Report No.: HA820502-02A # HEARING AID COMPATIBILITY RF EMISSIONS TEST REPORT FCC ID : A4RG013C Equipment : Phone Model Name : G013C M-Rating Applicant : Google LLC : M3 1600 Amphitheatre Parkway Mountain View, CA 94043, USA Standard: FCC 47 CFR §20.19 ANSI C63.19-2011 The product was received on Jun. 06, 2018 and testing was started from Jun. 21, 2018 and completed on Jun. 21, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Jones Tsai / Manager SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: 886-3-327-3456 Page: 1 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 ## Report No.: HA820502-02A # **Table of Contents** | | General Information | | | | | |-----|---------------------------------------|----|--|--|--| | 2. | Testing Location | 5 | | | | | 3. | Applied Standards | 5 | | | | | 4. | RF Audio Interference Level | 5 | | | | | 5. | Air Interface and Operating Mode | 6 | | | | | 6. | Measurement System Specification | 7 | | | | | | 6.1 E-Field Probe System | 7 | | | | | | 6.2 Data Storage and Evaluation | 8 | | | | | 7. | RF Emissions Test Procedure | 9 | | | | | 8. | Test Equipment List12 | | | | | | 9. | Measurement System Validation | 13 | | | | | 10. | Modulation Interference Factor | 14 | | | | | | Low-power Exemption | | | | | | 12. | Conducted RF Output Power (Unit: dBm) | 17 | | | | | 13. | HAC RF Emission Test Results | 18 | | | | | | Uncertainty Assessment | | | | | | | References | 22 | | | | Appendix A. Plots of System Performance Check Appendix B. Plots of RF Emission Measurement Appendix C. DASY Calibration Certificate Appendix D. Test Setup Photos Appendix E. MIF Attestation letter TEL: 886-3-327-3456 FAX: 886-3-328-4978 Form version: 180516 Page: 2 of 22 Issued Date : Jul. 02, 2018 # History of this test report Report No.: HA820502-02A | Report No. | Version | Description | Issued Date | |--------------|---------|-------------------------|---------------| | HA820502-02A | Rev. 01 | Initial issue of report | Jul. 02, 2018 | | | | | | | | | | | TEL: 886-3-327-3456 Page: 3 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 1. General Information | Product Feature & Specification | | | | | | | |---------------------------------|--|--|--|--|--|--| | Applicant Name | Google LLC | | | | | | | Equipment Name | Phone | | | | | | | Model Name | G013C | | | | | | | FCC ID | A4RG013C | | | | | | | Frequency Band | GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 848.3 MHz CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz CDMA 2000 BC1: 1851.25 MHz ~ 1908.75 MHz CDMA 2000 BC1: 817.9 MHz ~ 823.1 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 5: 824.7 MHz ~ 1909.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 7: 2502.5 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 715.3 MHz LTE Band 17: 706.5 MHz ~ 713.5 MHz LTE Band 25: 1850.7 MHz ~ 714.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 26: 814.7 MHz ~ 848.3 MHz LTE Band 30: 2307.5 MHz ~ 2312.5 MHz LTE Band 36: 1710.7 MHz ~ 1779.3 MHz LTE Band 371: 665.5 MHz ~ 695.5 MHz LTE Band 38: 2572.5 MHz ~ 2687.5 MHz LTE Band 41: 2498.5 MHz ~ 2687.5 MHz ULTE Band 41: 2498.5 MHz ~ 2687.5 MHz WLAN 2.4GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5180 MHz ~ 5220 MHz WLAN 5.5GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC: 13.56 MHz | | | | | | | Mode | GSM/GPRS/EGPRS AMR / RMC 12.2Kbps HSDPA HSUPA DC-HSDPA CDMA2000: 1xRTT/1xEv-Do(Rel.0)/1xEv-Do(Rev.A) LTE: QPSK, 16QAM, 64QAM 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 | | | | | | | | Bluetooth EDR/LE
NFC:ASK | | | | | | Report No.: HA820502-02A Reviewed by: <u>Eric Huang</u> Report Producer: <u>Wan Liu</u> TEL: 886-3-327-3456 Page: 4 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 2. Testing Location Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. Report No.: HA820502-02A | Testing Laboratory | | | | | | |---|---|--|--|--|--| | Test Site SPORTON INTERNATIONAL INC. | | | | | | | Test Site Location | No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | | | | | Test Site No. Sporton Site No.: SAR04-HY | | | | | | # 3. Applied Standards - FCC CFR47 Part 20.19 - ANSI C63.19-2011 - FCC KDB 285076 D01 HAC Guidance v05 - FCC KDB 285076 D02 T Coil testing v03 - FCC KDB 285076 D03 HAC FAQ v01 # 4. RF Audio Interference Level FCC wireless hearing aid compatibility rules ensure that consumers with hearing loss are able to access wireless communications services through a wide selection of handsets without experiencing disabling radio frequency (RF) interference or other technical obstacles. To define and measure the hearing aid compatibility of handsets, in CFR47 part 20.19 ANSI C63.19 is referenced. A handset is considered hearing aid-compatible for acoustic coupling if it meets a rating of at least M3 under ANSI C63.19, and A handset is considered hearing aid compatible for inductive coupling if it meets a rating