

FCC Test Report

Test Report
On Behalf of
Intracom Asia Co., Ltd.
For
Wireless mouse
Model No.: M7034

FCC ID: 2ADQY-180580MS

Prepared For: Intracom Asia Co., Ltd.

4F., No.77, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221, Taiwan

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Aug. 19, 2024 ~ Aug. 26, 2024

Date of Report: Aug. 26, 2024

Report Number: HK2408194738-2E

Page 2 of 27

Test Result Certification

Applicant's Name: Intracom Asia Co., Ltd.

4F., No.77, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 221,

Taiwan

Manufacturer's Name...... Guangzhou Maipai Electronics Co., Ltd.

Qiaonan Street, Panyu District of Guangzhou, China

Product Description

Trade Mark.....: N/A

Product Name: Wireless mouse

Model and/or Type Reference..: M7034

FCC Rules and Regulations Part 15 Subpart C Section 15.249

Report No.: HK2408194738-2E

Standards ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test....:

Date (s) of Performance of Tests...... Aug. 19, 2024~ Aug. 26, 2024

Date of Issue...... Aug. 26, 2024

Test Result Pass

Testing Engineer

Len lian

Len Liao

Technical Manager

GVOY

Vilan

Sliver Wan

Authorized Signatory Jason Whou

Jason Zhou

Table of Contents	Page
1 . Test Summary	5
1.1 Test Procedures and Results	5
1.2 Information of the Test Laboratory	5 STRUG
1.3 Measurement Uncertainty	MINAKAL 5
2 . General Information	6
2.1 General Description of EUT	JAK TESTING
2.2 Carrier Frequency of Channels	HUAK TES 7
2.3 Operation of EUT during Testing	_{muc} 7
2.4 Description of Test Setup	8
2.5 Description of Support Units	HUAK TESTING HUAK TESTING
2.5 Measurement Instruments List	10
3 . Conducted Emissions Test	11
3.1 Conducted Power Line Emission Limit	TESTING 115
3.2 Test Setup	Man 11
3.3 Test Procedure	11
3.4 Test Result	JAK 112
4. Radiated Emission Test	6 min 13
4.1 Radiation Limit	13
4.2 Test Setup	13
4.3 Test Procedure	MARTE MARTIN
4.4 Test Result	14
5. Band Edge	20
5.1 Limits	20
5.2 Test Procedure	20
5.3 Test Result	21
6. Occupied Bandwidth Measurement	23
6.1 Test Setup	23
6.2 Test Procedure	23
6.3 Measurement Equipment Used	23
6.4 Test Result	(a) Market (b) 23
7. Antenna Requirement	25
8. Photographs of Test	26
9 Photos of the FUT	27 MAKTES

** Modified History **

TO LOS TO THE PERSON TO THE PE	AND TO THE PERSON OF THE PERSO	The second secon			
Revision	Description	Issued Data	Remark		
Revision 1.0	Initial Test Report Release	Aug. 26, 2024	Jason Zhou		
10.0	2		2.1		
STING	TIME	STING	STING		

1. Test Summary

1.1 Test Procedures and Results

DESCRIPTION OF TEST	SECTION NUMBER	RESULT
CONDUCTED EMISSIONS TEST	15.207	N/A
RADIATED EMISSION TEST	15.249(a)/15.209	COMPLIANT
BAND EDGE	15.249(d)/15.205	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	15.215(c)	COMPLIANT
ANTENNA REQUIREMENT	15.203	COMPLIANT

1.2 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

1.3 Measurement Uncertainty

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.71dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 3.90dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.28dB, k=2

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. General Information

2.1 General Description of EUT

Equipment:	Wireless mouse
Model Name:	M7034
Series Model:	N/A
Model Difference:	N/A
FCC ID:	2ADQY-180580MS
Antenna Type:	PCB Antenna
Antenna Gain:	1.4dBi
Operation Frequency:	2405-2470MHz
Number of Channels:	16CH
Modulation Type:	GFSK
Power Source:	DC1.5V from Battery
Power Rating:	DC1.5V from Battery

