TEST REPORT

FCC ID: 2AAPKOE-EP011 Product: TWS Earbuds Model No.: OE-EP011 Additional Model No.: N/A Trade Mark: N/A Report No.: TCT200310E015 Issued Date: Mar. 19, 2020

Shenzhen Kingsun Enterprises Co., Ltd. 25/F, CEC Information Building, Xinwen Rd., Shenzhen 518034, Guangdong, China

Issued for:

Issued By:

Shenzhen Tongce Testing Lab. 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab. This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	Test Certification				
2.	Test Result Summary		<u>(C)</u>		4
3.	EUT Description				
4.	General Information				6
	4.1. Test environment and mode			\sim	6
	4.2. Description of Support Units				7
5.	Facilities and Accreditations		<u>(o)</u>		8
	5.1. Facilities				8
	5.2. Location				
	5.3. Measurement Uncertainty	<u>(S)</u>		<u>(0)</u>	8
6.	Test Results and Measurement Data .				9
	6.1. Antenna requirement				
	6.2. Conducted Emission				10
	6.3. Conducted Output Power				14
	6.4. Emission Bandwidth				
	6.5. Power Spectral Density				20
	6.6. Test Specification				20
	6.7. Conducted Band Edge and Spurious Er	nission Me	easuremen	t	23
	6.8. Radiated Spurious Emission Measurem	ent			26
Α	ppendix A: Photographs of Test Setup				
Α	ppendix B: Photographs of EUT				

TCT通测检测 TESTING CENTRE TECHNOLOGY 1. Test Certification

Product:	TWS Earbuds			
Model No.:	OE-EP011	(C
Additional Model No.:	N/A		9	C
Trade Mark:	N/A			
Applicant:	Shenzhen Kingsun Enterprise	s Co., Ltd.	Ĩ	
Address:	25/F, CEC Information Buildin Guangdong, China	g, Xinwen Rd., Sl	henzhen 518034,	6
Manufacturer:	Shenzhen Kingsun Enterprise	s Co., Ltd.		
Address:	25/F, CEC Information Buildin Guangdong, China	g, Xinwen Rd., Sl	henzhen 518034,	
Date of Test:	Mar. 10, 2020 – Mar. 18, 2020)		
Applicable Standards:	FCC CFR Title 47 Part 15 Sub FCC KDB 558074 D01 15.247 ANSI C63.10:2013	•		Ś

The above equipment has been tested by Shenzhen Tongce Testing Lab. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:	Brane, Zeng.	Date:	Dec. 09, 2019	
Reviewed By:	Brave Zeng	– Date:	Dec. 10, 2019	Ś
Approved By:	Beryl Zhao	Date:	Dec. 10, 2019	
	Tomsin			Ś
e: 400-6611-140 Tel.	86-755-27673339 Fax:	86-755-2767333		3 of 37

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 37

3. EUT Description

Product:	TWS Earbuds
Model No.:	OE-EP011
Additional Model No.:	N/A
Trade Mark:	N/A
Bluetooth Version:	V5.0 (This report is for BLE)
Operation Frequency:	2402MHz~2480MHz
Channel Separation:	2MHz
Number of Channel:	40
Modulation Technology:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	-0.58dBi
Power Supply:	Rechargeable Li-ion Battery DC 3.7V

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
G)1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz 🔇		
·		·		·		<u> </u>			
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		
Remark:	Remark: Channel 0, 19 & 39 have been tested.								

Report No.: TCT200310E015

4. General Information

4.1. Test environment and mode

Operating Environment:					
Condition	Radiated Emission				
Temperature:	25.0 °C	25.0 °C			
Humidity:	55 % RH	55 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

TCT通测检测 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
1	1	1	/	G

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

- FCC Registration No.: 645098
 - Shenzhen Tongce Testing Lab

The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

• IC - Registration No.: 10668A-1

The 3m Semi-anechoic chamber of Shenzhen TCT Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

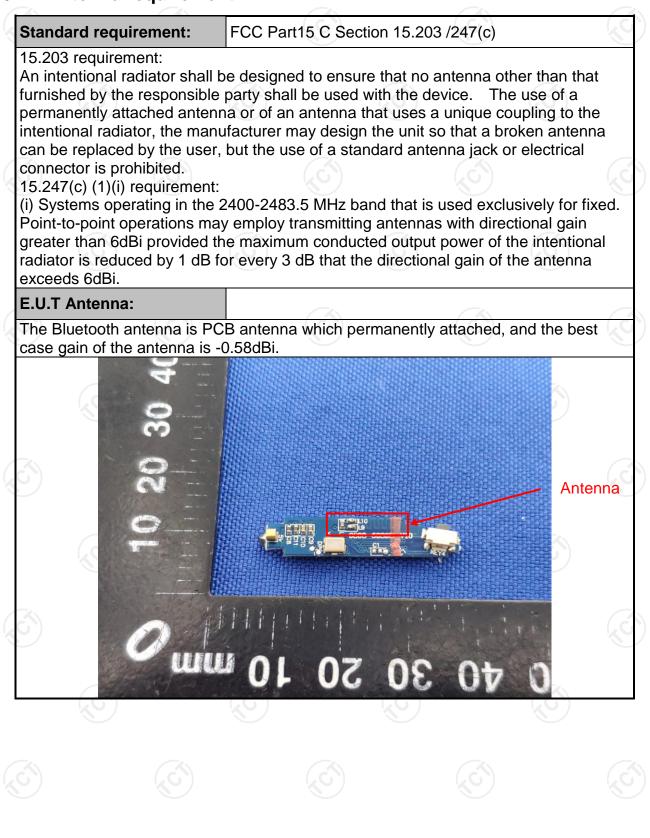
5.2. Location

Shenzhen Tongce Testing Lab

Address: 1B/F., Building 1, Yibaolai Industrial Park, Qiaotou, Fuyong, Baoan District, Shenzhen, Guangdong, China

