

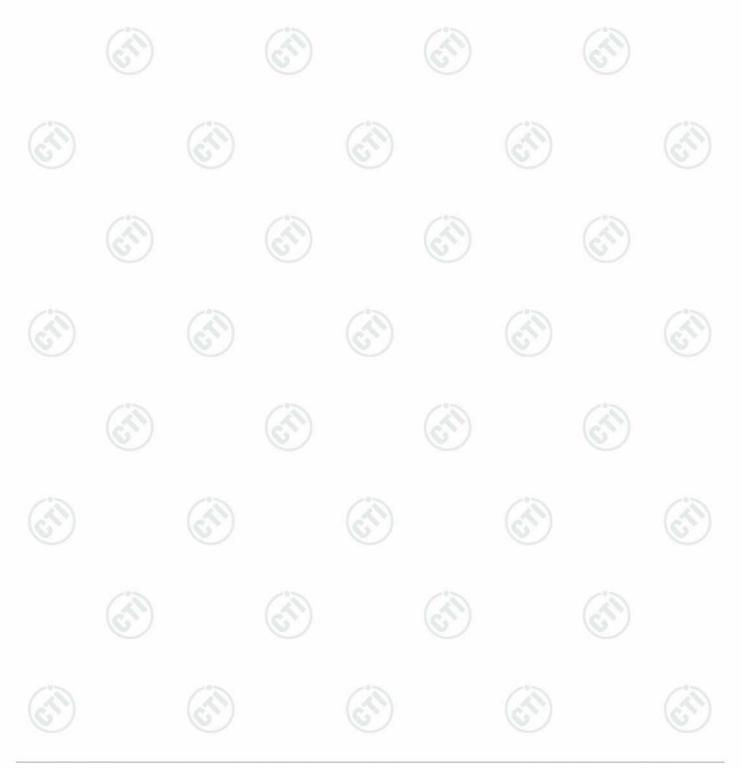
Page 1 of 52

TEST REPORT

Product	:	Wireless Smart Audio Module	
Trade mark	:	Linkplay	
Model/Type reference	:	A98ML, A98L, A98L-12, A98L-22, A98L-55	
		A98ML-12, A98ML-22, A98ML-55	
Serial Number	:	N/A	
Report Number	:	EED32L00168301	
FCC ID	:	2ANOG-A98XLXX	
Date of Issue	:	Aug. 16, 2019	
Test Standards	:	47 CFR Part 15Subpart C	
Test result	:	PASS	

Prepared for: Linkplay Technology Inc 8F-8036, Qianren Building, No. 7, Yingcui Road, **Jiangning District, Nanjing, China**

Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385



2 Version

Page 2 of 52

Version No.	Date		Description	/	
00	Aug. 16, 2019	Original			
	100	12	15	10	
	(S) (

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	N/A	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

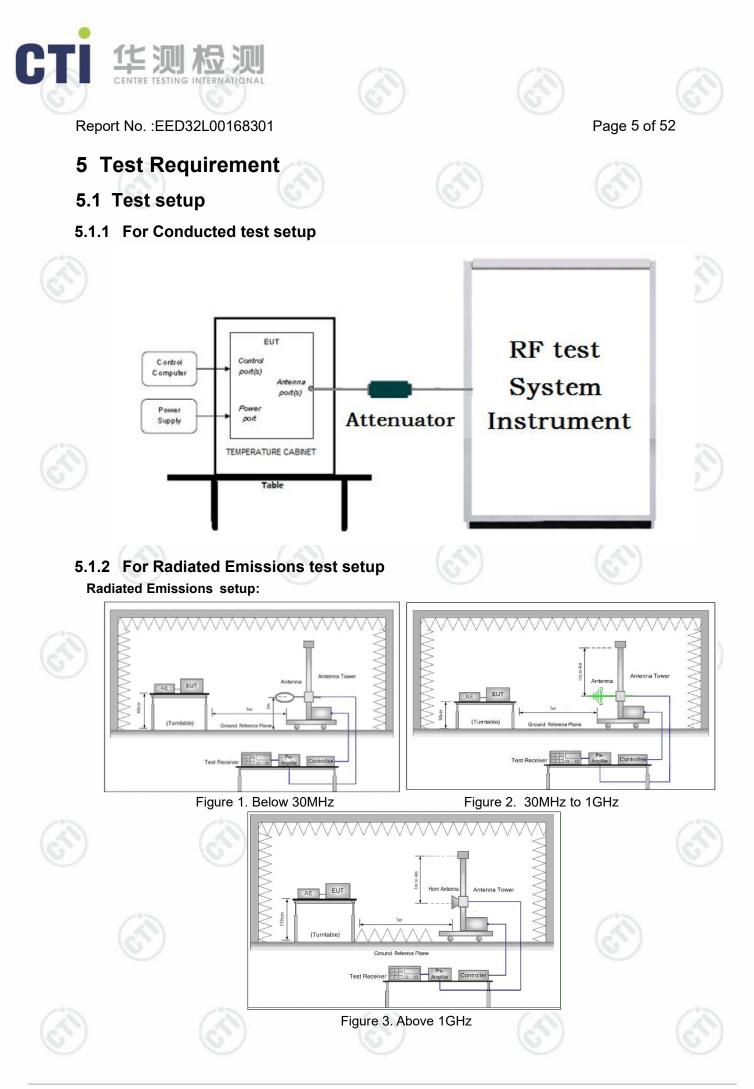

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

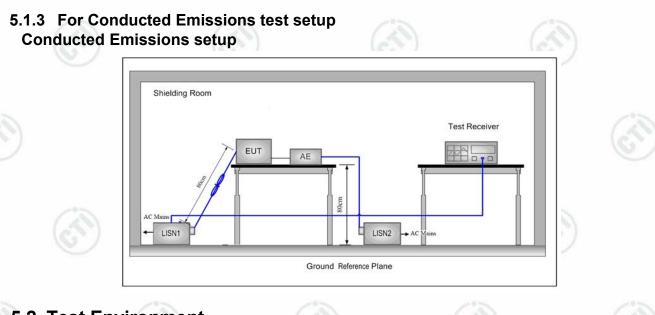
Model No:A98ML,A98L,A98L-12,A98L-22,A98L-55 A98ML-12,A98ML-22,A98ML-55

Only the model A98ML was tested, The difference is that ROM and RAM are different in size or customer.

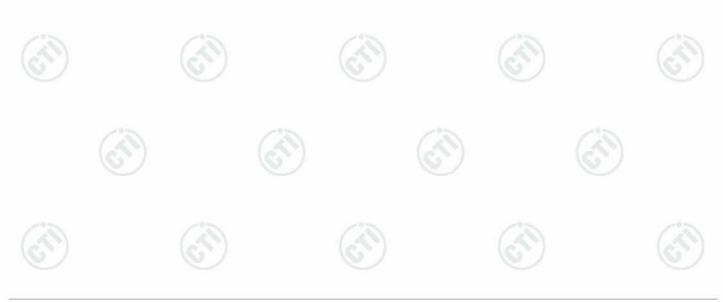


Page 4 of 52

COVER PAGE		
2 VERSION		
B TEST SUMMARY		
CONTENT		
5 TEST REQUIREMENT		
5.1 TEST SETUP		
5.1.1 For Conducted test setup 5.1.2 For Radiated Emissions test setup		
5.1.3 For Conducted Emissions test setup		
5.2 TEST ENVIRONMENT.		
5.3 TEST CONDITION		
GENERAL INFORMATION		•••••
6.1 CLIENT INFORMATION		
6.2 GENERAL DESCRIPTION OF EUT		
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD		
6.4 DESCRIPTION OF SUPPORT UNITS		
6.5 TEST LOCATION		
6.6 DEVIATION FROM STANDARDS 6.7 ABNORMALITIES FROM STANDARD CONDITIONS		
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER		
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)		
EQUIPMENT LIST		
RADIO TECHNICAL REQUIREMENTS SPECIFICATION		•••••
Appendix A): 6dB Occupied Bandwidth	<u></u>	1
Appendix B): Conducted Peak Output Power		
Appendix C): Band-edge for RF Conducted Emissions		
Appendix D): RF Conducted Spurious Emissions		
Appendix E): Power Spectral Density		
Appendix F): Antenna Requirement		
Appendix G): AC Power Line Conducted Emission		
Appendix H): Restricted bands around fundamental frequency (Radia Appendix I) Radiated Spurious Emissions		
PHOTOGRAPHS OF TEST SETUP		