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2 Carrier Frequency of Channels

Channel	Frequency (MHz)	Channel	Frequency (MHz)	
01	2405	09	2440	
02	2409	10	2445	
03	2413	11	2450	
04	2417	12	2455	
05	2422	13	2460	
06	2426	14	2465	
07	2430	15	2467	
08	2435	16	2470	
	11/2	10.37		

2.3 Operation of EUT during Testing

Operating Mode

The mode is used: Transmitting mode

Low Channel: 2405MHz Middle Channel: 2435MHz High Channel: 2470Hz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4 Description of Test Setup

Operation of E	UT during Radiat	ion testing:	MAKTES .	MAKTES!	MINNES TO
JAK TESTING	NUA TOTAL	HUAKTESTING			
STING	EUT	AK TESTING			
O H	TESTING THUME	ESTING THE	ESTING (HUAKTESTING	STING NA

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Equipment Trade Mark		Specification	Note	
STING	Wireless mouse	N/A	M7034	N/A	EUT	
	MAKTESTIN	Man House	MAKTESTILL	Mary and	KTESTING	
	0	P/m	0	THE ON		
		A HUAKTED IN		HURKTESS	.0.	
NK TES	INVE I AK TESTING	. o.k	ESTING	W.T.STING	WAK TESTING	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

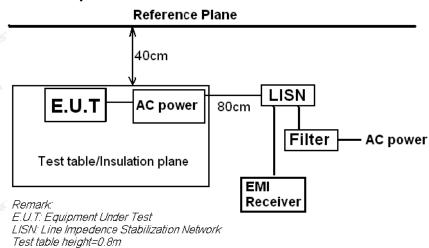
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.5 Measurement Instruments List

2.5	weasurement instru	ments List				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	L.I.S.N.	R&S	ENV216	HKE-002	2024/02/20	1 Year
2	L.I.S.N.	R&S	ENV216	HKE-059	2024/02/20	1 Year
3	EMI Test Receiver	R&S	ESR	HKE-005	2024/02/20	1 Year
4	Spectrum analyzer	Agilent	N9020A	HKE-025	2024/02/20	1 Year
5	Spectrum analyzer	R&S	FSV3044	HKE-126	2024/02/20	1 Year
6	Preamplifier	EMCI	EMC051845S	HKE-006	2024/02/20	1 Year
7	Preamplifier	Schwarzbeck	BBV 9743	HKE-016	2024/02/20	1 Year
8	Preamplifier	A.H. Systems	SAS-574	HKE-182	2024/02/20	1 Year
9	6dB Attenuator	Pasternack	6db	HKE-184	2024/02/20	1 Year
10	EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	2024/02/20	1 Year
11	Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	2024/02/21	2 Year
12	Loop Antenna	COM-POWER	AL-130R	HKE-014	2024/02/21	2 Year
13	Horn Antenna	Schwarzbeck	9120D	HKE-013	2024/02/21	2 Year
14	EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	1 STAV	1
15	EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	MAK	1
16	RF Automatic control unit	Tonscend	JS0806-2	HKE-060	2024/02/20	1 Year
17	High pass filter unit	Tonscend	JS0806-F	HKE-055	2024/02/20	1 Year
18	Wireless Communication Test Set	R&S	CMU200	HKE-026	2024/02/20	1 Year
19	Wireless Communication Test Set	R&S	CMW500	HKE-027	2024/02/20	1 Year
20	High-low temperature chamber	Guangke	HT-80L	HKE-118	2024/06/10	1 Year
21	Temperature and humidity meter	Boyang	HTC-1	HKE-075	2024/06/10	1 Year
22	RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	O INDAN	1
23	10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	2024/02/20	1 Year
24	RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	TESTING I MET	21111

3. Conducted Emissions Test

3.1 Conducted Power Line Emission Limit


For unintentional device, according to § 15.107(a) Line Conducted Emission Limits is as following.