TEL: +86-755-27673339

5.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Item	MU
Conducted Emission	±2.56dB
RF power, conducted	±0.12dB
Spurious emissions, conducted	±0.11dB
All emissions, radiated(<1G)	±3.92dB
All emissions, radiated(>1G)	±4.28dB
Temperature	±0.1°C
Humidity	±1.0%
	Conducted Emission RF power, conducted Spurious emissions, conducted All emissions, radiated(<1G)

6. Test Results and Measurement Data

6.1. Antenna requirement

6.2. Conducted Emission

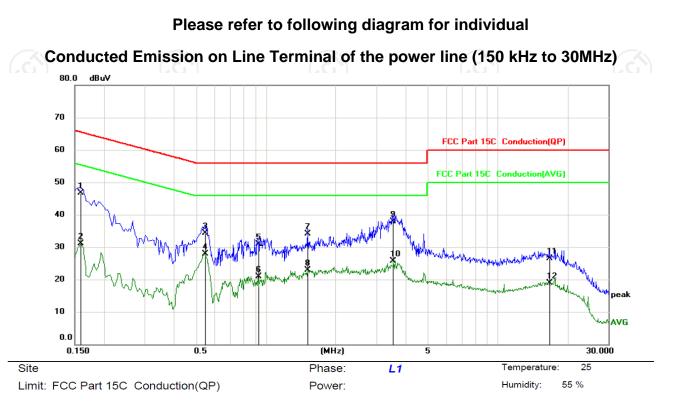
6.2.1. Test Specification

Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto				
	Frequency range	Limit (dBuV)				
	(MHz)	Quasi-peak	Áverage				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Refere	nce Plane					
Test Setup:	E.U.T Adapter Filter AC power Filter AC power E.U.T Adapter Test table/Insulation plane EMI Receiver Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m						
Test Mode:	Charging + Transmittir	ng Mode					
	 The E.U.T is connering equipme The E.U.T is connering equipme The peripheral device 	zation network 50uH coupling im nt.	(L.I.S.N.). This pedance for the				
Test Procedure:	 power through a Ll coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables ANSI C63 10: 2013. 	e with 50ohm term diagram of the line are checkence. In order to fir e positions of equ s must be chang	nination. (Please test setup and d for maximum d the maximum ipment and all c ed according to				
Test Procedure:	coupling impedance refer to the block photographs).3. Both sides of A.C. conducted interferent emission, the relative	e with 50ohm term diagram of the line are checkence. In order to fir e positions of equ s must be chang	nination. (Pleas test setup and d for maximur nd the maximur ipment and all c ed according t				

Page 10 of 37

6.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)									
Equipment	Manufacturer	Model Serial Number		Calibration Due					
Test Receiver	R&S	ESPI	101402	Jul. 29, 2020					
LISN	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2020					
Coax cable (9KHz-30MHz)	тст	CE-05	N/A	Sep. 08, 2020					
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A					


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 11 of 37

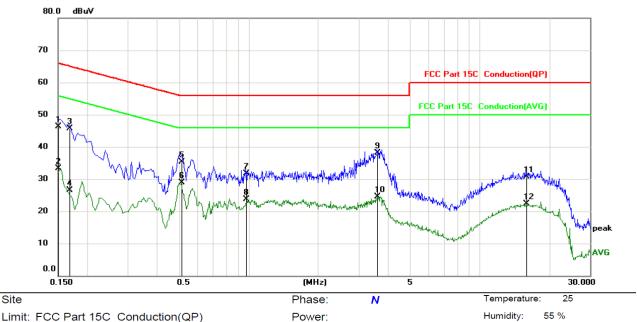
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

6.2.3. Test data

ГСТ通测检测 TESTING CENTRE TECHNOLOGY

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	36.52	10.12	46.64	65.52	-18.88	QP	
2		0.1590	21.08	10.12	31.20	55.52	-24.32	AVG	
3		0.5460	24.15	10.13	34.28	56.00	-21.72	QP	
4		0.5460	17.79	10.13	27.92	46.00	-18.08	AVG	
5		0.9240	20.78	10.12	30.90	56.00	-25.10	QP	
6		0.9240	10.69	10.12	20.81	46.00	-25.19	AVG	
7		1.5180	23.89	10.12	34.01	56.00	-21.99	QP	
8		1.5180	12.70	10.12	22.82	46.00	-23.18	AVG	
9	*	3.5250	27.85	10.13	37.98	56.00	-18.02	QP	
10		3.5250	15.60	10.13	25.73	46.00	-20.27	AVG	
11		16.6740	16.31	10.18	26.49	60.00	-33.51	QP	
12		16.6740	8.68	10.18	18.86	50.00	-31.14	AVG	

Note:


Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Page 12 of 37

Report No.: TCT200310E015

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

1 2 3 4	MHz 0.1500 0.1500 0.1680 0.1680	dBu∨ 36.26 23.19 35.56	dB 10.12 10.12 10.12	dBu∨ 46.38 33.31	dBu∨ 66.00 56.00	dB -19.62 -22.69	Detector QP	Comment
2	0.1500 0.1680	23.19 35.56	10.12	33.31			QP	
3	0.1680	35.56			56.00	-22 69		
			10.12			22.00	AVG	
4	0.1680			45.68	65.06	-19.38	QP	
		16.42	10.12	26.54	55.06	-28.52	AVG	
5	0.5144	25.14	10.13	35.27	56.00	-20.73	QP	
6 *	0.5144	18.84	10.13	28.97	46.00	-17.03	AVG	
7	0.9780	21.63	10.12	31.75	56.00	-24.25	QP	
8	0.9780	13.53	10.12	23.65	46.00	-22.35	AVG	
9	3.5925	27.95	10.13	38.08	56.00	-17.92	QP	
10	3.5925	14.41	10.13	24.54	46.00	-21.46	AVG	
11	15.9675	20.45	10.18	30.63	60.00	-29.37	QP	
12	15.9675	12.11	10.18	22.29	50.00	-27.71	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 13 of 37