of at least T3. According to ANSI C63.19 2011 version, for acoustic coupling, the RF electric field emissions of wireless communication devices should be measured and rated according to the emission level as below. | Emissian Catagories | E-field emissions | | | | |---------------------|-------------------|-------------------|--|--| | Emission Categories | <960Mhz | >960Mhz | | | | M1 | 50 to 55 dB (V/m) | 40 to 45 dB (V/m) | | | | M2 | 45 to 50 dB (V/m) | 35 to 40 dB (V/m) | | | | М3 | 40 to 45 dB (V/m) | 30 to 35 dB (V/m) | | | | M4 | <40 dB (V/m) | <30 dB (V/m) | | | Table 5.1 Telephone near-field categories in linear units TEL: 886-3-327-3456 Page: 5 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 5. Air Interface and Operating Mode | Air | Band MHz Type | | C63.19 Simultaneous | | Name of Voice | Power | |-----------|---------------|------|---------------------|--------------------|-----------------------|-----------| | Interface | Band MHZ | Туре | Tested | Transmitter | Service | Reduction | | | GSM850 | 1/0 | | WLAN, BT | OMBOVicin | No | | 0011 | GSM1900 | VO | Yes | WLAN, BT | CMRS Voice | No | | GSM | EDGE850 | 1/15 | ., | WLAN, BT | O In D | No | | | EDGE1900 | VD | Yes | WLAN, BT | Google Duo | | | | 850 | | | WLAN, BT | | No | | MODAAA | 1750 | VO | No ⁽¹⁾ | WLAN, BT | CMRS Voice | No | | WCDMA | 1900 | | | WLAN, BT | - | No | | | HSPA | VD | No ⁽¹⁾ | WLAN, BT | Google Duo | No | | | BC0 | | | WLAN, BT | | No | | CDMA | BC1 | VO | Yes | WLAN, BT | CMRS Voice | No | | CDMA | BC10 | | | WLAN, BT | | No | | | EVDO | VD | No ⁽¹⁾ | WLAN, BT | Google Duo | No | | | Band 2 | | | WLAN, BT | | No | | | Band 4 | | | WLAN, BT | - | No | | | Band 5 | | | WLAN, BT | VoLTE,
Google Duo | No | | | Band 7 | | | WLAN, BT | | No | | | Band 12 | | No ⁽¹⁾ | WLAN, BT | | No | | LTE | Band 13 | VD | | WLAN, BT | | No | | (FDD) | Band 17 | VD | | WLAN, BT | | No | | | Band 25 | | | WLAN, BT | | No | | | Band 26 | | | WLAN, BT | | No | | | Band 30 | | | WLAN, BT | | No | | | Band 66 | | | WLAN, BT | | No | | | Band 71 | | | WLAN, BT | - | No | | LTE | Band 38 | VD | Yes | WLAN, BT | VoLTE, | No | | (TDD) | Band 41 | ۷D | res | WLAN, BT | Google Duo | No | | | 2450 | | | GSM,CDMA,WCDMA,LTE | | No | | | 5200 | | | GSM,CDMA,WCDMA,LTE | \/ \· | No | | Wi-Fi | 5300 | VD | Yes | GSM,CDMA,WCDMA,LTE | VoWiFi,
Google Duo | No | | | 5500 | | | GSM,CDMA,WCDMA,LTE | Soogle Duo | No | | | 5800 | | | GSM,CDMA,WCDMA,LTE | | No | | BT | 2450 | DT | No | GSM,CDMA,WCDMA,LTE | NA | No | Report No.: HA820502-02A Type Transport: VO= Voice only DT= Digital Transport only (no voice) VD= CMRS and IP Voice Service over Digital Transport #### Remark: - The air interface is exempted from testing by low power exemption that its average antenna input power plus its MIF is ≤17 dBm, and is rated as M4. - 2. The device have similar frequency in some LTE bands: 38/41, since the supported frequency spans for the smaller LTE bands are completely covered by the larger LTE bands, therefore, only larger LTE bands were required to be tested for hearing-aid compliance. - 3. Because features of Google Duo allow the option of voice-only communications, Duo has been tested for HAC/T-Coil compatibility to ensure the best user experience. TEL: 886-3-327-3456 Page: 6 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 6. Measurement System Specification Fig 5.1 System Configurations # 6.1 E-Field Probe System # E-Field Probe Specification <ER3DV6> | Construction | One dipole parallel, two dipoles normal to probe axis | - 4 | |-------------------|---|---------------| | | Built-in shielding against static charges | | | Calibration | In air from 100 MHz to 3.0 GHz | | | | (absolute accuracy ±6.0%, k=2) | 3// / | | Frequency | 100 MHz to 6 GHz; | | | | Linearity: ± 2.0 dB (100 MHz to 3 GHz) | | | Directivity | ± 0.2 dB in air (rotation around probe axis) | | | | ± 0.4 dB in air (rotation normal to probe axis) | | | Dynamic Range | 2 V/m to 1000 V/m | | | | (M3 or better device readings fall well below diode | | | | compression point) | | | Linearity | ± 0.2 dB | | | Dimensions | Overall length: 330 mm (Tip: 16 mm) | | | | Tip diameter: 8 mm (Body: 12 mm) | | | | Distance from probe tip to dipole centers: 2.5 mm | Fig 5.2 Photo | | Prohe Tin Descrin | tion: | | Report No.: HA820502-02A Fig 5.2 Photo of E-field Probe #### Probe Tip Description: HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10%per mm). TEL: 886-3-327-3456 Page: 7 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 6.2 Data Storage and Evaluation The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, and device frequency and modulation data) in measurement files. Report No.: HA820502-02A **Probe parameters**: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2} - Conversion factor $\qquad \qquad \text{ConvF}_i$ - Diode compression point $\mbox{ }\mbox{ }\m$ **Device