Page 6 of 52



5.2 Test Environmen	nt (see		
Operating Environment:	U	U	6
Temperature:	25.0 °C		
Humidity:	58 % RH		
Atmospheric Pressure:	1010mbar		0
		P. Y	R - 18

5.3 Test Condition

Test channel:

19-10-	Test Mode	Tx/Rx	10-10-	RF Channel			
~	Test Mode	IX/RX	Low(L)	Middle(M)	High(H)		
5	0501/		Channel	1 Channel 20	Channel 40		
	GFSK	2402MHz ~2480 MH	1z 2402MH	z 2440MHz	2480MHz		
	Transmitting mode:	Keep the EUT in transmitt rate.	ing mode with all kinc	of modulation and a	all kind of data		

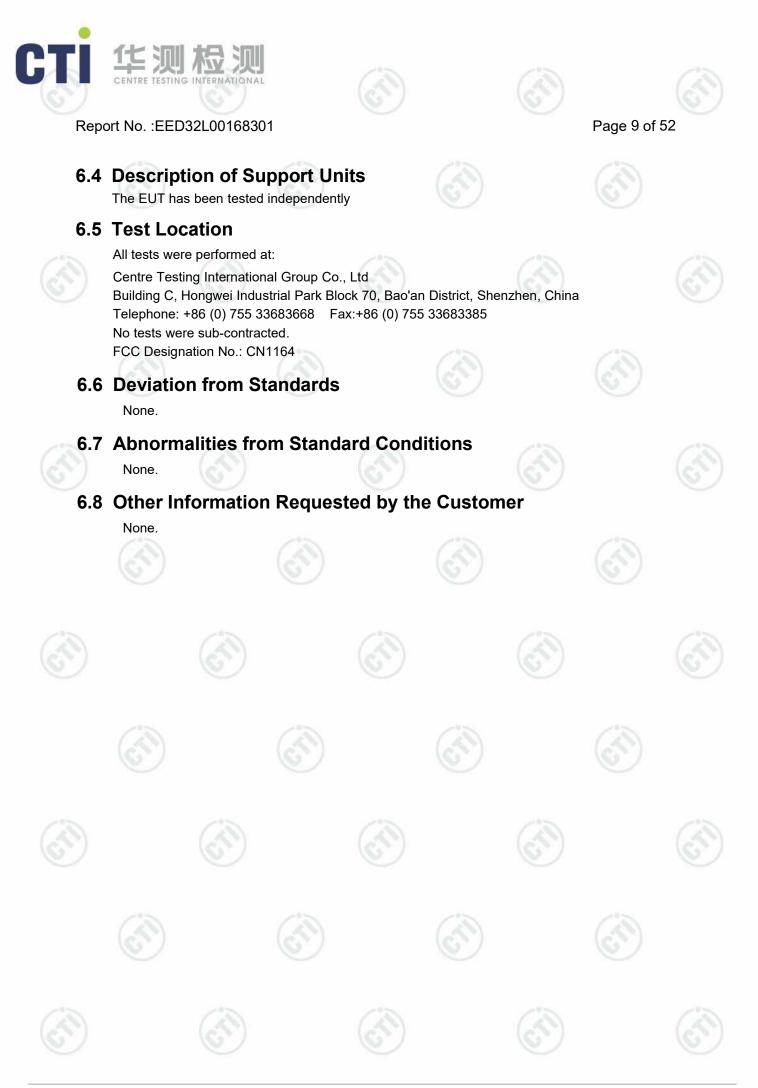
6 General Information

6.1 Client Information

Applicant:	Linkplay Technology Inc
Address of Applicant:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China
Manufacturer:	Linkplay Technology Inc
Address of Manufacturer:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China
Factory:	Linkplay Technology Inc
Address of Factory:	8F-8036, Qianren Building, No. 7, Yingcui Road, Jiangning District, Nanjing, China

6.2 General Description of EUT

Product Name:	Wireless Smart Audio Module	15		
Model No.(EUT):	A98ML, A98L, A98L-12, A98L-22, A	A98L-55, A98ML-12, A	98ML-22, A98ML-55	
Test Model No.:	A98ML			
Trade mark:	Linkplay			
EUT Supports Radios application:	Bluetooth 4.1	(cr)	6)
Power Supply:	DC 5V	\sim	C	6
Sample Received Date:	Jun. 26, 2019			
Sample tested Date:	Jun. 26, 2019 to Aug. 16, 2019		15	
		100		



Page 8 of 52

6.3 Product Specification subjective to this standard

Operation F	requency:	2402MH	z~2480MHz	V	/	e e				
Bluetooth V	ersion:	4.0	4.0							
Modulation	Technique:	FHSS	FHSS							
Modulation	Туре:	GFSK		1			(a			
Number of (Channel:	40	G		6		G			
Test Power	Grade:	Default S	Setting							
Test Softwa	are of EUT:	Linkplay	Factory Tool I	For Custom (manufacturer o	declare)				
Antenna Ty	pe and Gain:	Type: PI	FA antenna ; (Gain: 1.6dBi		13	8			
Test Voltag	e:	DC 5V		6		6	2			
Operation F	requency eac	h of channe		\sim		\sim				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz			
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz			
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz			
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz			
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz			
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz			
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz			
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz			
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz			
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz			

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	RF power, conducted	0.46dB (30MHz-1GHz)	
2	RF power; conducted	0.55dB (1GHz-18GHz)	
2 Dedicted Spurious emission test		4.3dB (30MHz-1GHz)	
3 R	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7 DC power voltages		0.026%	

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 12 of 52

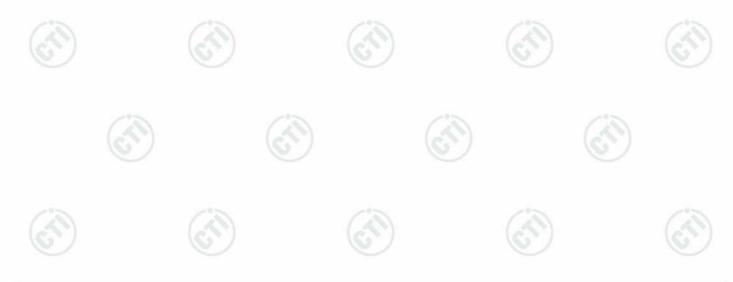
					1000
4	C	Conducted dist	urbance Tes	st	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

Page 13 of 52

	3M S				
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112	<u> </u>	01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002	$(\underline{\circ})$	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 14 of 52

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-20-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3)	01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

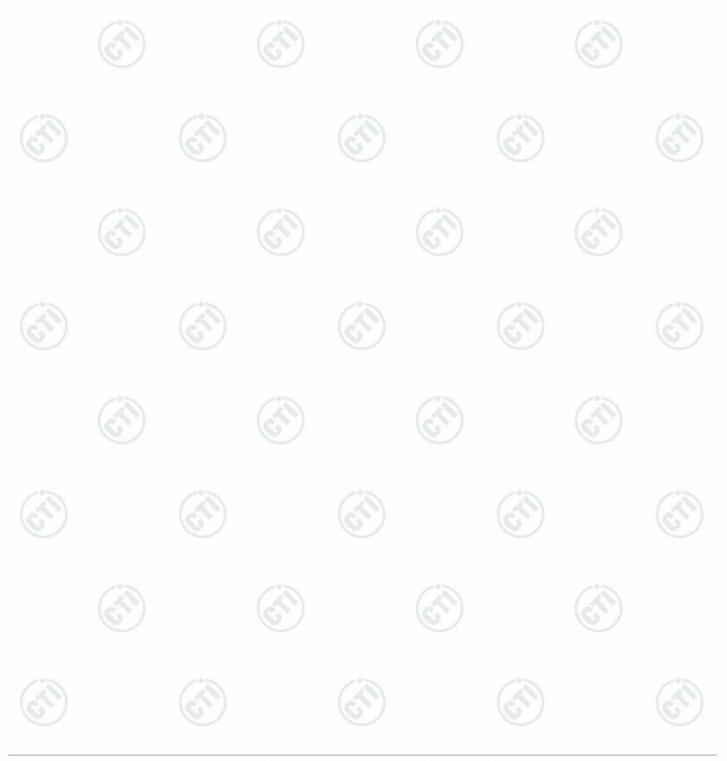

Page 15 of 52

Report No. :EED32L00168301

8 Radio Technical Requirements Specification

Reference documents for testing:

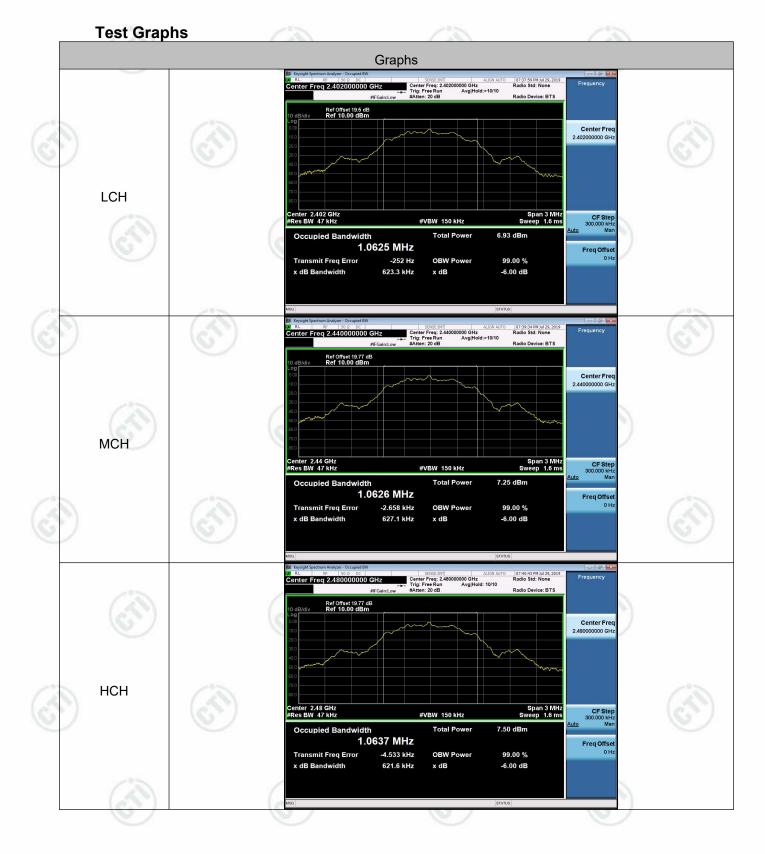
No. Identity				Document Title						
1	FCC F	Part15C	Subpart	C-Intentional Radiators						
2		3.10-2013		American National Standard for Testing Unlicesed Wireless Devices						
st R	esults List:	2	N 1	\mathbf{v}	1	(e)				
Test Requirement		Test me	ethod	Test item	Verdict	Note				
	15C Section .247 (a)(2)	ANSI C	63.10	6dB Occupied Bandwidth	PASS	Appendix A				
	15C Section .247 (b)(3)	ANSI C	63.10	Conducted Peak Output Power	PASS	Appendix B				
	15C Section 15.247(d) ANSI C63.10		Band-edge for RF Conducted Emissions	PASS	Appendix C					
	15C Section 5.247(d)	ANSI C	63.10	RF Conducted Spurious Emissions	PASS	Appendix D				
	15C Section 5.247 (e)	ANSI C	63.10) Power Spectral Density		Appendix E				
	15C Section 03/15.247 (c)	ANSI C	63.10	Antenna Requirement	PASS	Appendix F				
	15C Section 15.207	ANSI C	63.10	AC Power Line Conducted Emission	PASS	Appendix G				
15.205/15.209 Part15C Section		ANSI C63 10		Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H				
		ANSI C	63.10	Radiated Spurious Emissions	PASS	Appendix I)				
	S7)	G)	0	G)				



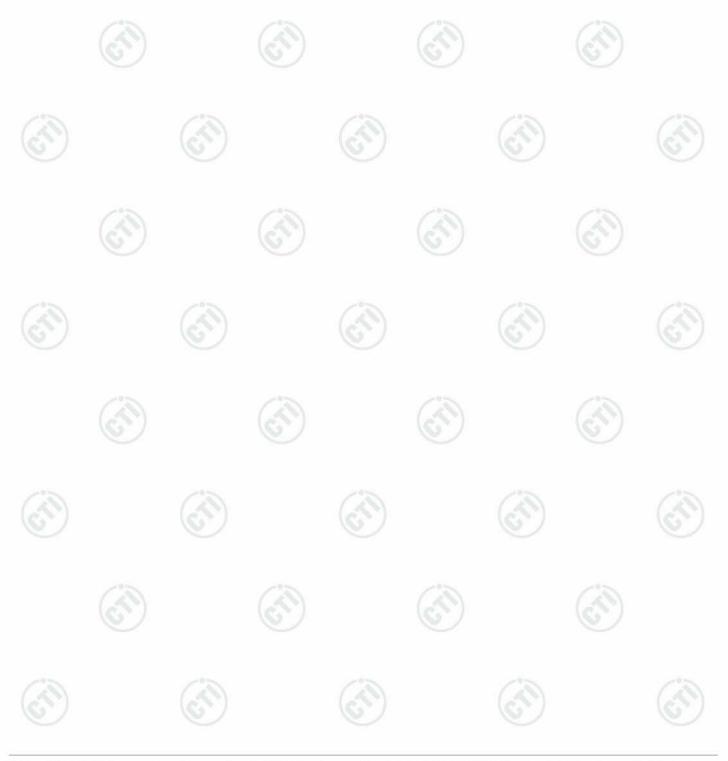
Page 16 of 52

Appendix A): 6dB Occupied Bandwidth

	Test Resul	<u>t</u>	\mathbb{V}	U	
	Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
12	BLE	LCH	0.6233	1.0625	PASS
(SP)	BLE	МСН	0.6271	1.0626	PASS
~	BLE	НСН	0.6216	1.0637	PASS


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 17 of 52

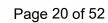


Page 18 of 52

Appendix B): Conducted Peak Output Power

	Test Result	I I I I I I I I I I I I I I I I I I I		\sim
	Mode	Channel	Conduct Peak Power[dBm]	Verdict
-	BLE	LCH	0.056	PASS
52	BLE	МСН	0.379	PASS
4	BLE	НСН	0.63	PASS