6.3. Conducted Output Power

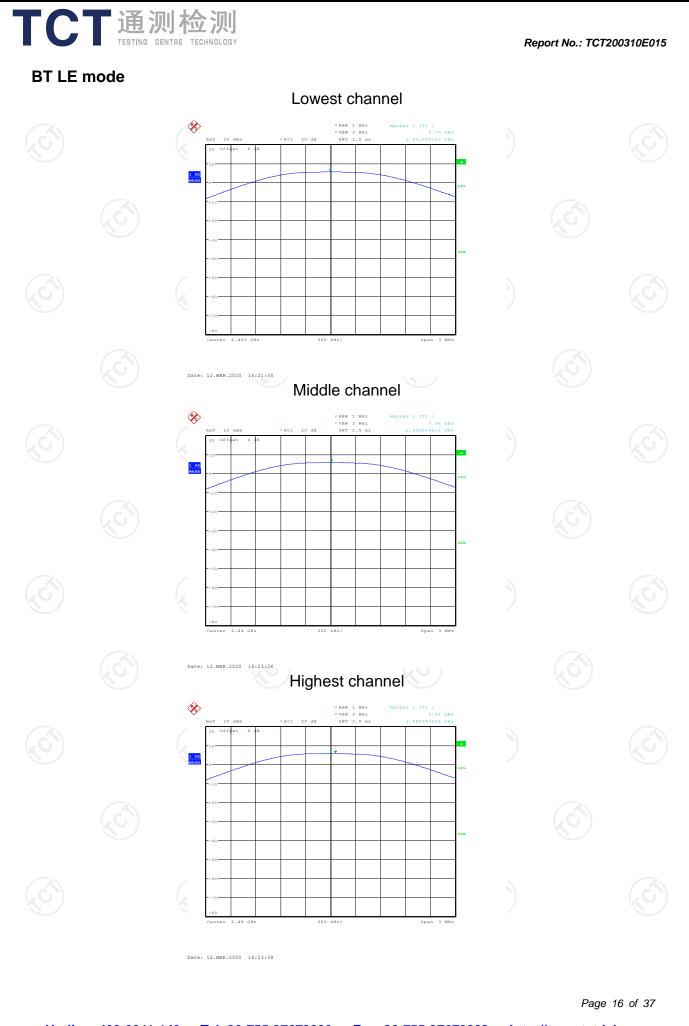
6.3.1. Test Specification

FCC Part15 C Section 15.247 (b)(3)
KDB 558074 D01 v05r02
30dBm
Spectrum Analyzer EUT
Refer to item 4.1
 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
PASS

6.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020
Antenna Connector	О тст	RFC-01	N/A	Sep. 11, 2020

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.3.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

BT LE mode						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	5.70	30.00	PASS			
Middle	5.96	30.00	PASS			
Highest	5.92	30.00	PASS			

Test plots as follows:

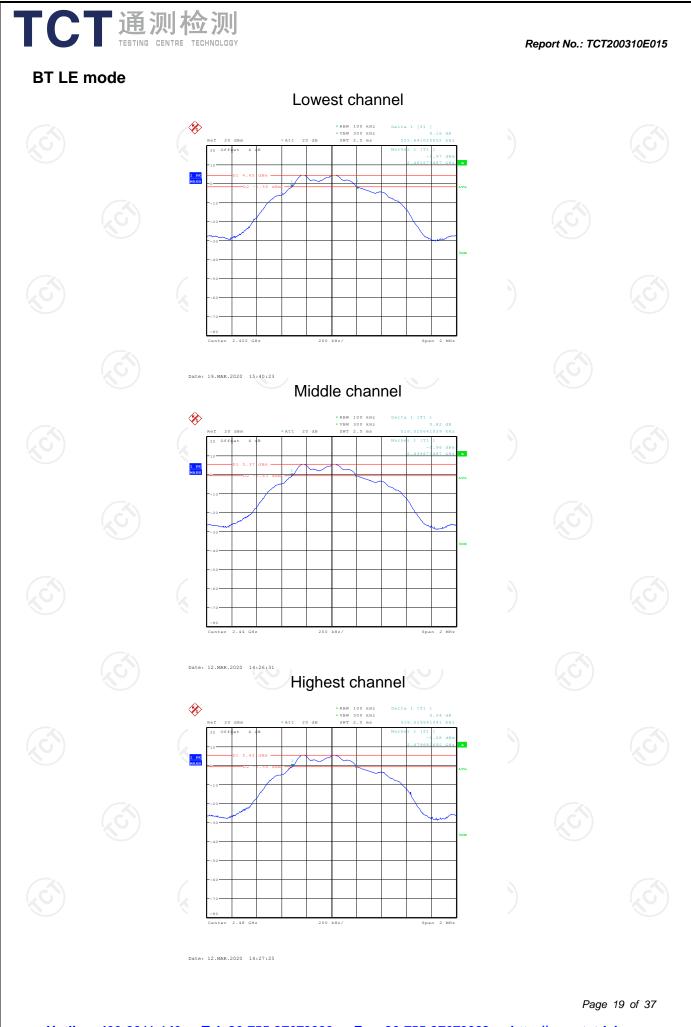
l est plots as	follows:						
						Page	15 of 37
<u>Hotline: 400</u>	<u>-6611-140 Tel: 8</u>	6-755-276733	<u>39 Fax: 8</u>	<u>36-755-2767</u>	<u>3332 http:</u>	//www.tct-la	<u>b.com</u>