parameters**: - Frequency f - Crest factor cf $\textbf{Media parameters}: \qquad \text{- Conductivity} \qquad \qquad \sigma$ - Density ρ The formula for each channel can be given as : $$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: E-field Probes : $$\mathbf{E_i} = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$\mathbf{E_{tot}} = \sqrt{\mathbf{E_x^2 + E_y^2 + E_z^2}}$$ The primary field data are used to calculate the derived field units. TEL: 886-3-327-3456 Page: 8 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 7. RF Emissions Test Procedure Referenced from ANSI C63.19 -2011 section 5.5.1 a. Confirm the proper operation of the field probe, probe measurement system, and other instrumentation and the positioning system. Report No.: HA820502-02A - b. Position the WD in its intended test position. - c. Set the WD to transmit a fixed and repeatable combination of signal power and modulation characteristic that is representative of the worst case (highest interference potential) encountered in normal use. Transiently occurring start-up, changeover, or termination conditions, or other operations likely to occur less than 1% of the time during normal operation, may be excluded from consideration. - d. The center sub-grid shall be centered on the T-Coil mode perpendicular measurement point or the acoustic output, as appropriate. Locate the field probe at the initial test position in the 50 mm by 50 mm grid, which is contained in the measurement plane, refer to illustrated in Figure 8.2. If the field alignment method is used, align the probe for maximum field reception. - e. Record the reading at the output of the measurement system. - f. Scan the entire 50 mm by 50 mm region in equality spaced increments and record the reading at each measurement point, The distance between measurement points shall be sufficient to assure the identification of the maximum reading. - g. Identify the five contiguous sub-grids around the center sub-grid whose maximum reading is the lowest of all available choices. This eliminates the three sub-grids with the maximum readings. Thus, the six areas to be used to determine the WD's highest emissions are identified. - h. Identify the maximum reading within the non-excluded sub-grids identified in step g). - i. Indirect measurement method - j. The RF audio interference level in dB (V/m) is obtained by adding the MIF (in dB) to the maximum steady-state rms field-strength reading, in dB (V/m) - k. Compare this RF audio interference level with the categories in ANSI C63.19-2011 clause 8 and record the resulting WD category rating. - I. For the T-Coil perpendicular measurement location is ≥5.0 mm from the center of the acoustic output, then two different 50 mm by 50 mm areas may need to be scanned, the first for the microphone mode assessment and the second for the T-Coil assessment. - m. The second for the T-Coil assessment, with the grid shifted so that it is centered on the perpendicular measurement point. Record the WD category rating. TEL: 886-3-327-3456 Page: 9 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 C RF EMISSIONS TEST REPORT Report No.: HA820502-02A #### **Test Instructions** - Confirm proper operation of probes and instrumentation - > Position WD - > Configure WD TX operation Per 5.4.1.2 (1-3) - > Initialize field probe - Scan Area Per 5.4.1.2 (4-6) - Identify exclusion area. - Rescan or reanalyze open area to determine maximum - Direct method: Record RF Audio Interference Level, in dB(V/m) - Indirect method: Add the MIF to the maximum steady state rms field strength and record RF Audio Interference Level, in dB(V/m) Per 5.4.1.2 (7-9) & 5.4.1.3 Identify and record the category Per 5.4.1.2 (9-10) Figure 8.1 RF Emissions Flow Chart TEL: 886-3-327-3456 Page: 10 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 Report No.: HA820502-02A Fig 8.2 EUT reference and plane for HAC RF emission measurements Fig. 8.3 Gauge block with E-field probe TEL: 886-3-327-3456 Page: 11 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 8. Test Equipment List | Manufacturer | Name of Equipment | Type/Model | Serial Number | Calibration | | |---------------|------------------------------|-------------------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | of Equipment Type/Model | | Last Cal. | Due Date | | SPEAG | 835MHz Calibration Dipole | CD835V3 | 1045 | Sep. 27, 2017 | Sep. 26, 2018 | | SPEAG | 1880MHz Calibration Dipole | CD1880V3 | 1038 | Sep. 27, 2017 | Sep. 26, 2018 | | SPEAG | 2450MHz Calibration Dipole | CD2450V3 | 1186 | Jan. 09, 2018 | Jan. 08, 2019 | | SPEAG | 2600Mhz Calibration Dipole | CD2600V3 | 1010 | Nov. 22, 2017 | Nov. 21, 2018 | | SPEAG | Data Acquisition Electronics | DAE4 | 853 | Jul. 19, 2017 | Jul. 18, 2018 | | SPEAG | Isotropic E-Field Probe | ER3DV6 | 2358 | Jan. 19, 2018 | Jan. 18, 2019 | | SPEAG | Isotropic