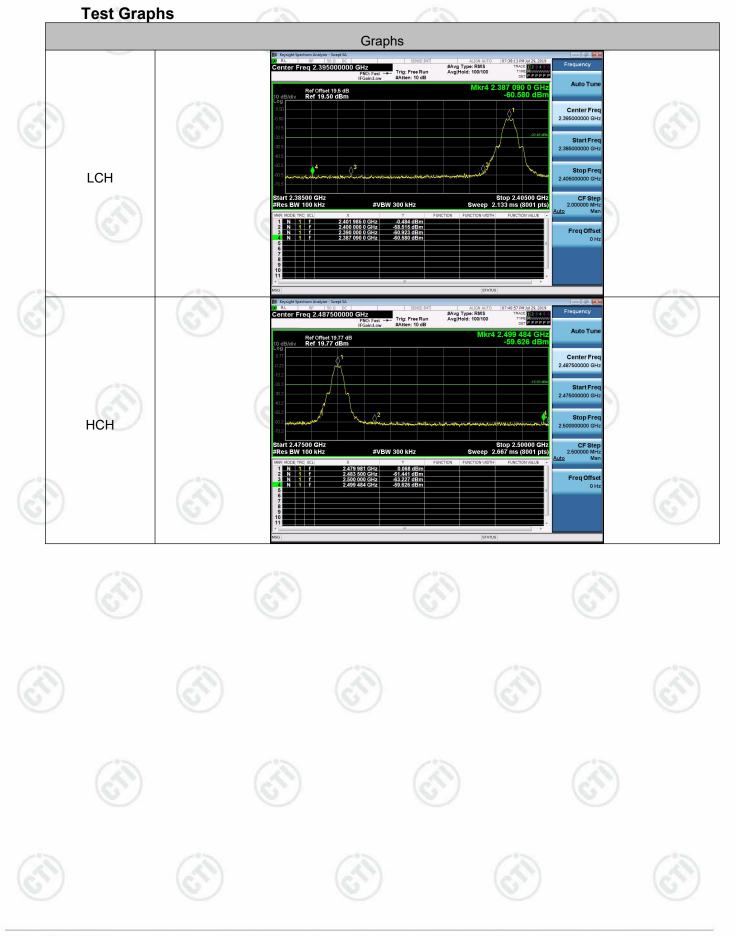
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

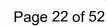

Page 19 of 52

Test Graphs Graphs RL RF 50 Ω DC
 Center Freq 2.402000000 GHz
 PN0 #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run #Atten: 10 dB Ref Offset 19.5 dB Ref 19.50 dBm 0.0 Center Fre 2.40200000 GH Start Fre 2.389500000 G Stop Fr 2.414500000 G LCH CF Ste Freq Offs Span 25.00 MH Sweep 1.067 ms (8001 pts enter 2.40200 GHz Res BW 2.0 MHz RL RF 50 Ω DC #Avg Type: RMS Avg|Hold: 100/100 Trig: Free Run #Atten: 10 dB 39 738 G 0.379 d Ref Offset 19.77 dB Ref 19.77 dBm Center Fre 2.44000000 GH Start Fr 2.427500000 G Stop Fr МСН CF Ste Freq Offs enter 2.44000 GHz Res BW 2.0 MHz Span 25.00 MH ep 1.067 ms (8001 pt #VBW 8.0 M RL RF 50 Ω DC enter Freq 2.480000000 GHz #Avg Type: RMS Avg|Hold: 100/100 , Trig: Free Run #Atten: 10 dB Auto Tu .479 76 0.63 Ref Offset 19.77 dB Ref 19.77 dBm Center Fre 2 48 000000 GH Start Fre 2.467500000 GH Stop Fr HCH Freq Off Center 2.48000 GH #Res BW 2.0 MHz Span 25.00 MH Sweep 1.067 ms (8001 pt #VBW 8.0 MH:

Appendix C): Band-edge for RF Conducted Emissions

Resi	IIt Table	S		(C)		(c)	
Mode	Channel	Carrier Power[d	IBm]	Max.Spurious L [dBm]	evel	Limit [dBm]	Verdict
BLE	LCH	-0.484	(\mathcal{S})	-60.580	(\mathcal{S})	-20.48	PASS
BLE	НСН	0.068		-59.626		-19.93	PASS


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com



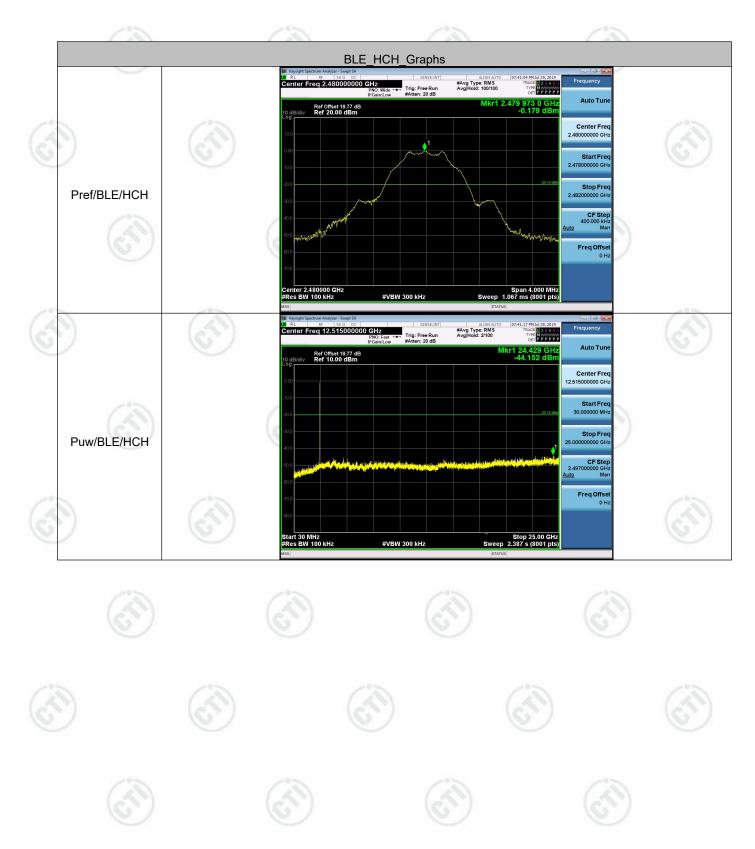
Page 21 of 52

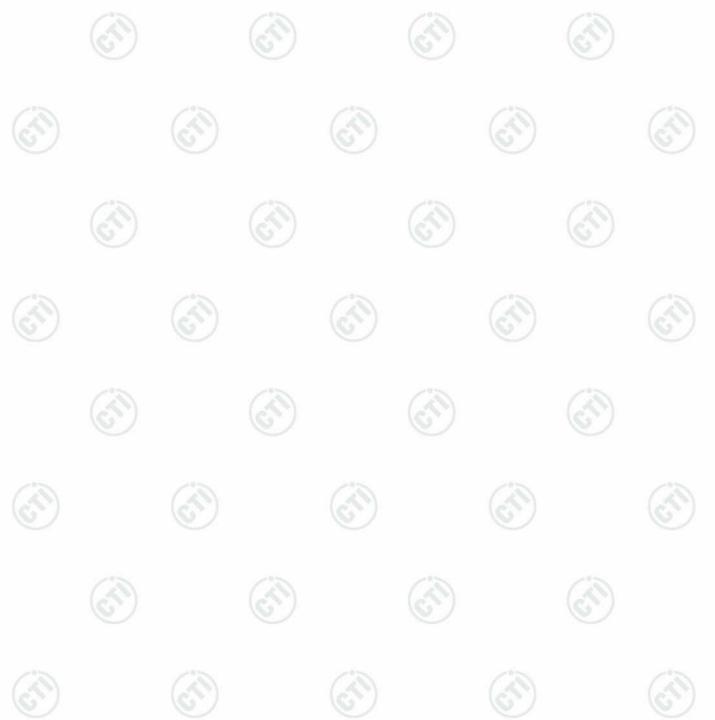
Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