6.4. Emission Bandwidth

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

6.4.2. Test Instruments


RF Test Room								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020				
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020				
Antenna Connector	с тст	RFC-01	N/A	Sep. 11, 2020				

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.4.3. Test data

	Test channel	6dB Emission Bandwidth (kHz)				
6	Test channel	BT LE mode	Limit	Result		
0	Lowest	525.64	>500k	C		
	Middle	516.03	>500k	PASS		
	Highest	516.03	>500k			

6.5. Power Spectral Density

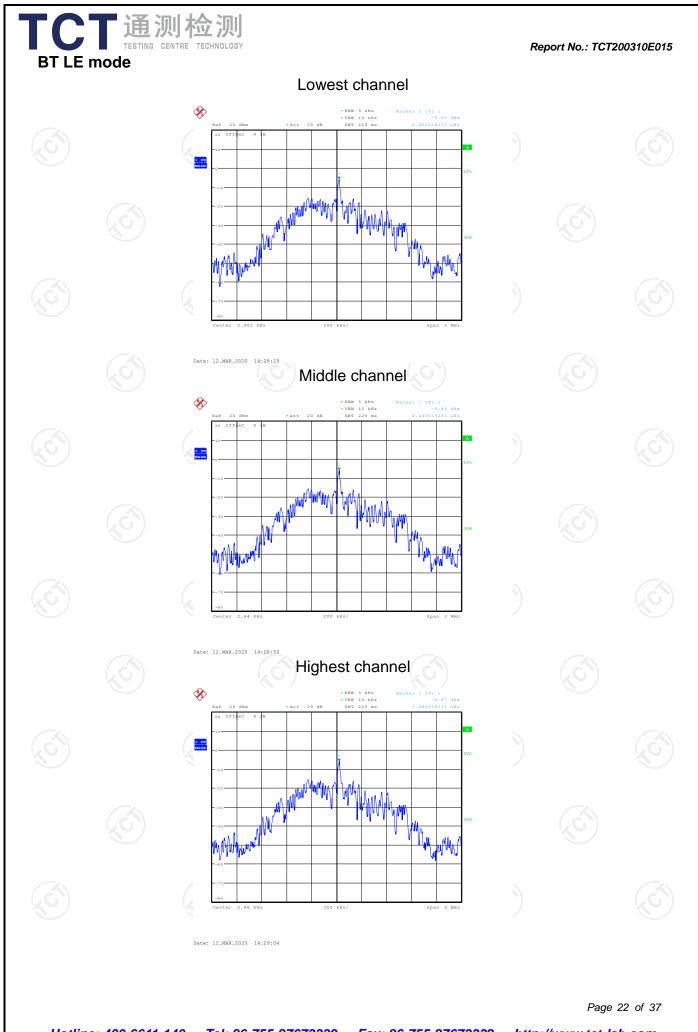
6.6. Test Specification

FCC Part15 C Section 15	5.247 (e)
KDB 558074 D01 v05r02	
	al density shall not be greate z band at any time interval of
	<u> </u>
Spectrum Analyzer	EUT
Refer to item 4.1	
 analyzer by RF cable was compensated to the measurement. 2. Set to the maximum program to the measurement. 3. Make the measurement resolution bandwidth (kHz. Video bandwidth) (kHz. Video bandwidth) make an accurate me times DTS Channel B 4. Detector = peak, Swee mode = max hold, Allo the peak marker funct power level. 	ower setting and enable the busly. In with the spectrum analyzer's (RBW): 3 kHz \leq RBW \leq 100 (VBW \geq 3 x RBW. In order to basurement, set the span to 1.5
PASS	
	 KDB 558074 D01 v05r02 The peak power spectra than 8dBm in any 3kHz continuous transmission. Spectrum Analyzer Refer to item 4.1 1. The RF output of EUT analyzer by RF cable was compensated to measurement. 2. Set to the maximum por EUT transmit continuous 3. Make the measuremer resolution bandwidth kHz. Video bandwidth make an accurate measurement B4. Detector = peak, Sweet mode = max hold, Allot the peak marker funct power level. 5. Measure and record the second se

6.6.1. Test Instruments

(RF Test Room						
	Equipment	ent Manufacturer Model		Serial Number	Calibration Due		
	Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020		
	RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020		
	Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


6.6.2. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Test channel	Power Spectral Density (dBm/3kHz)				
	rest channel	BT LE mode	Limit		Result	
~	Lowest	-6.00		8 dBm/3kHz		
	Middle	-5.85		8 dBm/3kHz	PASS	
	Highest	-5.87	Ċ)	8 dBm/3kHz		
_			C			