E-Field Probe | EF3DV3 | 4047 | Jan. 08, 2018 | Jan. 07, 2019 | | Gencom | Thermometer | TE1 | TM685-1 | Mar. 16, 2018 | Mar. 15, 2019 | | SPEAG | Test Arch Phantom | N/A | N/A | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Anritsu | Power Meter | ML2495A | 1218006 | Oct. 06, 2017 | Oct. 05, 2018 | | Anritsu | Power Sensor | MA2411B | 1207363 | Oct. 06, 2017 | Oct. 05, 2018 | | Anritsu | Signal Generator | MG3710A | 6201502524 | Dec. 07, 2017 | Dec. 06, 2018 | | R&S | Base Station | CMU200 | 116457 | May 20, 2018 | May 19, 2019 | | R&S | Base Station | CMW500 | 149637 | Jul. 26, 2017 | Jul. 25, 2018 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | NCR | NCR | | Woken | Attenuator | WK0602-XX | N/A | NCR | NCR | | Mini-Circuits | Power Amplifier | ZVE-8G+ | D120604 | Mar. 12, 2018 | Mar. 11, 2019 | | Mini-Circuits | Power Amplifier | ZHL-42W+ | QA1344002 | Mar. 12, 2018 | Mar. 11, 2019 | Report No.: HA820502-02A TEL: 886-3-327-3456 Page: 12 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 Note: 1. NCR: "No-Calibration Required" # 9. Measurement System Validation Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the test Arch and a corresponding distance holder. Report No.: HA820502-02A The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal HAC measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. #### <Test Setup> - 1. In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator. - 2. The center point of the probe element(s) is 15mm from the closest surface of the dipole elements. - 3. The calibrated dipole must be placed beneath the arch phantom. The equipment setup is shown below: - 4. The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected. Fig. 7.1 Setup Diagram #### <Validation Results> Comparing to the original E-field value provided by SPEAG, the verification data should be within its specification of 25 %. Table 6.1 shows the target value and measured value. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to appendix A of this report. Deviation = ((Average E-field Value) - (Target value)) / (Target value) * 100% | Frequency
(MHz) | Input Power
(dBm) | Target Value
(V/m) | E-Field 1
(V/m) | E-Field 2
(V/m) | Average
Value
(V/m) | Deviation
(%) | Date | |--------------------|----------------------|-----------------------|--------------------|--------------------|---------------------------|------------------|--------------| | 835 | 20 | 106.8 | 109.8 | 112.5 | 111.15 | 4.07 | Jun 21, 2018 | | 1880 | 20 | 90 | 88.84 | 94.62 | 91.73 | 1.92 | Jun 21, 2018 | | 2450 | 20 | 87.3 | 91.52 | 92.59 | 92.055 | 5.45 | Jun 21, 2018 | | 2600 | 20 | 85.4 | 87.94 | 96.43 | 92.185 | 7.94 | Jun 21, 2018 | TEL: 886-3-327-3456 Page: 13 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 10. Modulation Interference Factor The HAC Standard ANSI C63.19-2011 defines a new scaling using the Modulation Interference Factor (MIF). For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Any change in modulation characteristic requires determination and application of a new MIF Report No.: HA820502-02A The Modulation Interference factor (MIF, in dB) is added to the measured average E-field (in dBV/m) and converts it to the RF Audio Interference level (in dBV/m). This level considers the audible amplitude modulation components in the RF E-field. CW fields without amplitude modulation are assumed to not interfere with the hearing aid electronics. Modulations without time slots and low fluctuations at low frequencies have low MIF values, TDMA modulations with narrow transmission and repetition rates of few 100 Hz have high MIF values and give similar classifications as ANSI C63.19-2011. ER3D, EF3D and EU2D E-field probes have a bandwidth <10 kHz and can therefore not evaluate the RF envelope in the full audio band. DASY52 is therefore using the indirect measurement method according to ANSI C63.19-2011 which is the primary method. These near field probes read the averaged E-field measurement. Especially for the new high peak-to-average (PAR) signal types, the probes shall be linearized by PMR calibration in order to not overestimate the field reading. Probe Modulation Response (PMR) calibration linearizes the probe response over its dynamic range for specific modulations which are characterized by their UID and result in an uncertainty specified in the probe calibration certificate. The MIF is characteristic for a given waveform envelope and can be used as a constant conversion factor if the probe has been PMR calibrated. The evaluation method for the MIF is defined in ANSI C63.19-2011 section D.7. An RMS demodulated RF signal is fed to a spectral filter (similar to an A weighting filter) and forwarded to a temporal filter acting as a quasi-peak detector. The averaged output of these filtering is scaled to a 1 kHz 80% AM signal as reference. MIF measurement requires additional instrumentation and is not well suited for evaluation by the end user with reasonable uncertainty. It may alliteratively be determined through analysis and simulation, because it is constant and characteristic for a communication signal. DASY52 uses well-defined signals for PMR calibration. The MIF of these signals has been determined by simulation and it is automatically applied. The MIF measurement uncertainty is estimated as follows, declared by HAC equipment provider SPEAG, for modulation frequencies from slotted waveforms with fundamental frequency and at least 2 harmonics within 10 kHz: - 1. 