

Test Report

Report No.: MTi240911007-01E4

Date of issue: 2024-11-21

Applicant: Emlid Tech Kft

Product: RTK GNSS receiver

Model(s): RRS-2P

FCC ID: 2BAYERCH204

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gen	eral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	
2	Sum	nmary of Test Result	7
3	Test	Facilities and accreditations	8
	3.1	Test laboratory	
4	List	of test equipment	9
5	Eval	luation Results (Evaluation)	10
	5.1	Antenna requirement	10
6	Radi	io Spectrum Matter Test Results (RF)	11
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Conducted Emission at AC power line Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density RF conducted spurious emissions and band edge measurement Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	15 16 17 18
Ph	otogr	aphs of the test setup	30
Ph	otogr	aphs of the EUT	31
7	App	endix A: DTS Bandwidth	33
8	App	endix C: Maximum conducted output power	35
9	App	endix D: Maximum power spectral density	37
10	Αp	ppendix E: Band edge measurements	39
11	Αŗ	ppendix F: Conducted Spurious Emission	40
12	Δr	nnendix G: Duty Cycle	43

Test Result Certification			
Applicant:	Emlid Tech Kft		
Address:	1138 Budapest, Esztergomi way 31-39, HUB 3 building, 5 floor Hungary (Republic Of)		
Manufacturer:	Ningbo High-tech Zone Ladder Science co., Ltd		
Address:	Building#3, Units 4-1, 5-1, 6-1, Zone D, Zhizao Port, No.215 Qingyi Road, Ningbo High-Tech Zone, Zhejiang Province, China		
Factory:	Ningbo High-tech Zone Ladder Science co., Ltd		
Address:	Building#3, Units 4-1, 5-1, 6-1, Zone D, Zhizao Port, No.215 Qingyi Road, Ningbo High-Tech Zone, Zhejiang Province, China		
Product description			
Product name:	RTK GNSS receiver		
Trademark:	EMLID		
Model name:	RRS-2P		
Series Model(s):	N/A		
Standards:	47 CFR Part 15.247		
Test Method:	ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02		
Date of Test			
Date of test:	2024-10-30 to 2024-11-21		
Test result:	Pass		

Test Engineer	:	James arn
		(James Qin)
Reviewed By		Dowid. Cel
		(David Lee)
Approved By	:	leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

<u> </u>	
Product name:	RTK GNSS receiver
Model name:	RRS-2P
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: 5VDC 3A Battery: DC 6.4V, 6400mAh
Accessories:	N/A
Hardware version:	REV-B
Software version:	v31.8
Test sample(s) number:	MTi240911007-01S1001
RF specification	
Operating frequency range:	903~927MHz
Modulation type:	LoRa
Antenna(s) type:	Glue stick antenna
Antenna(s) gain:	2.02 dBi
1.2 Description of test	

1.2 Description of test modes

No.	Emission test modes
Mode1	TX- LoRa

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	903	2	915	3	927

Test Channel List Operation Band:

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
903	915	927

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: Serial port tools

For power setting, refer to below table.

Mode	903MHz	915MHz	927MHz
LoRa	18	18	18

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer Lenovo			
Laptop	e485	1				
Support cable list						
Description	Length (m)	From	То			
1	1	1	1			

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR 15.247(a)(2)	Pass
3	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
4	Power Spectral Density	47 CFR 15.247(e)	Pass
5	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
6	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass

Note: Both power supply modes have been tested, but only the worst working mode is reflected in the report, and the worst mode is battery powered mode

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

Ī	Equipment Memufacturer Model Social No. Cal. data Cal. Du							
No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
	Occupied Bandwidth Maximum Conducted Output Power Power Spectral Density Emissions in non-restricted frequency bands							
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Band edge Emissions in freq	emissions (Radi uency bands (ab					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19		
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20		
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16		
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20		
		Emissions in freq	uency bands (be	elow 1GHz)				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		
4	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
		Conducted En	nission at AC po	wer line				
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19		
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20		
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19		

5 Evaluation Results (Evaluation)

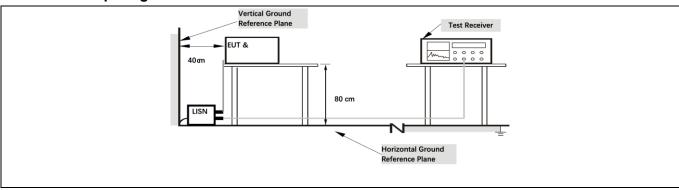
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