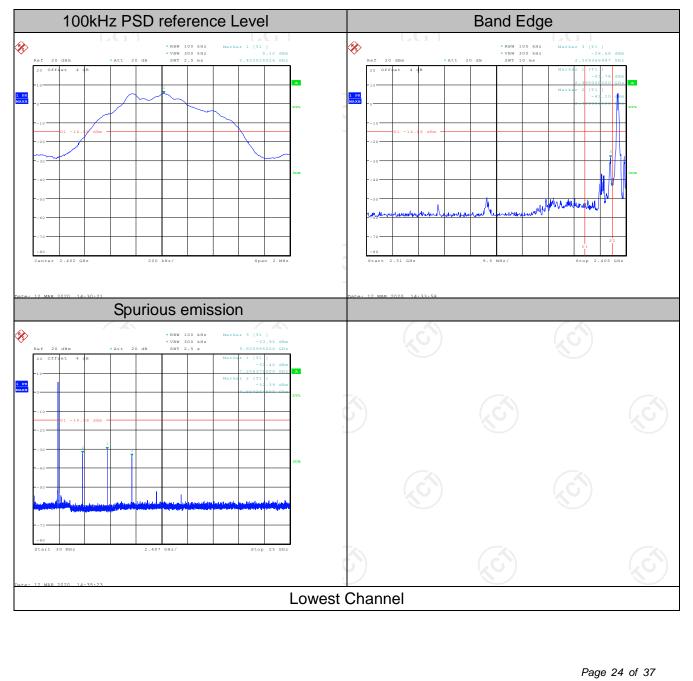
Test plots as follows:

	ollows:						
<u>Hotline: 400-</u>	<u>6611-140 Tel: 86</u>	<u>8-755-27673:</u>	3 <u>39 Fax:</u> 8	86-755-2767	<u>3332 http</u>	Page <mark>://www.tct-la</mark>	21 of 37 1 b.com

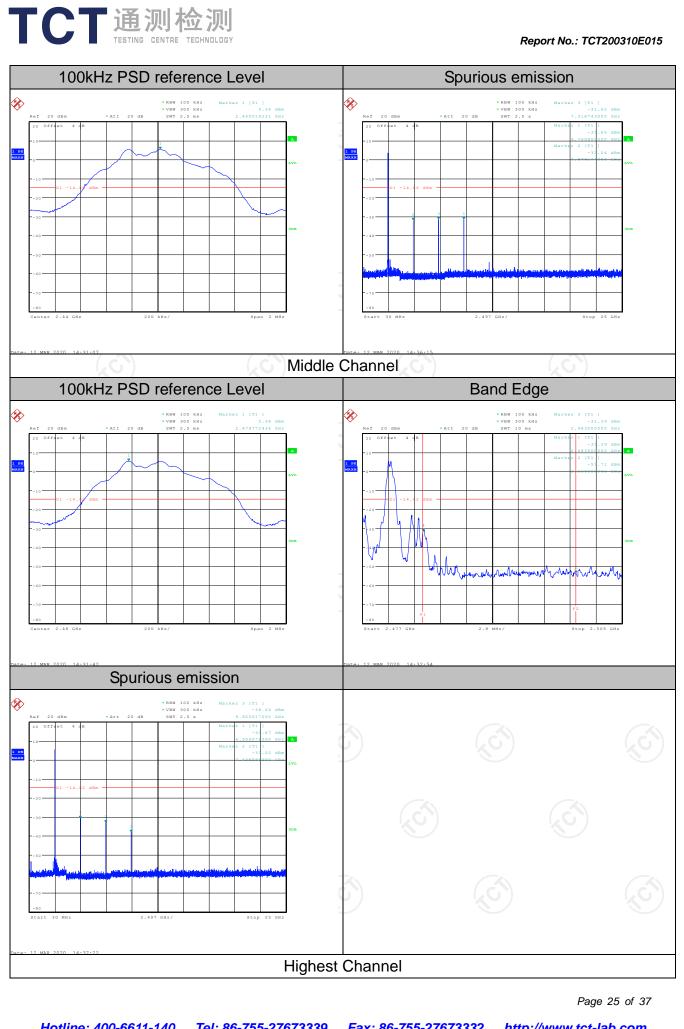
6.7. Conducted Band Edge and Spurious Emission Measurement

6.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report.
	5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.



6.7.2. Test Instruments

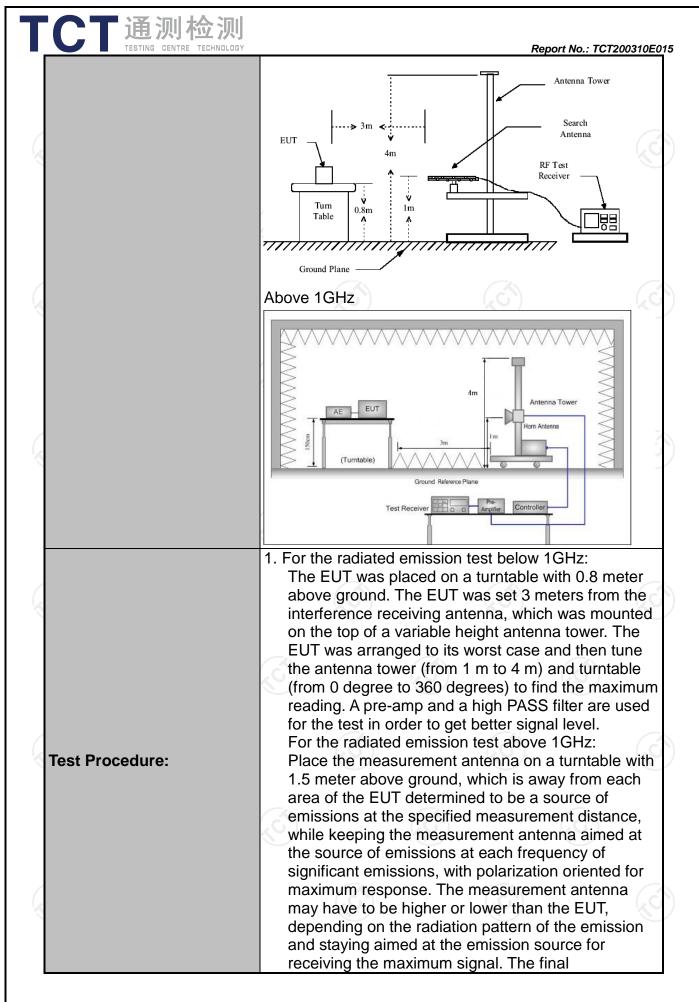

RF Test Room									
Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	R&S	FSU	200054	Sep. 11, 2020					
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2020					
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2020					

