channel

Date: 31.JUL.2021 13:59:46

***** END OF REPORT *****

FCC Part 15.247 Page 59 of 59