		Maximum RF Line Voltage (dBμV)					
	Frequency (MHz)	CLAS	SS A	CLASS B			
I	(111112)	Q.P.	Ave.	Q.P.	Ave.		
	0.15 - 0.50	79	66	66-56*	56-46*		
I	0.50 - 5.00	73	60	56	46		
	5.00 - 30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency.

For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 Test Setup

3.3 Test Procedure

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

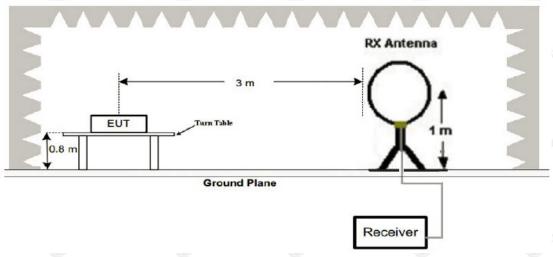
3.4 Test Result

Not applicable.

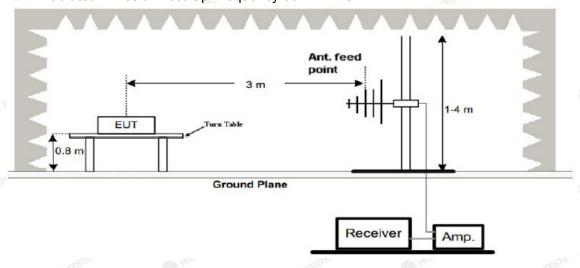
Note: EUT Power Supply by Battery Powered, so this test item not applicable.

4. Radiated Emission Test

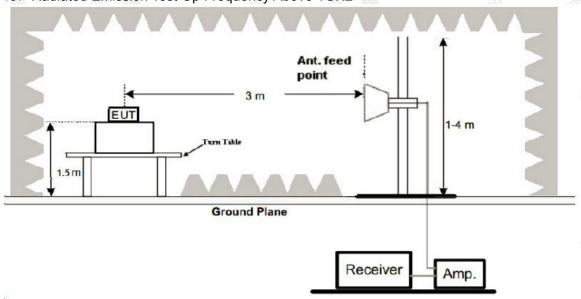
4.1 Radiation Limit


For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Distance	Radiated	Radiated
(MHz)	(Meters)	(dBµV/m)	(µV/m)
0.009-0.490	300	20log 2400/F (kHz)	2400/F (kHz)
0.490-1.705	30	20log 24000/F (kHz)	24000/F (kHz)
1.705-30	30	20log 30	30
30-88	3	10 W	100
88-216	3	43.5	150
216-960	TESTING 3	46	200
Above 960	G HUM 3	54	500


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup


(1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

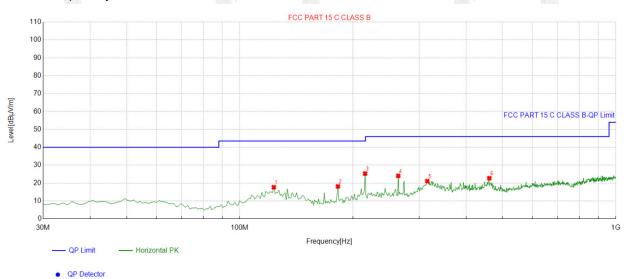
4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

Note:

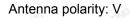
For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 Test Result


PASS

All the test modes completed for test. The worst case of Radiated Emission is CH 01; the test data of this mode was reported.