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

6.7.3. Test Data

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

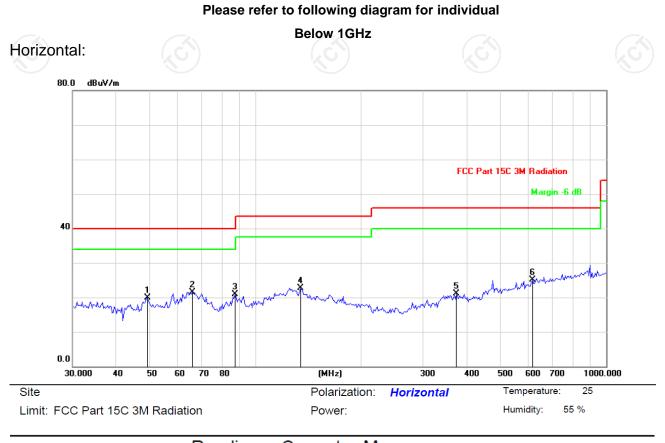

6.8. Radiated Spurious Emission Measurement

6.8.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15	C Sectior	n 15.209	8			
ANSI C63.10): 2013					
9 kHz to 25 (GHz	3		G	6	
3 m	X	9		K.)	
Horizontal &	Vertical					
Refer to item	n 4.1	((a	
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW k 200Hz	VBW 1kHz		Remark si-peak Value	
150kHz- 30MHz			30kHz		si-peak Valu	
30MHz-1GHz			300KHz		si-peak Value	
Above 1GHz					eak Value erage Value	
	· our			1	(
	_	Field Strength (microvolts/meter)			asurement nce (meters	
			300			
				30		
				30		
				3		
			3			
			3			
					k	
Frequency			Distan	nce Detector		
	(500			Average	
Above 1GHz	z	5000	Peak			
For radiated	emission	s below 30)MHz			
Di	stance = 3m			Compu	iter	
t		\frown	Pre -			
EUT	(╓┰			7	
*	Turn table	1m		Receiver		
	Groun	d Plane	L			
	SHz					
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz- 150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.3 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1	9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 120KHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Field Stress 0.009-0.490 2400/F(0 0.490-1.705 24000/F(0 0.400-1.705 24000/F(0 0.500 200 0.500 500 For radiated emission	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1 Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 200Hz 1kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Measure Distance Distance Above 1GHz 500 3 3 3 Above 1GHz 500 3 3 3	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 4.1	

Page 26 of 37

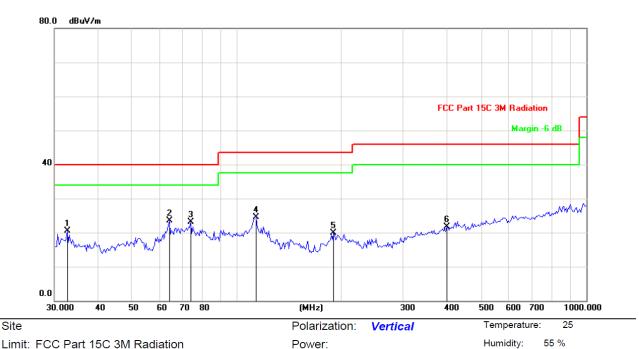

「СТ通测检	2 泖川
	CHNOLOGY Report No.: TCT200310EC
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
	 4. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
	 (3) Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the
Testmeder	transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 4.1 for details
Test results:	PASS

6.8.2. Test Instruments

	Radiated Em	ission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 29, 2020
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2020
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 08, 2020
Pre-amplifier	HP	8447D	2727A05017	Sep. 08, 2020
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 11, 2020
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 06, 2020
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 11, 2020
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 06, 2020
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coax cable (9KHz-1GHz)	тст	RE-low-01	N/A	Sep. 08, 2020
Coax cable (9KHz-40GHz)	тст	RE-high-02	N/A	Sep. 08, 2020
Coax cable (9KHz-1GHz)	тст	RE-low-03	N/A	Sep. 08, 2020
Coax cable (9KHz-40GHz)	тст	RE-high-04	N/A	Sep. 08, 2020
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