5.1.1 Conclusion:

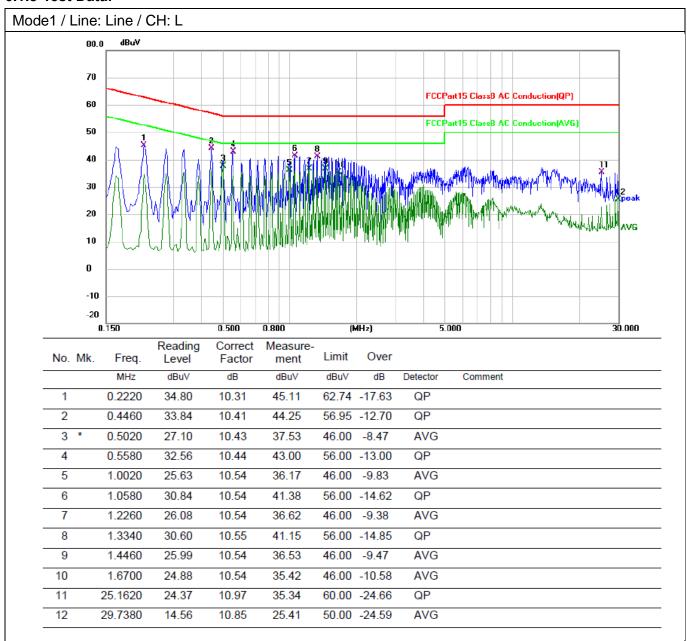
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

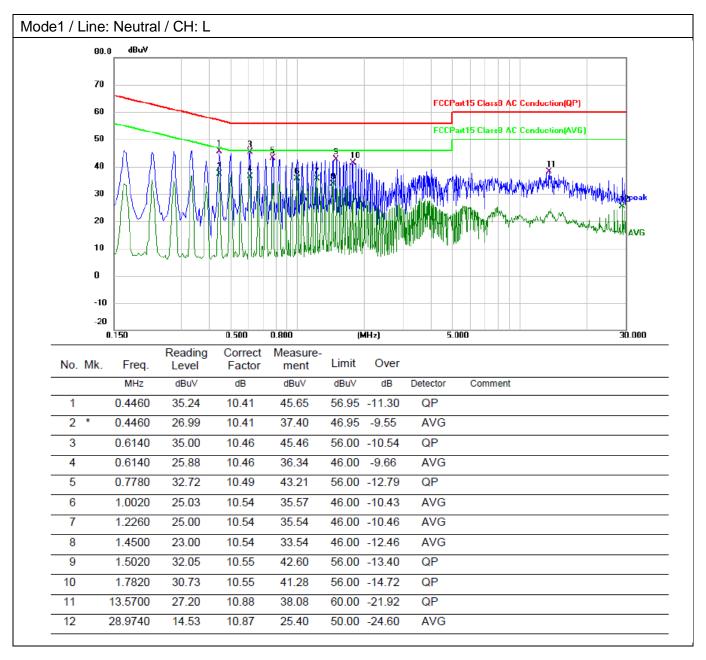
6 Radio Spectrum Matter Test Results (RF)


6.1 Conducted Emission at AC power line

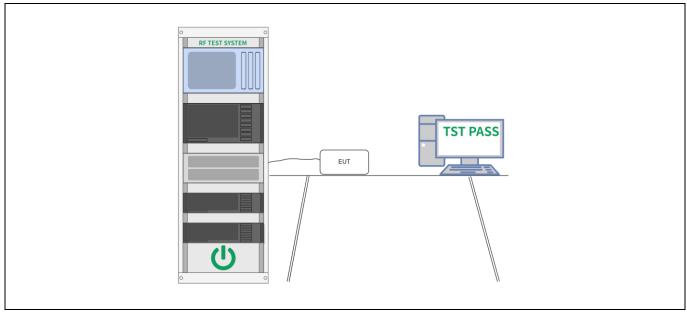
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)				
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of	the frequency.	_			
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					

6.1.1 E.U.T. Operation:


Operating Envi	Operating Environment:						
Temperature:	25 °C	25 °C Humidity: 56 % Atmospheric Pressure: 101 kPa					
Pre test mode: Mod			e1				
Final test mode: Mod			e1				