Below 1GHz Test Results:


Antenna polarity: H



	Suspe	Suspected List								
H	NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalasita
T	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	123.21321	-16.28	33.94	17.66	43.50	25.84	100	103	Horizontal
	2	182.44244	-15.91	34.05	18.14	43.50	25.36	100	93	Horizontal
3	3	215.45545	-14.72	40.03	25.31	43.50	18.19	100	148	Horizontal
	4	264.00400	-13.15	37.20	24.05	46.00	21.95	100	176	Horizontal
	5	315.46546	-11.40	32.49	21.09	46.00	24.91	100	134	Horizontal
_	6	461.11111	-8.91	31.64	22.73	46.00	23.27	100	235	Horizontal

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Suspected List										
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
1	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
đ	1	78.548549	-17.92	32.54	14.62	40.00	25.38	100	299	Vertical
	2	127.09709	-17.13	37.13	20.00	43.50	23.50	100	145	Vertical
	3	167.87787	-17.31	30.58	13.27	43.50	30.23	100	100	Vertical
	4	215.45545	-14.72	30.73	16.01	43.50	27.49	100	359	Vertical
	5	384.40440	-9.06	30.74	21.68	46.00	24.32	100	194	Vertical
	6	460.14014	-8.95	32.04	23.09	46.00	22.91	100	337	Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level;

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
<u></u>	3 <u> </u>	THE O
of HUANTED	ag m/l	KTE - 16
ALTESTING WAY TESTING	JAK TESTING - MAK TESTIN	WANTESTING - WANTESTING
<u> </u>	(a) 110 (b) 110 (c) 11	

Note: 1. Emission Level=Reading+ Cable loss+ Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1 GHz Test Results:

Report No.: HK2408194738-2E

CH Low (2405MHz)

Horizontal:

i ionzontai.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2405	103.13	-5.84	97.29	114	-16.71	peak
2405	86.65	-5.84	80.81	94	-13.19	AVG
4810	54.82	-3.64	51.18	74 HUAK	-22.82	peak
4810	41.09	-3.64	37.45	54	-16.55	AVG
7215	52.47	-0.95	51.52	74, 155 1111	-22.48	peak
7215	40.98	-0.95	40.03	54	-13.97	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits 💍 🗥	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2405	105.16	-5.84	99.32	114	-14.68	peak
2405	83.73	-5.84	77.89	94	-16.11	AVG
4810	54.18	-3.64	50.54	74	-23.46	peak
4810	42.96	-3.64	39.32	54	-14.68	AVG
7215	52.33	-0.95	51.38	74	-22.62	peak
7215	41.53	-0.95	40.58	54	-13.42	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

CH Middle (2435MHz)

Horizontal:

TOTIZOTICAL.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2435	106.96	-5.71	101.25	114	-12.75	peak
2435	76.75	-5.71	71.04	94	-22.96	AVG
4870	53.84	-3.51	50.33	74	-23.67	peak
4870	43.03	-3.51	39.52	54	-14.48	AVG
7305	50.62	-0.82	49.8	74	-24.2	peak
7305	43.09	-0.82	42.27	54	-11.73	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2435	104.15	-5.71	98.44	114	-15.56	peak
2435	82.94	-5.71	77.23	94	-16.77	AVG
4870	56.83	-3.51	53.32	74	-20.68	peak
4870	44.39	-3.51	40.88	54	-13.12	AVG
7305	53.61	-0.82	52.79	74	-21.21	peak
7305	42.52	-0.82	41.7	54	-12.3	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor;

Margin = Level-Limit

CH High (2470MHz)

Horizontal:

o.i.zo.i.tai.						
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2470	106.13	-5.65	100.48	114	-13.52	peak
2470	81.49	-5.65	75.84	94	-18.16	AVG
4940	55.25	-3.43	51.82	74	-22.18	peak
4940	43.76	-3.43	40.33	54	-13.67	AVG
7410	52.81	-0.75	52.06	74 STIM	-21.94	peak
7410	43.04	-0.75	42.29	54	-11.71	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

vertical.	-a1G		-AIG	nIG.	-nIG	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2470	106.92	-5.65	101.27	114	-12.73	peak
2470	81.37	-5.65	75.72	94	-18.28	AVG
4940	53.75	-3.43	50.32	74	-23.68	peak
4940	46.84	-3.43	43.41	54	-10.59	AVG
7410	51.19	-0.75	50.44	74	-23.56	peak
7410	43.97	-0.75	43.22	54	-10.78	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark :

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4)The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.
- (7) All modes of operation were investigated and the worst-case emissions are reported.