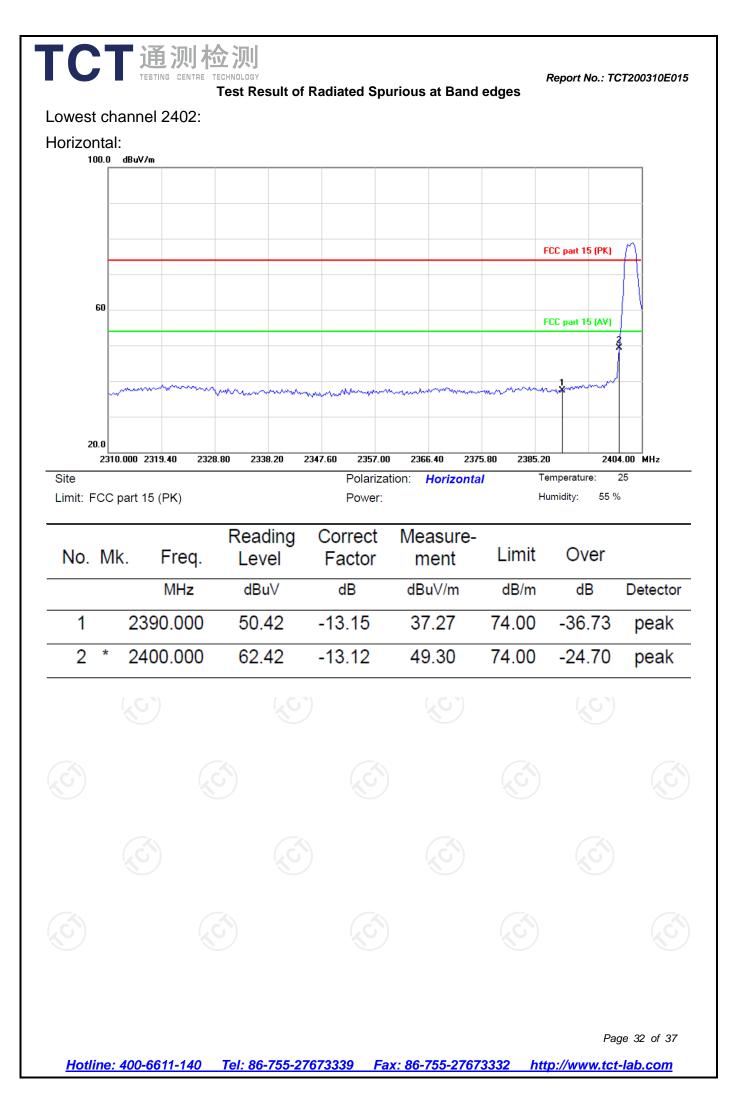
6.8.3. Test Data


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dB/m	dB	Detector
1		49.0627	32.92	-12.92	20.00	40.00	-20.00	peak
2	*	65.9067	37.50	-16.00	21.50	40.00	-18.50	peak
3		87.2980	36.19	-15.20	20.99	40.00	-19.01	peak
4		134.0194	39.68	-16.90	22.78	43.50	-20.72	peak
5	3	373.8861	30.47	-9.32	21.15	46.00	-24.85	peak
6	6	615.7743	29.97	-4.86	25.11	46.00	-20.89	peak
							-	

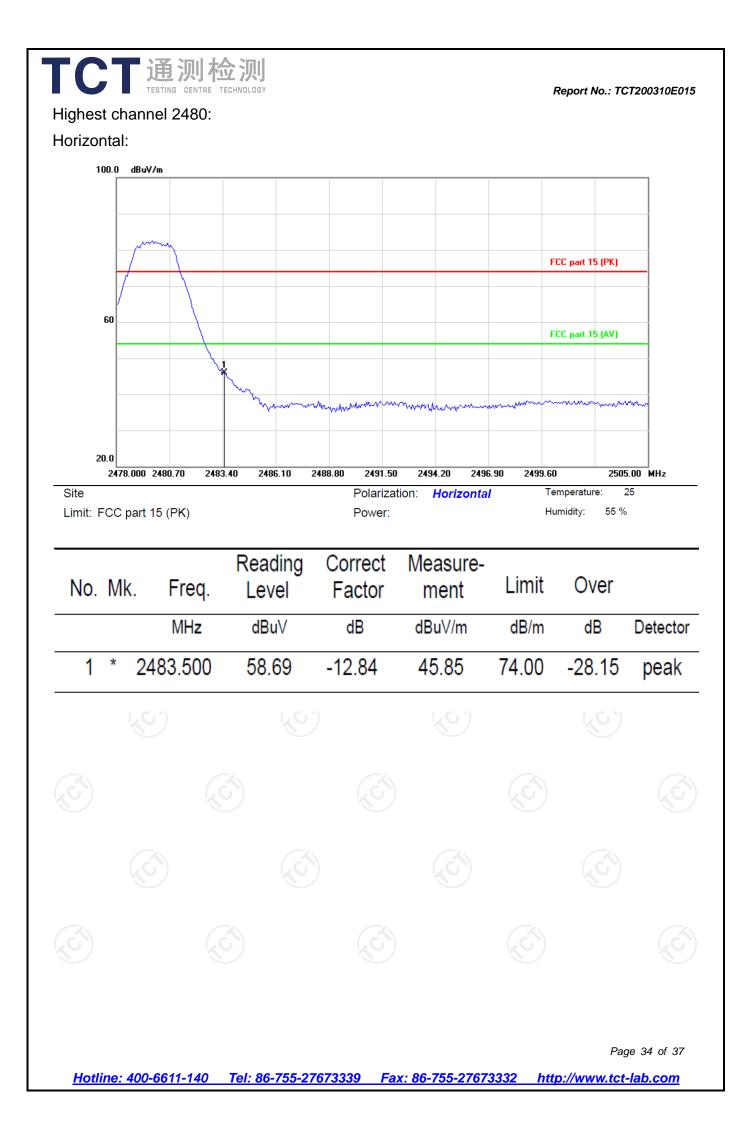
Report No.: TCT200310E015

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Vertical:


Limit: FCC Part 15C 3M Radiation

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dB/m	dB	Detector
1		32.6395	34.18	-13.75	20.43	40.00	-19.57	peak
2	*	64.0800	38.88	-15.31	23.57	40.00	-16.43	peak
3		73.7496	40.69	-17.57	23.12	40.00	-16.88	peak
4		113.2200	38.64	-14.04	24.60	43.50	-18.90	peak
5		189.1076	34.84	-14.91	19.93	43.50	-23.57	peak
6	3	398.2962	30.54	-8.79	21.75	46.00	-24.25	peak
					_			


Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (middle channel) was submitted only.
- 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$
 - Correction Factor= Antenna Factor + Cable loss Pre-amplifier
 - Limit $(dB\mu V/m) = Limit$ stated in standard
 - $Margin (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
 - Any value more than 10dB below limit have not been specifically reported.
- * is meaning the worst frequency has been tested in the test frequency range

Report No.: TCT200310E015

Report No.: TCT200310E015 Vertical: 100.0 dBuV/m FCC part 15 (PK) 60 FCC part 15 (AV) 20.0 2310.000 2319.40 2328.80 2338.20 2347.60 2357.00 2366.40 2375.80 2404.00 MHz 2385.20 25 Site Temperature: Polarization: Vertical Limit: FCC part 15 (PK) Humidity: 55 % Power: Reading Correct Measure-Freq. Limit Over No. Mk. Level Factor ment MHz dBuV dB dBuV/m dB/m dB Detector -13.15 2390.000 51.04 74.00 -36.11 37.89 1 peak -13.12 -22.31 2 * 2400.000 64.81 51.69 74.00 peak

20.0

Site

2478.000 2480.70

Limit: FCC part 15 (PK)

2483.40

2486.10

2488.80

No.	Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	2483.500	55.53	-12.84	42.69	74.00	-31.31	peak

2491.50

Power:

2494.20

Polarization: Vertical

2496.90

2499.60

Temperature:

Humidity:

2505.00 MHz

25

55 %

Above 1GHz

Low chann	el: 2402 N	lHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	A\/	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	46.39		0.66	47.05		74	54	-6.95
7206	Н	36.52		9.5	46.02		74	54	-7.98
	Н								
	<u></u>							<u></u>	
4804	V	45.74	-	0.66	46.40	G	74	54	-7.60
7206	V	37.38		9.5	46.88		74	54	-7.12
	V								

Middle channel: 2440 MHz

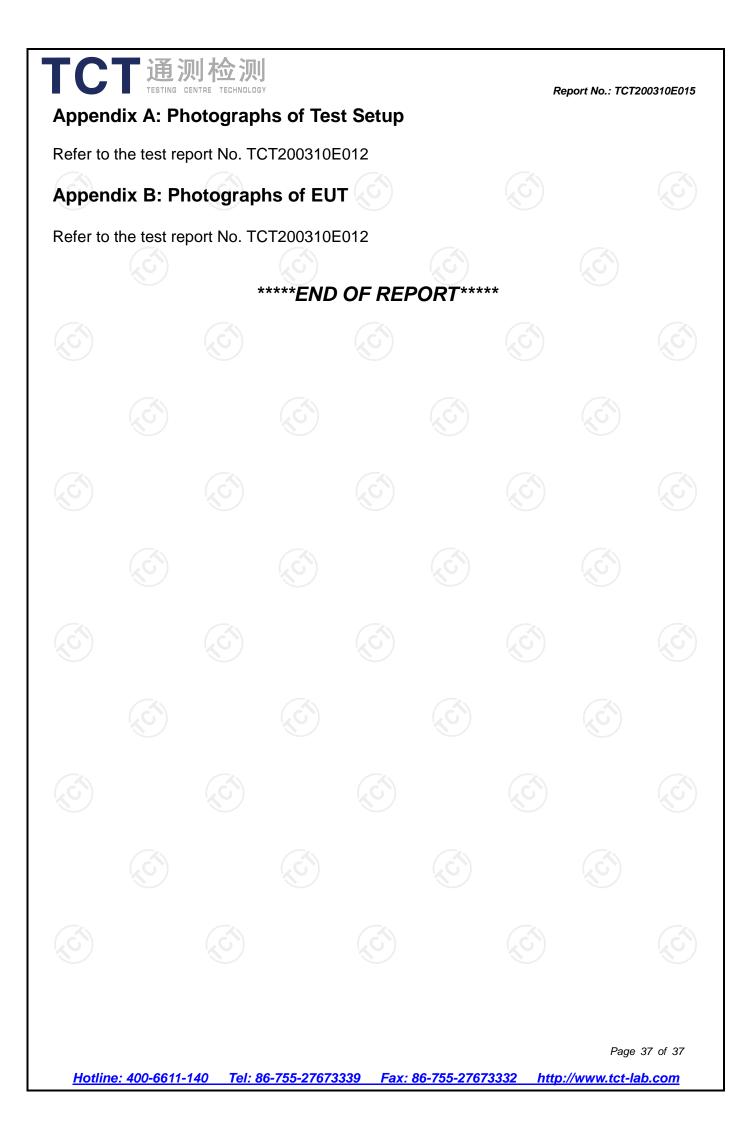
muule cha	IIIIEI. 2440			· · · · · · · · · · · · · · · · · · ·	$\langle \rangle$				
Frequency	Ant Pol	Peak	AV	Correction	Emissic	on Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)		(dBµV/m)		(dB)
4880	Н	45.95		0.99	46.94		74	54	-7.06
7320	H	39.48		9.87	49.35	~	74	54	-4.65
((GH)		-4,0	·)		<u> </u>		(₇ .C)	
			e l						
4880	V	44.75		0.99	45.74		74	54	-8.26
7320	V	38.28		9.87	48.15		74	54	-5.85
	V			(<u> </u>				
)				

High channel: 2480 MHz

Frequency	Ant Pol	Peak	AV	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV		(dBµV/m)	(dB)
4960	K H	46.61		1.33	47.94		74	54	-6.06
7440	Ĥ	38.37		10.22	48.59		74	54	-5.41
	Н								
			-		-	-			
4960	V	45.99		1.33	47.32		74	54	-6.68
7440	V	37.76		10.22	47.98		74	54	-6.02
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