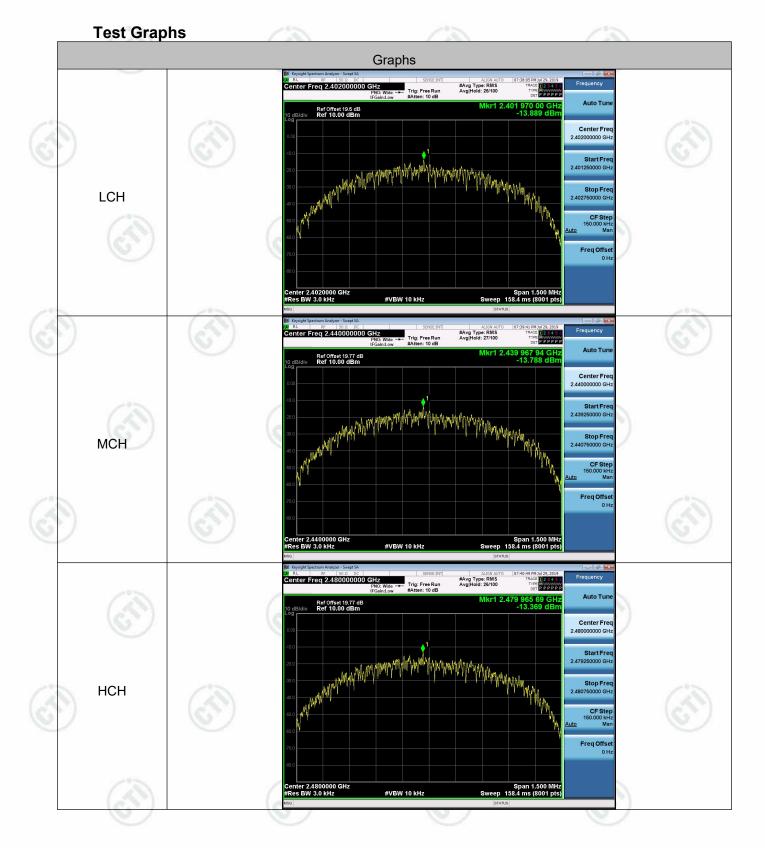
Appendix D): RF Conducted Spurious Emissions

Mod	de	Channel	Pref [dB	m]	Puw	[dBm]	Verdict
BLE	E	LCH	-0.769	1	<	imit	PASS
BLE		MCH	-0.438			imit	PASS
BLE	<u>S</u>	HCH	-0.179	(K)	<	<u>.imit</u>	PASS

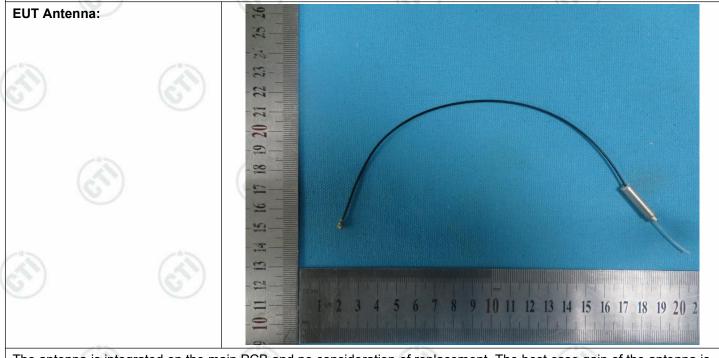
Page 24 of 52




Report No. :EED32L00168301


Result Table	1		1
Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-13.889	PASS
BLE	мсн	-13.788	PASS
BLE	НСН	-13.369	PASS

Page 27 of 52


Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

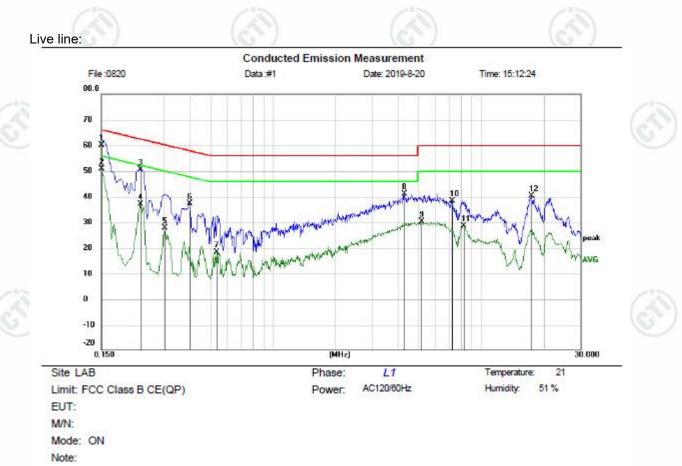
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.6 dBi.

Page 29 of 52

Appendix G): AC Power Line Conducted Emission

		1000	1000				
Test Procedure:	Test frequency range :150KHz	-30MHz					
	 The mains terminal disturbar The EUT was connected to Stabilization Network) whice power cables of all other u which was bonded to the gu for the unit being measured multiple power cables to a se exceeded. 	AC power source thr h provides a 50Ω/50 nits of the EUT were round reference plane d. A multiple socket o	ough a LISN 1 (Line $_{\rm H}$ + 5Ω linear imp connected to a sec in the same way a putlet strip was use	e Impedar edance. T cond LISN s the LISI d to conn			
(A)	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem					
	 The test was performed with EUT shall be 0.4 m from the reference plane was bonde 	e vertical ground refe	ence plane. The ve	ertical grou			
	1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.						
(cr)	5) In order to find the maximum of the interface cables r conducted measurement.						
Limit:		Limit (c					
	Frequency range (MHz)	Quasi-peak	Average	-			
0 6	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46	C			
	5-30	60	50				
	* The limit decreases linearly MHz to 0.50 MHz.	13	120	e range 0			
	NOTE : The lower limit is applied	cable at the transition	frequency				


Measurement Data

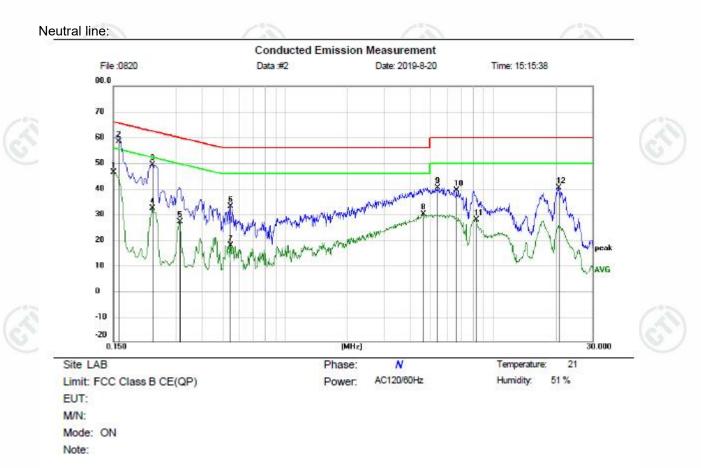
An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Reading Measure-Correct Freq. Limit Margin No. Mk. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.1500 50.05 9.97 60.02 66.00 -5.98 QP 2 0.1500 40.82 9.97 50.79 56.00 -5.21 AVG * 3 0.2310 40.64 10.04 50.68 62.41 -11.73 peak 4 0.2310 27.18 10.04 37.22 52.41 -15.19 AVG 5 0.3030 17.88 10.10 27.98 50.16 -22.18 AVG 6 0.3975 27.32 10.00 37.32 57.91 -20.59 peak 7 0.5378 8.45 10.05 18.50 46.00 -27.50 AVG 8 4.2540 31.37 9.83 41.20 56.00 -14.80 peak 9 5.1855 20.52 9.83 30.35 50.00 -19.65 AVG 10 7.2240 28.42 9.86 38.28 60.00 -21.72 peak 11 8.1960 18.81 9.89 28.70 50.00 -21.30 AVG 12 40.27 17.3895 30.31 9.96 60.00 -19.73 peak

> Page: 1

*:Maximum data x:Over limit I:over margin Reference Only


Hotline: 400-6788-333

Engineer Signature:

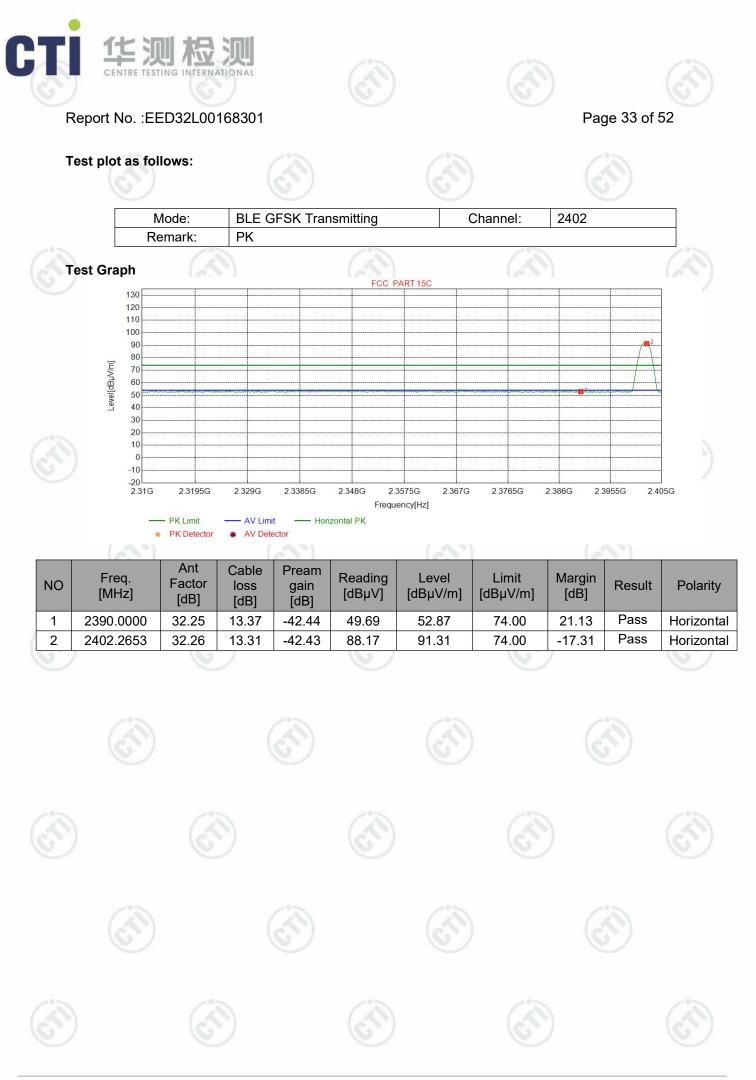
Page 31 of 52

(S

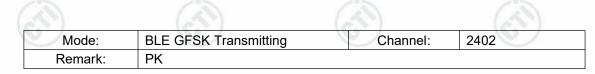
Reading Correct Measure-No. Mk. Freq. Factor Limit Margin Level ment MHz dBuV dB dBuV dBuV dB Detector Comment 0.1500 36.32 46.29 56.00 1 9.97 -9.71 AVG 2 48.47 65.52 -7.07 QP 0.1590 9.98 58.45 0.2310 39.31 10.04 49.35 62.41 -13.06 3 peak 22.28 52.41 -20.09 4 0.2310 10.04 32.32 AVG 5 0.3120 17.10 49.92 -22.73 10.09 27.19 AVG 0.5460 23.02 10.06 56.00 -22.92 6 33.08 peak 0.5460 7.85 10.06 17.91 46.00 -28.09 AVG 7 8 4.6140 20.27 9.83 30.10 46.00 -15.90 AVG 60.00 5.4015 30.65 9.83 40.48 -19.52 9 peak 10 6.6750 29.61 9.85 39.46 60.00 -20.54 peak 11 8.3085 17.89 9.90 27.79 50.00 -22.21 AVG 12 20.6924 30.54 9.93 40.47 60.00 -19.53 peak

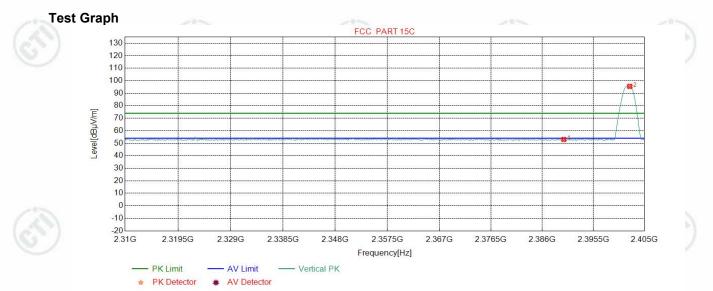
 *:Maximum data
 x:Over limit
 !:over margin
 Reference Only

 File :08201Data :#2
 Page: 1
 Engineer Signature:


 Notes:
 1. The following Quasi-Peak and Average measurements were performed on the EUT:
 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

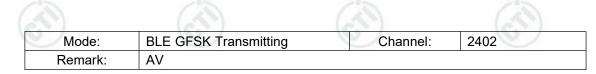

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
	Ab aux 40115	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
Fest Procedure:	Below 1GHz test proced	ure as below:	1 and 1		
	 a. The EUT was placed of at a 3 meter semi-aner determine the position b. The EUT was set 3 meter semi-aner determine the position b. The EUT was set 3 meter was mounted on the to was mounted on the to the antenna height is determine the maximum polarizations of the an polarizations of the antenna was tuned the antenna was tuned was turned from 0 deg e. The test-receiver system Bandwidth with Maximum polarizations of the antenna was turned from 0 deg 	choic camber. To of the highest ra- eters away from op of a variable-h varied from one im value of the fi tenna are set to mission, the EUT d to heights from prees to 360 deg em was set to Pe	he table wa adiation. the interfer neight anter meter to for eld strengtl make the r was arran 1 meter to rees to find	ence-recei nna tower. our meters n. Both hor neasureme ged to its 4 meters a the maxin	360 degrees wing antenna above the gra- izontal and v ent. worst case ar and the rotata num reading.
	f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest	end of the restric npliance. Also m rum analyzer plo	easure any	emission:	s in the restri
	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the logical strangement of the fully and the second strangement of the second strangement o	end of the restric npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i	s in the restri ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas
.imit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abot to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the line. The radiation measure Transmitting mode, an j. Repeat above procedu 	end of the restric npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as ures until all freq	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highes rmed in X, kis position uencies me	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri ower and mod Anechoic Ch .5 meter(Abo positioning for t is worse cas
.imit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the logical strangement of the fully and the second strangement of the second strangement o	end of the restric npliance. Also m trum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X as	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me	v emissions for each por meter to 1 ter). t channel Y, Z axis p ing which i easured wa	s in the restri- ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark
.imit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the lei. The radiation measure Transmitting mode, an j. Repeat above procedu 	end of the restric npliance. Also m rum analyzer plo channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfo id found the X av ures until all freq Limit (dBµV	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark eak Value
Limit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abot to fully Anechoic Chan 18GHz the distance is h. Test the EUT in the letit. The radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 	end of the restrict npliance. Also m trum analyzer plot channel ure as below: ve is the test site nber change form 1 meter and tab owest channel , ements are perfor d found the X as ures until all freq Limit (dBµV 40.0	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	rom Semi- for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Rer Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Abd positioning for t is worse cas as complete. mark
.imit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between above to fully Anechoic Channa 18GHz the distance is h. Test the EUT in the level is the end of the radiation measure Transmitting mode, and j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 	end of the restrict npliance. Also m irum analyzer plot channel ure as below: ve is the test site nber change forr 1 meter and tab owest channel , ements are perfor d found the X as ures until all freq Limit (dBµV 40.0	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Ab oositioning for t is worse cas as complete. mark eak Value eak Value
Limit:	 f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between aboto fully Anechoic Chan 18GHz the distance is h. Test the EUT in the letion is h. The radiation measure Transmitting mode, and j. Repeat above proceded Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 	end of the restrict npliance. Also m trum analyzer plot channel ure as below: ve is the test site nber change form 1 meter and tab owest channel , ements are perfor ad found the X as ures until all freq Limit (dBµV 40.0 43.1	easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0 0	v emissions for each po rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa Ren Quasi-pe Quasi-pe Quasi-pe	s in the restri- ower and mod Anechoic Ch .5 meter(Abd oositioning for t is worse cas as complete. mark eak Value eak Value eak Value