6.1.2 Test Setup Diagram:

6.1.3 Test Data:


6.2 Occupied Bandwidth

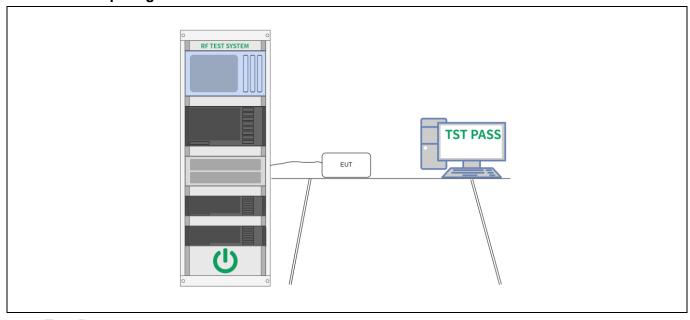
Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	23 °C	23 °C Humidity: 59 % Atmospheric Pressure: 99 kPa				99 kPa	
Pre test mode: Mo			e1				
Final test mode: Mod			e1				

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

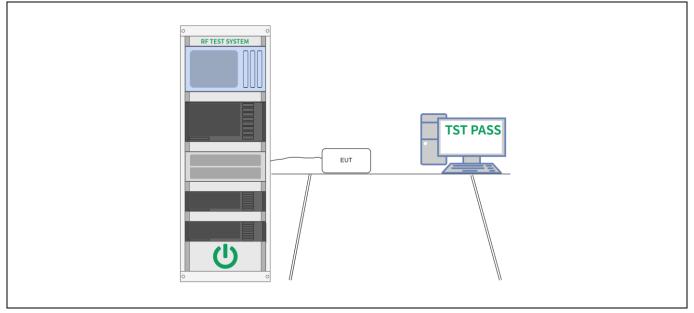
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature:	23 °C	23 °C Humidity: 59 % Atmospheric Pressure: 99 kPa				99 kPa
Pre test mode: Mod		Mode	e1			
Final test mode: Mod		e1				

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Power Spectral Density

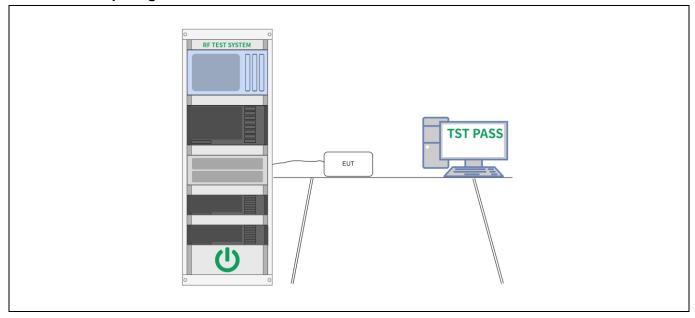
Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

6.4.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	23 °C	23 °C Humidity: 59 % Atmospheric Pressure: 99 kPa				99 kPa	
Pre test mode: Mod		Mode	e1				
Final test mode: Mode		e1					

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

6.5.1 E.U.T. Operation:

Operating Envi	ronment:	ı i				
Temperature:	23 °C		Humidity:	59 %	Atmospheric Pressure:	99 kPa
Pre test mode:		Mode	e1			
Final test mode	e:	Mode	e1			

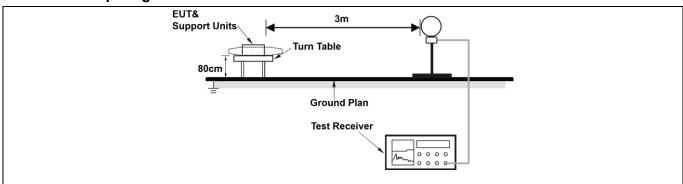
6.5.2 Test Setup Diagram:

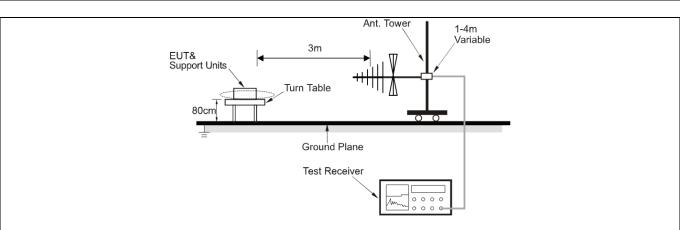
6.5.3 Test Data:

6.6 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated enfined in § 15.205(a), must als specified in § 15.209(a)(se	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of the	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sed	ction 6.6.4	