0.2 dB for MIF: -7 to +5 dB - 2. 0.5 dB for MIF: -13 to +11 dB - 3. 1 dB for MIF: > -20 dB MIF values applied in this test report were provided by the HAC equipment provider of SPEAG, and the worst values for all air interface are listed below to be determine the Low-power Exemption. | UID | Communication System Name | MIF(dB) | |-------|---|---------| | 10021 | GSM-FDD(TDMA,GMSK) | 3.63 | | 10025 | EDGE-FDD (TDMA, 8PSK, TN 0) | 3.75 | | 10460 | UMTS-FDD(WCDMA, AMR) | -25.43 | | 10225 | UMTS-FDD (HSPA+) | -20.39 | | 10081 | CDMA2000 (1xRTT, RC3) | -19.71 | | 10295 | CDMA2000 (1xRTT, RC1 SO3, 1/8th Rate 25 fr.) | 3.26 | | 10403 | CDMA2000 (1xEV-DO, Rev. 0) | -17.67 | | 10170 | LTE-FDD(SC-FDMA,1RB,20MHz,16-QAM) | -9.76 | | 10172 | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | -1.62 | | 10173 | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | -1.44 | | 10174 | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | -1.54 | | 10061 | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | -2.02 | | 10077 | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | 0.12 | | 10427 | IEEE 802.11n (HT Greeneld, 150 Mbps, 64-QAM) | -13.44 | | 10069 | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | -3.15 | | 10616 | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc duty cycle) | -5.57 | TEL: 886-3-327-3456 Page: 14 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 11. Low-power Exemption #### <Max Tune-up Limit> | F | requency Band | Max Power
(dBm) | | | |---------|-------------------------|--------------------|------|------| | Tr | ansmit Antenna | UAT | LAT | | | | GSM850 | | 32.0 | 33.0 | | GSM | EDG | E850 | 27.5 | 27.5 | | GSIVI | GSM | 1900 | 28.0 | 30.0 | | | EDGE | 1900 | 26.5 | 26.5 | | | Bar | nd II | 19.5 | 24.0 | | WCDMA | Ban | d IV | 22.5 | 24.0 | | WCDIVIA | Ban | id V | 24.0 | 24.0 | | | HS | PA | 24.0 | 24.0 | | | ВС | CO | 24.0 | 25.0 | | CDMA | BC1 | | 20.0 | 25.0 | | CDIVIA | BC10 | | 25.0 | 25.0 | | | 1xEvDO | | 25.0 | 25.0 | | | Band 2 / 25 | | 19.5 | 24.0 | | | Band 4 / 66 | | 21.0 | 24.0 | | | Band 5 / 26 | | 24.5 | 24.5 | | FDD LTE | Band 7 | | 20.0 | 24.0 | | FDD LIE | Band 12 / 17 | | 24.5 | 24.5 | | | Band 13 | | 24.5 | 24.5 | | | Ban | Band 30 | | 24.0 | | | Ban | d 71 | 24.5 | 24.5 | | | | QPSK | 23.5 | 27.0 | | | Band 41_PC2 | 16QAM | 23.5 | 26.0 | | FDD LTE | | 64QAM | 23.5 | 25.0 | | TOO LIE | Band
38/41 PC3 | QPSK | 22.0 | 25.2 | | | | 16QAM | 22.0 | 24.2 | | | 90/ + 1_1 83 | 64QAM | 22.0 | 23.2 | Report No.: HA820502-02A | Fred | juency Band | Max Power
(dBm) | |-------------|----------------|--------------------| | | 802.11b | 14.5 | | 2.4GHz WLAN | 802.11g | 14.5 | | Ant 5 | 802.11n-HT20 | 14.5 | | | 802.11ac-VHT20 | 14.5 | | | 802.11b | 18.5 | | 2.4GHz WLAN | 802.11g | 18.5 | | Ant 4 | 802.11n-HT20 | 18.5 | | | 802.11ac-VHT20 | 18.5 | | | 802.11a | 15.0 | | | 802.11n-HT20 | 15.0 | | 5GHz WLAN | 802.11n-HT40 | 15.0 | | Ant 5 | 802.11ac-VHT20 | 15.0 | | | 802.11ac-VHT40 | 15.0 | | | 802.11ac-VHT80 | 15.0 | | | 802.11a | 17.0 | | | 802.11n-HT20 | 17.0 | | 5GHz WLAN | 802.11n-HT40 | 17.0 | | Ant 4 | 802.11ac-VHT20 | 17.0 | | | 802.11ac-VHT40 | 17.0 | | | 802.11ac-VHT80 | 17.0 | TEL: 886-3-327-3456 Page: 15 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 #### HAC RF EMISSIONS TEST REPORT Report No.: HA820502-02A <Low Power Exemption> Max Average Transmit **Worst Case** Power + C63.19 test Air Interface Antenna Input Power (dBm) 3.63 35.63 GSM850 32.00 Yes Yes⁽¹⁾ EDGE850 27.50 31.25 3.75 GSM1900 28.00 3.63 31.63 Yes **EDGE1900** 26.50 3.75 30.25 Yes⁽ **WCDMA** 24 00 -25 43 -1 43 No WCDMA - HSPA 24.00 -20.39 3.61 No CDMA Full Frame Rate 25.00 -19.71 5.29 No CDMA 1/8th Frame Rate 25.00 3.26 28.26 Yes **WWNA** CDMA - EVDO 25.00 -17.677.33 Nο LTE - FDD 24.50 -9.76 14.74 No Yes⁽¹⁾ 23.50 21.88 -1.6216QAM LTE - TDD - PC2 23.50 -1 44 22.06 Yes Yes⁽¹⁾ 64QAM 23.50 -1.54 21.96 **QPSK** Yes⁽¹⁾ 22.00 -1.6220.38 LTF - TDD - PC3 16QAM 22.00 -1.4420.56 Yes 64QAM 22.00 -1.54 Yes⁽¹⁾ 20.46 33.00 3.63 36.63 Yes EDGE850 27.50 3.75 31.25 Yes⁽¹⁾ GSM1900 30.00 Yes 3.63 33.63 EDGE1900 26.50 3.75 30.25 Yes⁽¹⁾ WCDMA 24.00 -25.43 -1.43 No WCDMA - HSPA 24.00 -20.39 3.61 No CDMA Full Frame Rate 25.00 -19.71 5.29 No CDMA 1/8th Frame Rate 25.00 28.26 Yes **WWAN** LAT CDMA - EVDO 25.00 -17.67 7.33 No LTE - FDD 14.74 No 24.50 -9.76**QPSK** 27.00 -1.62 25.38 Yes LTE - TDD - PC2 16QAM 26.00 -1.44 24.56 Yes⁽¹⁾ Yes⁽¹⁾ 64QAM 25 00 -1 54 23 46 QPSK 25.20 -1.62 23.58 Yes LTE - TDD - PC3 16QAM 24.20 -1.4422.76 Yes⁽ Yes⁽¹⁾ 64QAM 23.20 -1.5421.66 802.11b 14.50 12.48 No -2.022.4GHz WLAN 802.11g 14.50 0.12 14.62 No Ant 5 802.11n-HT20 14.50 -13.44 1.06 No 802.11ac-VHT20 8.93 No 14.50 -5.57 802.11b 18.50 -2.02 16.48 No 18.50 0.12 18.62 2.4GHz WLAN Ant 4 18.50 5.06 -13.44 No 802.11ac-VHT20 18.50 -5.57 12.93 No -3.15 15.00 11.85 No 15.00 -13.44 1.56 No #### **General Note:** 5GHz WLAN Ant 5 5GHz WLAN Ant 4 802.11n-HT40 802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 802.11a 802.11n-HT20 802.11n-HT40 802.11ac-VHT20 802.11ac-VHT40 802.11ac-VHT80 1. The mode is not necessary consideration HAC RF emission, due to the power + MIF is not worst case in that -13.44 -5.57 -5.57 -5 57 -3.15 -13.44 -13.44 -5.57 -5.57 -5.57 1.56 9.43 9.43 9.43 13.85 3.56 3.56 11.43 11.43 11.43 No 2. According to ANSI C63.19 2011-version, for the air interface technology of a device is exempt from testing when its average antenna input power plus its MIF is ≤17 dBm for any of its operating modes. 15.00 15.00 15.00 15.00 17.00 17.00 17.00 17.00 17.00 17.00 HAC RF rating is M4 for the air interface which meets the low power exemption. TEL: 886-3-327-3456 Page: 16 of 22 FAX: 886-3-328-4978 Issued Date : Jul. 02, 2018 # 12. Conducted RF Output Power (Unit: dBm) #### <GSM> | Average Antenna Input Power(dBm) | | | | | | | | | | |----------------------------------|-------|-------|-------|-------|-------|-------|--|--|--| | Band GSM850 (LAT) GSM850 (UAT) | | | | | | | | | | | Channel | 128 | 189 | 251 | 128 | 189 | 251 | | | | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | 824.2 | 836.4 | 848.8 | | | | | GSM (GMSK, 1 Tx slot) | 32.26 | 32.18 | 32.20 | 32.33 | 31.12 | 31.12 | | | | | Average Antenna Input Power(dBm) | | | | | | | | | | |----------------------------------|--------|--------|--------|--------|--------|--------|--|--|--| | Band GSM1900 (LAT) GSM1900 (UAT) | | | | | | | | | | | Channel | 512 | 661 | 810 | 512 | 661 | 810 | | | | | Frequency (MHz) | 1850.2 | 1880.0 | 1909.8 | 1850.2 | 1880.0 | 1909.8 | | | | | GSM (GMSK, 1 Tx slot) | 29.33 | 29.16 | 29.26 | 26.77 | 26.59 | 26.75 | | | | #### <CMDA> | Band | CDMA BC0 (LAT) | | | CDMA BC1 (LAT) | | | CDMA BC10 (UAT / LAT) | | | |-----------------|----------------|--------|--------|----------------|-------|---------|-----------------------|-------|-------| | TX Channel | 1013 | 384 | 777 | 25 | 600 | 1175 | 476 | 580 | 684 | | Frequency (MHz) | 824.7 | 836.52 | 848.31 | 1851.25 | 1880 | 1908.75 | 817.9 | 820.5 | 823.1 | | RC1 SO3 | 24.30 | 24.26 | 24.26 | 24.68 | 24.47 | 24.40 | 24.31 | 24.36 | 24.38 | Report No.: HA820502-02A | Band | CI | DMA BC0 (UA | AT) | CDMA BC1 ((UAT) | | | | |-----------------|-------|-------------|--------|-----------------|-------|---------|--| | TX Channel | 1013 | 384 | 777 | 25 | 600 | 1175 | | | Frequency (MHz) | 824.7 | 836.52 | 848.31 | 1851.25 | 1880 | 1908.75 | | | RC1 SO3 | 23.83 | 23.85 | 23.77 | 19.26 | 19.40 | 19.32 | | #### <TDD LTE Band 41 Power Class 2> | BW [MHz] | [MHz] Modulation RB Size RB Offset | | Power
Low
Ch. / Freq. | Power
Low Middle
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Note | | |----------|------------------------------------|---|-----------------------------|------------------------------------|--------------------------------|-------------------------------------|------------------------------|-------|-----| | Channel | | | 39750 | 40185 | 40620 | 41055 | 41490 | Note | | | | Frequency (MHz) | | | 2506 | 2549.5 | 2593 | 2636.5 | 2680 | | | 20 | QPSK | 1 | 0 | 23.09 | 23.20 | 23.14 | 23.21 | 22.02 | UAT | | 20 | 16QAM | 1 | 0 | 25.46 | 25.02 | 25.44 | 24.53 | 24.52 | LAT | ## <TDD LTE Band 41 Power Class 3> | BW [MHz] | BW [MHz] Modulation RB Size RB Offset | | Power
Low
Ch. / Freq. | Power
Low Middle
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Note | | |----------|---------------------------------------|---|-----------------------------|------------------------------------|--------------------------------|-------------------------------------|------------------------------|-------|-----| | Channel | | | 39750 | 40185 | 40620 | 41055 | 41490 | Note | | | | Frequency (MHz) | | | 2506 | 2549.5 | 2593 | 2636.5 | 2680 | | | 20 | QPSK | 1 | 0 | 21.17 | 21.26 | 21.21 | 21.27 | 20.03 | UAT | | 20 | 16QAM | 1 | 0 | 24.02 | 24.11 | 24.04 | 24.20 | 23.57 | LAT | #### <2.4GHz WLAN> | 2.4GHz WLAN | Mode | Channel | Frequency
(MHz) | Average power (dBm) | | |-------------|---------------|---------|--------------------|---------------------|--| | | | 1 | 2412 | 17.78 | | | | 802.11g 6Mbps | 6 | 2437 | 18.27 | | | | | 11 | 2462 | 15.60 | | TEL: 886-3-327-3456 Page: 17 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 13. HAC RF Emission Test Results | Plot