5. Band Edge

5.1 Limits

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 Test Procedure

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW to 1MHz and VBW to 3MHz, to measure the conducted peak band edge.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.3 Test Result

PASS

Radiated Band Edge Test:

Operation Mode: TX CH Low (2405MHz)

Horizontal (Worst case):

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	56.85	-5.81	51.04	74	-22.96	peak
2310	I I	-5.81	N HOM	54	HUAK /	AVG
2390	55.29	-5.84	49.45	74	-24.55	peak
2390	TESMIG	-5.84	ST NG /	^{√6} 54	TESTING	AVG
2400	51.13	-5.84	45.29	74	-28.71	peak
2400	1	-5.84	1	54	TING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	57.19	-5.81	51.38	74	-22.62	peak
2310	HUAK I	-5.81	HUAK	54	1	AVG
2390	55.28	-5.84	49.44	74	-24.56	peak
2390	TESTING /	-5.84	/ TESTING	54	1	AVG
2400	53.91	-5.84	48.07	74	-25.93	peak
2400	1	-5.84	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High (2470MHz)

Horizontal (Worst case):

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data star Turis
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.59	-5.65	48.94	74	-25.06	peak
2483.50	TESTING /	-5.65	/ TESTING	54	Marie 1	AVG
2500.00	50.18	-5.65	44.53	74	-29.47	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Data at My Trus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.94	-5.65	48.29	74	-25.71	peak
2483.50	1	-5.65	1 HAVE I	54	1	AVG
2500.00	53.72	-5.65	48.07	74 TEST	-25.93	peak
2500.00	MAK TESTING (1)	-5.65	STING / MAKTES	54	NK TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

6. Occupied Bandwidth Measurement

6.1 Test Setup

Same as Radiated Emission Measurement

6.2 Test Procedure

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10 section 6.9.2: RBW= 10KHz. VBW= 30KHz, Span= 5MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 Measurement Equipment Used

Same as Radiated Emission Measurement

6.4 Test Result

PASS

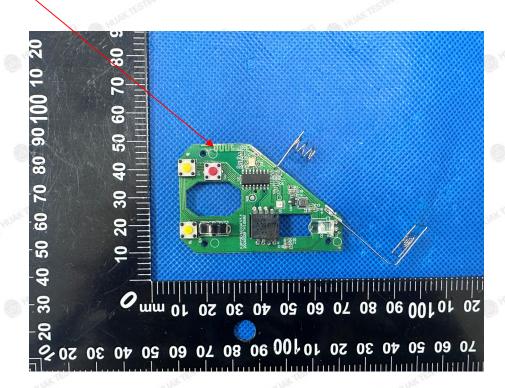
Frequency	20dB Bandwidth (MHz)	Result
2405 MHz	2.317	PASS
2435 MHz	2.239	PASS
2470 MHz	2.263	PASS

CH: 2405MHz

CH: 2435MHz

CH: 2470MHz

7. Antenna Requirement

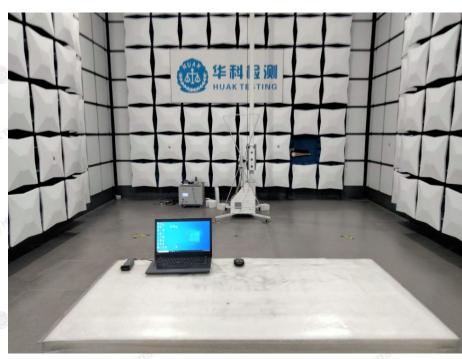

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a PCB Antenna, is a permanently attached antenna on the PCB. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.4dBi.

Antenna



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

8. Photographs of Test

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

9. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

End of test report-