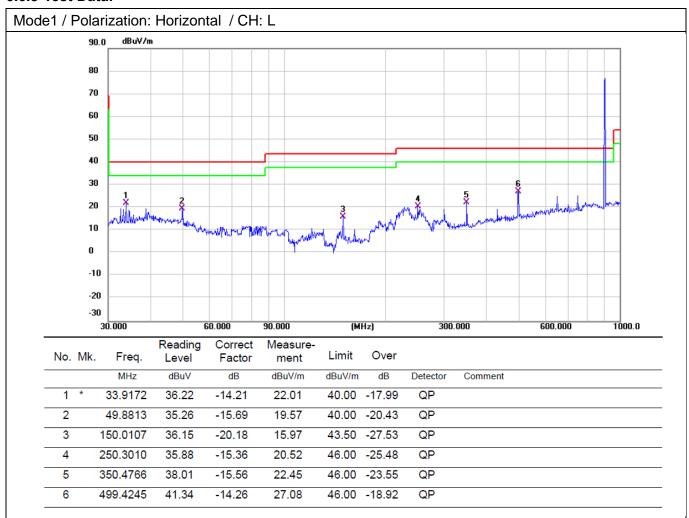
6.6.1 E.U.T. Operation:


Operating Envi	ronment:					
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1			
Final test mode) :			re-test mode w ded in the repo	vere tested, only the data or	of the worst mode


Note:

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.


6.6.2 Test Setup Diagram:

6.6.3 Test Data:

-10 -20 -30

30.000

60.000

90.000

微测检测 Page 21 of 44 Report No.: MTi240911007-01E4

Mode1 / Polarization: Vertical / CH: L

90.0 dBuV/m

80
70
60
50
40
30
20
10

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	62.6505	48.44	-21.19	27.25	40.00	-12.75	QP	
2		103.0800	43.66	-16.04	27.62	43.50	-15.88	QP	
3		151.0664	43.27	-17.16	26.11	43.50	-17.39	QP	
4		237.4758	50.90	-19.48	31.42	46.00	-14.58	QP	
5		472.1759	39.24	-13.94	25.30	46.00	-20.70	QP	
6		601.4265	36.85	-10.44	26.41	46.00	-19.59	QP	

(MHz)

300.000

600.000

1000.0

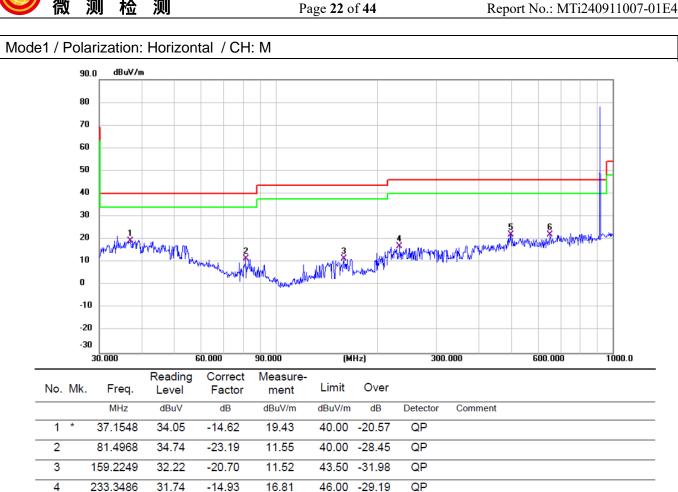
5

6

499.4245

651.9415

36.34


32.35

-14.26

-10.19

22.08

22.16

QP

QP

46.00 -23.92

46.00 -23.84

Report No.: MTi240911007-01E4 Mode1 / Polarization: Vertical / CH: M

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	52.5752	48.37	-21.35	27.02	40.00	-12.98	QP	
2		81.2116	41.49	-14.94	26.55	40.00	-13.45	QP	
3		105.6414	44.88	-17.74	27.14	43.50	-16.36	QP	
4		234.9909	47.84	-19.75	28.09	46.00	-17.91	QP	
5		472.1759	39.24	-13.94	25.30	46.00	-20.70	QP	
6		601.4265	35.85	-10.44	25.41	46.00	-20.59	QP	

4

5

6

254.7281

499.4245

750.1082

Report No.: MTi240911007-01E4 Mode1 / Polarization: Horizontal / CH: H dBuV/m 90.0 80 70 60 50 40 30 allered When the Hill have the fill have been been a free or 20 10 0 -10 -20 -30 30,000 90.000 (MHz) 300.000 600.000 1000.0 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB MHz dBuV/m dBuV/m dΒ Detector Comment 1 38.8877 31.79 -14.23 17.56 40.00 -22.44 QP 2 83.5220 33.47 -23.66 9.81 40.00 -30.19 QP 3 151.5971 31.61 -20.31 11.30 43.50 -32.20 QP