No. | Air Interface | Mode | Channel | Transmit
Ant. | Average
Antenna
Input
Power
(dBm) | MIF | E-Field
(dBV/m) | Margin to
FCC M3
limit (dB) | E-Field
M Rating | |-------------|---------------|----------------------------|---------|------------------|---|------|--------------------|-----------------------------------|---------------------| | 1 | GSM850 | Voice | 128 | LAT | 32.26 | 3.63 | 35.78 | 9.22 | M4 | | 2 | GSM850 | Voice | 189 | LAT | 32.18 | 3.63 | 35.75 | 9.25 | M4 | | 3 | GSM850 | Voice | 251 | LAT | 32.20 | 3.63 | 35.78 | 9.22 | M4 | | 4 | GSM850 | Voice | 128 | UAT | 32.23 | 3.63 | 42.42 | 2.58 | M3 | | 5 | GSM850 | Voice | 189 | UAT | 31.15 | 3.63 | 39.44 | 5.56 | M4 | | 6 | GSM850 | Voice | 251 | UAT | 31.12 | 3.63 | 39.93 | 5.07 | M4 | | 7 | GSM1900 | Voice | 512 | LAT | 29.33 | 3.63 | 27.63 | 7.37 | M4 | | 8 | GSM1900 | Voice | 661 | LAT | 29.16 | 3.63 | 27.83 | 7.17 | M4 | | 9 | GSM1900 | Voice | 810 | LAT | 29.26 | 3.63 | 28.85 | 6.15 | M4 | | 10 | GSM1900 | Voice | 512 | UAT | 26.77 | 3.63 | 33.79 | 1.21 | M3 | | 11 | GSM1900 | Voice | 661 | UAT | 26.59 | 3.63 | 33.26 | 1.74 | М3 | | 12 | GSM1900 | Voice | 810 | UAT | 26.75 | 3.63 | 32.41 | 2.59 | M3 | | 13 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 1013 | LAT | 24.30 | 3.26 | 26.70 | 18.30 | M4 | | 14 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 384 | LAT | 24.26 | 3.26 | 26.63 | 18.37 | M4 | | 15 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 777 | LAT | 24.26 | 3.26 | 26.74 | 18.26 | M4 | | 16 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 1013 | UAT | 23.83 | 3.26 | 34.15 | 10.85 | M4 | | 17 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 384 | UAT | 23.85 | 3.26 | 33.39 | 11.61 | M4 | | 18 | CDMA BC0 | 1xRTT, RC1 SO3, 1/8th Rate | 777 | UAT | 23.77 | 3.26 | 34.31 | 10.69 | M4 | | 19 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 25 | LAT | 24.68 | 3.26 | 23.50 | 11.50 | M4 | | 20 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 600 | LAT | 24.47 | 3.26 | 23.50 | 11.50 | M4 | | 21 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 1175 | LAT | 24.40 | 3.26 | 23.80 | 11.20 | M4 | | 22 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 25 | UAT | 19.26 | 3.26 | 29.98 | 5.02 | M4 | | 23 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 600 | UAT | 19.40 | 3.26 | 30.40 | 4.60 | M3 | | 24 | CDMA BC1 | 1xRTT, RC1 SO3, 1/8th Rate | 1175 | UAT | 19.32 | 3.26 | 30.41 | 4.59 | M3 | | 25 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 476 | LAT | 24.31 | 3.26 | 27.50 | 17.50 | M4 | | 26 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 580 | LAT | 24.36 | 3.26 | 27.87 | 17.13 | M4 | | 27 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 684 | LAT | 24.38 | 3.26 | 26.74 | 18.26 | M4 | | 28 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 476 | UAT | 24.31 | 3.26 | 34.14 | 10.86 | M4 | | 29 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 580 | UAT | 24.36 | 3.26 | 33.99 | 11.01 | M4 | | 30 | CDMA BC10 | 1xRTT, RC1 SO3, 1/8th Rate | 684 | UAT | 24.38 | 3.26 | 34.25 | 10.75 | M4 | Report No.: HA820502-02A TEL: 886-3-327-3456 Page: 18 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 | Plot
No. | Air Interface | Mode | Channel | Transmit
Ant. | Average
Antenna
Input
Power
(dBm) | MIF | E-Field
(dBV/m) | Margin to
FCC M3
limit (dB) | E-Field
M Rating | |-------------|-----------------|---------------|---------|------------------|---|-------|--------------------|-----------------------------------|---------------------| | 31 | LTE Band 41_PC3 | 20M_QPSK_1_0 | 39750 | LAT | 24.86 | -1.62 | 24.48 | 10.52 | M4 | | 32 | LTE Band 41_PC3 | 20M_QPSK_1_0 | 40185 | LAT | 24.92 | -1.62 | 24.07 | 10.93 | M4 | | 33 | LTE Band 41_PC3 | 20M_QPSK_1_0 | 40620 | LAT | 24.88 | -1.62 | 23.47 | 11.53 | M4 | | 34 | LTE Band 41_PC3 | 20M_QPSK_1_0 | 41055 | LAT | 25.20 | -1.62 | 23.07 | 11.93 | M4 | | 35 | LTE Band 41_PC3 | 20M_QPSK_1_0 | 41490 | LAT | 24.31 | -1.62 | 21.75 | 13.25 | M4 | | 36 | LTE Band 41_PC3 | 20M_16QAM_1_0 | 39750 | UAT | 21.17 | -1.44 | 29.98 | 5.02 | M4 | | 37 | LTE Band 41_PC3 | 20M_16QAM_1_0 | 40185 | UAT | 21.26 | -1.44 | 30.58 | 4.42 | M3 | | 38 | LTE Band 41_PC3 | 20M_16QAM_1_0 | 40620 | UAT | 21.21 | -1.44 | 30.37 | 4.63 | M3 | | 39 | LTE Band 41_PC3 | 20M_16QAM_1_0 | 41055 | UAT | 21.27 | -1.44 | 30.82 | 4.18 | M3 | | 40 | LTE Band 41_PC3 | 20M_16QAM_1_0 | 41490 | UAT | 20.03 | -1.44 | 30.08 | 4.92 | M3 | | 41 | LTE Band 41_PC2 | 20M_QPSK_1_0 | 39750 | LAT | 26.12 | -1.62 | 22.86 | 12.14 | M4 | | 42 | LTE Band 41_PC2 | 20M_QPSK_1_0 | 40185 | LAT | 25.69 | -1.62 | 22.34 | 12.66 | M4 | | 43 | LTE Band 41_PC2 | 20M_QPSK_1_0 | 40620 | LAT | 26.08 | -1.62 | 21.66 | 13.34 | M4 | | 44 | LTE Band 41_PC2 | 20M_QPSK_1_0 | 41055 | LAT | 25.21 | -1.62 | 21.71 | 13.29 | M4 | | 45 | LTE Band 41_PC2 | 20M_QPSK_1_0 | 41490 | LAT | 25.10 | -1.62 | 19.96 | 15.04 | M4 | | 46 | LTE Band 41_PC2 | 20M_16QAM_1_0 | 39750 | UAT | 23.09 | -1.44 | 28.74 | 6.26 | M4 | | 47 | LTE Band 41_PC2 | 20M_16QAM_1_0 | 40185 | UAT | 23.20 | -1.44 | 29.38 | 5.62 | M4 | | 48 | LTE Band 41_PC2 | 20M_16QAM_1_0 | 40620 | UAT | 23.14 | -1.44 | 29.48 | 5.52 | M4 | | 49 | LTE Band 41_PC2 | 20M_16QAM_1_0 | 41055 | UAT | 23.21 | -1.44 | 29.56 | 5.44 | M4 | | 50 | LTE Band 41_PC2 | 20M_16QAM_1_0 | 41490 | UAT | 22.02 | -1.44 | 29.05 | 5.95 | M4 | | 51 | WLAN2.4GHz | 802.11g 6Mbps | 1 | Ant 5 | 17.78 | 0.12 | 34.68 | 0.32 | M3 | | 52 | WLAN2.4GHz | 802.11g 6Mbps | 6 | Ant 5 | 18.27 | 0.12 | 34.75 | 0.25 | M3 | | 53 | WLAN2.4GHz | 802.11g 6Mbps | 11 | Ant 5 | 15.60 | 0.12 | 34.67 | 0.33 | M3 | Report No.: HA820502-02A #### Remark: - 1. The HAC measurement system applies MIF value onto the measured RMS E-field, which is indirect method in ANSI C63.19 2011 version, and reports the RF audio interference level. - 2. Phone Condition: Mute on; Backlight off; Max Volume Test Engineer: Steven Chang and Tom Jiang. TEL: 886-3-327-3456 Page: 19 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 ## 14. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: HA820502-02A The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 12.1. TEL: 886-3-327-3456 Page: 20 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 | Error Description | Uncertainty Value (±%) | Probability
Distribution | Divisor | Ci
(E) | Standard
Uncertainty
(E) | | | | | | | |------------------------------------|---------------------------------------|-----------------------------|------------|-----------|--------------------------------|--|--|--|--|--|--| | Measurement System | Measurement System | | | | | | | | | | | | Probe Calibration | 5.1 | Normal | 1 | 1 | ± 5.1 % | | | | | | | | Axial Isotropy | 4.7 | Rectangular | $\sqrt{3}$ | 1 | ± 2.7 % | | | | | | | | Sensor Displacement | 16.5 | Rectangular | √3 | 1 | ± 9.5 % | | | | | | | | Boundary Effects | 2.4 | Rectangular | √3 | 1 | ± 1.4 % | | | | | | | | Phantom Boundary Effects | 7.2 | Rectangular | √3 | 1 | ± 4.1 % | | | | | | | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | | | | | | | Scaling with PMR Calibration | 10.0 | Rectangular | √3 | 1 | ± 5.77 % | | | | | | | | System Detection Limit | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | | | | | | | Readout Electronics | 0.3 | Normal | 1 | 1 | ± 0.3 % | | | | | | | | Response Time | 0.8 | Rectangular | √3 | 1 | ± 0.5 % | | | | | | | | Integration Time | 2.6 | Rectangular | √3 | 1 | ± 1.5 % | | | | | | | | RF Ambient Conditions | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | | | | | | | RF Reflections | 12.0 | Rectangular | √3 | 1 | ± 6.9 % | | | | | | | | Probe Positioner | 1.2 | Rectangular | $\sqrt{3}$ | 1 | $\pm~0.7~\%$ | | | | | | | | Probe Positioning | 4.7 | Rectangular | $\sqrt{3}$ | 1 | ± 2.7 % | | | | | | | | Extrap. and Interpolation | 1.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.6 % | | | | | | | | Test Sample Related | | | | | | | | | | | | | Device Positioning Vertical | 4.7 | Rectangular | $\sqrt{3}$ | 1 | ± 2.7 % | | | | | | | | Device Positioning Lateral | 1.0 | Rectangular | $\sqrt{3}$ | 1 | ± 0.6 % | | | | | | | | Device Holder and Phantom | 2.4 | Rectangular | $\sqrt{3}$ | 1 | ± 1.4 % | | | | | | | | Power Drift | 5.0 | Rectangular | $\sqrt{3}$ | 1 | ± 2.9 % | | | | | | | | Phantom and Setup Related | | | | | | | | | | | | | Phantom Thickness | 2.4 | Rectangular | √3 | 1 | ± 1.4 % | | | | | | | | Combined Standard Uncertainty | · · · · · · · · · · · · · · · · · · · | | | | ± 16.30 % | | | | | | | | Coverage Factor for 95 % | | | | | K = 2 | | | | | | | | Expanded Std. Uncertainty on Powe | r | | | | ± 32.6 % | | | | | | | | Expanded Std. Uncertainty on Field | | | | | | | | | | | | Report No.: HA820502-02A Table 12.1 Uncertainty Budget of HAC free field assessment #### Remark: Worst-Case uncertainty budget for HAC free field assessment according to ANSIC63.19 [1], [2]. The budget is valid for the frequency range 700 MHz - 3 GHz and represents a worst case analysis. TEL: 886-3-327-3456 Page: 21 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018 # 15. References [1] ANSI C63.19-2011, "American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids", 27 May 2011. Report No.: HA820502-02A - [2] FCC KDB 285076 D01v05, "Equipment Authorization Guidance for Hearing Aid Compatibility", Sep 2017 - [3] FCC KDB 285076 D02v03, "Guidance for performing T-Coil tests for air interfaces supporting voice over IP (e.g., LTE and WiFi) to support CMRS based telephone services", Sep 2017 - [4] FCC KDB 285076 D03v01, "Hearing aid compatibility frequently asked questions", Sep 2017 - [5] SPEAG DASY System Handbook TEL: 886-3-327-3456 Page: 22 of 22 FAX: 886-3-328-4978 Issued Date: Jul. 02, 2018