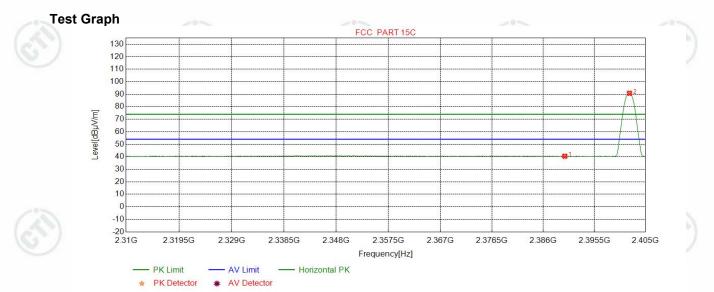


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 34 of 52

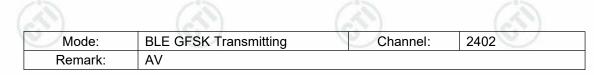
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	49.85	53.03	74.00	20.97	Pass	Vertical
2	2402.2653	32.26	13.31	-42.43	92.32	95.46	74.00	-21.46	Pass	Vertical
1.2	() () () () () () () () () ()	1.4					128			120

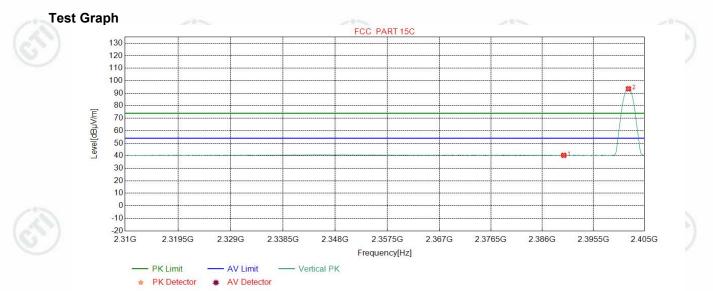




NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.26	40.44	54.00	13.56	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	87.63	90.77	54.00	-36.77	Pass	Horizontal
1.0		1.					128			1

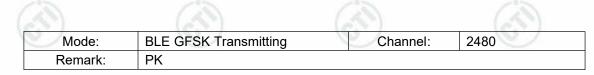






Page 36 of 52

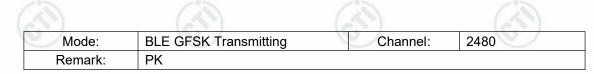
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	37.18	40.36	54.00	13.64	Pass	Vertical
2	2402.0275	32.26	13.31	-42.43	90.36	93.50	54.00	-39.50	Pass	Vertical
120	(1.5					18			

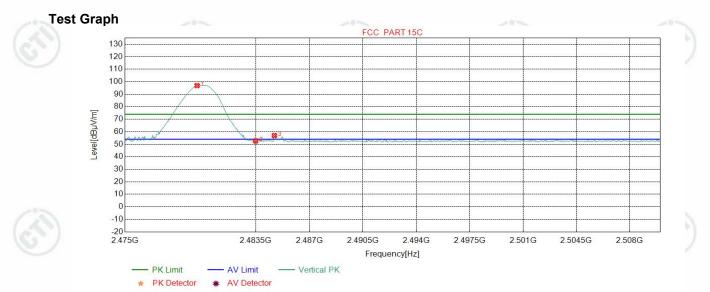



(N)

Page 37 of 52

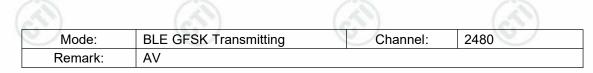
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	91.61	94.98	74.00	-20.98	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	48.57	51.93	74.00	22.07	Pass	Horizontal
12		14	0							

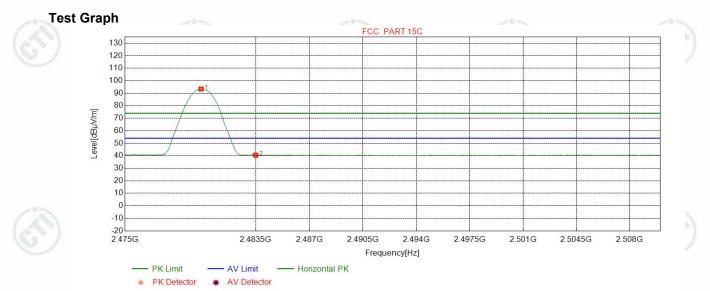




Page 38 of 52

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.6871	32.37	13.39	-42.39	93.52	96.89	74.00	-22.89	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	49.29	52.65	74.00	21.35	Pass	Vertical
3	2484.7247	32.38	13.37	-42.40	53.60	56.95	74.00	17.05	Pass	Vertical
S.	1	6	9	•	G		6	/		(ST)





NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9499	32.37	13.39	-42.39	90.00	93.37	54.00	-39.37	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.09	40.45	54.00	13.55	Pass	Horizontal
12		12					68			



Reading

[dBµV]

91.54

36.92

39.11

2485.2503

NO

1

2

3

Freq.

[MHz]

2479.9061

2483.5000

Note:

Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case ofGFSK modulation type in charge + transmitter mode.
 The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic

Level

[dBµV/m]

94.91

40.28

42.46

Limit

[dBµV/m]

54.00

54.00

54.00

Margin

[dB]

-40.91

13.72

11.54

Result

Pass

Pass

Pass

Polarity

Vertical

Vertical

Vertical

equation with a sample calculation is as follows:

Ant

Factor

[dB]

32.37

32.38

32.38

Cable

loss

[dB]

13.39

13.38

13.37

Pream

gain

[dB]

-42.39

-42.40

-42.40

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

Page 41 of 52

Report No. :EED32L00168301

Appendix I) Radiated Spurious Emissions

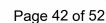
Receiver Setup:	En an	Detector			Demeril	
Receiver Setup.	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
C	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
		Peak	1MHz	3MHz	Peak	
6)	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Limit:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
 f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.


Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
 h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

					_
Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)	
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300	
0.490MHz-1.705MHz	24000/F(kHz)	-	205	30	2
1.705MHz-30MHz	30	-		30	đ
30MHz-88MHz	100	40.0	Quasi-peak	3	
88MHz-216MHz	150	43.5	Quasi-peak	3	
216MHz-960MHz	200	46.0	Quasi-peak	3	
960MHz-1GHz	500	54.0	Quasi-peak	3	
Above 1GHz	500	54.0	Average	3	
Note: 15.35(b), Unless emissions is 20df applicable to the peak emission lev	3 above the maxir equipment under	num perm test. This p	itted average o	emission limit	

Radiated Spurious Emissions test Data:

Radiated Emission below 1GHz BLE GFSK Transmitting Mode: Channel: 2402 Cable Ant Pream Freq. Reading Limit Level Margin NO Result Factor loss gain Polarity [MHz] [dBµV] [dBµV/m] [dBµV/m] [dB] [dB] [dB] [dB] 7.84 73.7514 8.29 1.00 -32.07 54.94 32.16 40.00 Pass 1 Н 2 172.8953 8.61 1.54 -31.96 50.03 28.22 43.50 15.28 Pass Н 14.39 42.67 27.45 3 354.3034 2.25 -31.86 46.00 18.55 Pass Н 4 15.11 2.34 -31.84 43.05 28.66 17.34 Pass Н 386.6077 46.00 Н 5 687.5318 19.70 3.14 -32.06 34.64 25.42 46.00 20.58 Pass 6 830.4270 21.27 3.47 -31.97 36.77 29.54 46.00 16.46 Pass Н 7 73.7514 8.29 1.00 -32.07 49.23 26.45 40.00 13.55 Pass V 8 10.93 1.22 -32.07 38.65 18.73 43.50 24.77 Pass V 106.6377 9 184.3424 9.41 1.59 -31.98 41.18 20.20 43.50 23.30 Pass V 10 208.8859 11.13 1.71 -31.94 49.33 30.23 43.50 13.27 Pass V V 11 401.6442 15.43 2.39 -31.78 37.37 23.41 46.00 22.59 Pass 12 2.91 -31.95 22.84 V 584.9925 18.70 33.50 23.16 46.00 Pass

	Mode	ə:	BLE GF	SK Tran	smitting		Channel:		2440		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	73.7514	8.29	1.00	-32.07	54.24	31.46	40.00	8.54	Pass	Н
2	2	170.6641	8.49	1.53	-31.96	50.97	29.03	43.50	14.47	Pass	Н
	3	308.6119	13.39	2.09	-31.90	44.14	27.72	46.00	18.28	Pass	Н
	4	399.8980	15.40	2.38	-31.76	42.07	28.09	46.00	17.91	Pass	Н
	5	477.8938	16.65	2.61	-31.90	34.92	22.28	46.00	23.72	Pass	Н
	6	687.5318	19.70	3.14	-32.06	35.70	26.48	46.00	19.52	Pass	Н
	7	67.5428	9.64	0.94	-32.05	46.17	24.70	40.00	15.30	Pass	V
	8	106.3466	10.94	1.21	-32.07	40.09	20.17	43.50	23.33	Pass	V
	9	208.8859	11.13	1.71	-31.94	49.49	30.39	43.50	13.11	Pass	V
Ī	10	352.2662	14.35	2.24	-31.86	39.00	23.73	46.00	22.27	Pass	V
63	11	600.0290	19.00	2.96	-31.99	33.54	23.51	46.00	22.49	Pass	V
4	12	844.9785	21.44	3.50	-31.82	32.66	25.78	46.00	20.22	Pass	V
	12										

Page 43 of 52

200			1.00	0 Pros		107				
Mode	e:	BLE GF	SK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	73.7514	8.29	1.00	-32.07	55.51	32.73	40.00	7.27	Pass	Н
2	174.2534	8.68	1.55	-31.97	51.32	29.58	43.50	13.92	Pass	Н
3	337.7148	14.03	2.19	-31.81	42.39	26.80	46.00	19.20	Pass	Н
4	399.0249	15.38	2.38	-31.77	42.21	28.20	46.00	17.80	Pass	Н
5	687.5318	19.70	3.14	-32.06	35.86	26.64	46.00	19.36	Pass	Н
6	974.9715	22.55	3.75	-30.95	32.09	27.44	54.00	26.56	Pass	Н
7	73.7514	8.29	1.00	-32.07	48.39	25.61	40.00	14.39	Pass	V
8	75.6916	7.92	1.01	-32.06	45.45	22.32	40.00	17.68	Pass	V
9	208.8859	11.13	1.71	-31.94	49.64	30.54	43.50	12.96	Pass	V
10	399.9950	15.40	2.38	-31.76	38.51	24.53	46.00	21.47	Pass	V
11	649.9890	19.40	3.10	-32.07	35.13	25.56	46.00	20.44	Pass	V
12	879.7080	21.86	3.55	-31.66	34.30	28.05	46.00	17.95	Pass	V
1		V								

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Page 44 of 52

Report No. :EED32L00168301

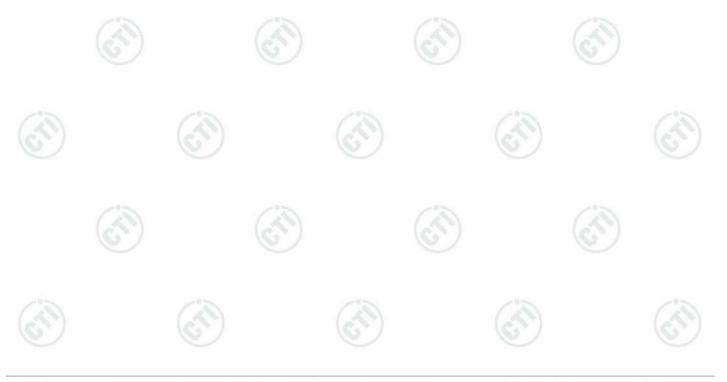
	Tran	ismitter Em	ission a	above	1GHz				100		
	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2402		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	1919.2919	31.17	3.42	-42.65	52.60	44.54	74.00	29.46	Pass	Н
di la	2	3048.0032	33.22	4.83	-42.09	49.82	45.78	74.00	28.22	Pass	Н
2	3	4804.0000	34.50	4.55	-40.66	43.26	41.65	74.00	32.35	Pass	Н
-	4	7206.0000	36.31	5.81	-41.02	43.10	44.20	74.00	29.80	Pass	Н
	5	9578.4386	37.63	6.69	-40.79	45.37	48.90	74.00	25.10	Pass	Н
	6	12010.0000	39.31	7.60	-41.21	43.46	49.16	74.00	24.84	Pass	Н
	7	1275.0275	28.18	2.72	-42.82	56.73	44.81	74.00	29.19	Pass	V
	8	3040.0027	33.22	4.85	-42.10	51.11	47.08	74.00	26.92	Pass	V
	9	4804.0000	34.50	4.55	-40.66	43.39	41.78	74.00	32.22	Pass	V
	10	7206.0000	36.31	5.81	-41.02	45.21	46.31	74.00	27.69	Pass	V
	11	9608.0000	37.64	6.63	-40.76	43.67	47.18	74.00	26.82	Pass	V
5	12	12053.6036	39.33	7.59	-41.20	45.29	51.01	74.00	22.99	Pass	V
ε.	1										

	Mode	e:	BLE GF	SK Tran	smitting		Channel:		2440		
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	1919.4919	31.17	3.42	-42.65	52.85	44.79	74.00	29.21	Pass	Н
-	2	4880.0000	34.50	4.80	-40.60	43.05	41.75	74.00	32.25	Pass	Н
2	3	7320.0000	36.42	5.85	-40.92	42.56	43.91	74.00	30.09	Pass	Н
5	4	9760.0000	37.70	6.73	-40.62	42.74	46.55	74.00	27.45	Pass	Н
	5	11694.5796	39.06	7.48	-41.31	47.42	52.65	74.00	21.35	Pass	Н
	6	12300.6200	39.48	7.73	-41.14	45.83	51.90	74.00	22.10	Pass	Н
	7	3204.0136	33.28	4.63	-41.99	50.10	46.02	74.00	27.98	Pass	V
	8	4880.0000	34.50	4.80	-40.60	42.48	41.18	74.00	32.82	Pass	V
	9	6401.2267	35.88	5.32	-41.17	46.70	46.73	74.00	27.27	Pass	V
	10	7320.0000	36.42	5.85	-40.92	42.72	44.07	74.00	29.93	Pass	V
	11	9760.0000	37.70	6.73	-40.62	43.78	47.59	74.00	26.41	Pass	V
	12	12200.0000	39.42	7.67	-41.17	42.69	48.61	74.00	25.39	Pass	V
			(2)			(2)		(1)			5

Page 45 of 52

- 0				0.000		107		20-		
Mod	e:	BLE GF	SK Tran	smitting		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	1920.0920	31.17	3.42	-42.65	52.79	44.73	74.00	29.27	Pass	Н
2	4960.0000	34.50	4.82	-40.53	43.80	42.59	74.00	31.41	Pass	Н
3	7440.0000	36.54	5.85	-40.82	42.24	43.81	74.00	30.19	Pass	Н
4	9920.0000	37.77	6.79	-40.48	43.65	47.73	74.00	26.27	Pass	Н
5	12400.0000	39.54	7.86	-41.12	44.42	50.70	74.00	23.30	Pass	Н
6	13817.7212	39.59	8.42	-41.24	45.89	52.66	74.00	21.34	Pass	Н
7	2959.7960	33.14	4.43	-42.15	50.68	46.10	74.00	27.90	Pass	V
8	4960.0000	34.50	4.82	-40.53	44.25	43.04	74.00	30.96	Pass	V
9	7440.0000	36.54	5.85	-40.82	42.87	44.44	74.00	29.56	Pass	V
10	9920.0000	37.77	6.79	-40.48	42.87	46.95	74.00	27.05	Pass	V
11	12400.0000	39.54	7.86	-41.12	43.32	49.60	74.00	24.40	Pass	V
12	14219.7480	39.92	8.63	-41.71	46.11	52.95	74.00	21.05	Pass	V
1				•		•		•		

Note:


1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