46.00 -30.17

46.00 -19.75

-23.42

46.00

QP

QP

QP

-15.89

-14.26

-7.70

15.83

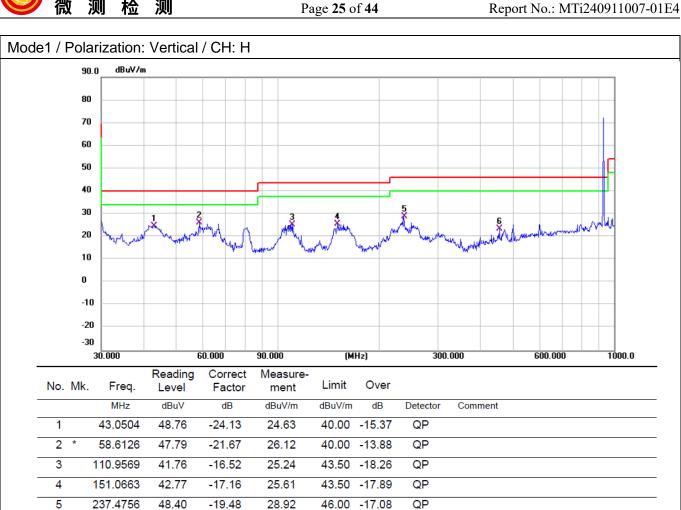
22.58

26.25

31.72

36.84

33.95


6

455.9057

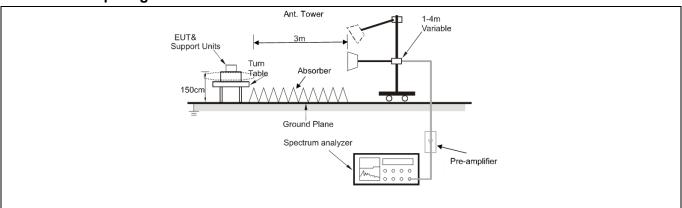
37.74

-14.25

23.49

46.00 -22.51

QP


6.7 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wi sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamental perating under this section shows the perating under this section shows the perating under this section shows the peration of the	hall not be located in the MHz or 470-806 MHz. It is permitted under other at the band edges. It is assed on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.7.1 E.U.T. Operation:

_						
Operating Envi	ironment:					
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1			
Final test mode	· ·	All of	the listed p	re-test mode w	ere tested, only the data	of the worst mode
rinai test mode	∃ .	(Mod	le1) is recor	ded in the repo	rt	
Note: Test freq	uency ar	e from	1GHz to 25	GHz, the ampl	itude of spurious emissior	ns which are
attenuated mo	re than 2	0 dB b	elow the lim	its are not repo	orted.	
All modes of or	peration o	of the	EUT were in	vestigated, and	d only the worst-case resu	ults are reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

No. I	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1806.000	49.05	-7.10	41.95	74.00	-32.05	peak
2		1806.000	47.42	-7.10	40.32	54.00	-13.68	AVG
3		2709.000	55.10	-4.02	51.08	74.00	-22.92	peak
4	*	2709.000	53.70	-4.02	49.68	54.00	-4.32	AVG
5		3612.000	42.84	-2.10	40.74	74.00	-33.26	peak
6		3612.000	44.95	-2.10	42.85	54.00	-11.15	AVG

Mode1 / Po	olariza	ation: Vertica	I / CH: L					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1806.000	47.54	-7.10	40.44	74.00	-33.56	peak
2		1806.000	46.22	-7.10	39.12	54.00	-14.88	AVG
3		2709.000	45.43	-4.02	41.41	74.00	-32.59	peak
4	*	2709.000	44.29	-4.02	40.27	54.00	-13.73	AVG
5		3612.000	43.94	-2.10	41.84	74.00	-32.16	peak
6		3612.000	42.26	-2.10	40.16	54.00	-13.84	AVG

Mode1 / Polarization: Horizontal / CH: M Reading Correct Measure-Limit Over No. Mk. Freq. Factor Level ment dBuV dΒ dBuV/m MHz dBuV/m dB Detector 1830.000 1 51.30 -6.8744.43 74.00 -29.57peak 2 1830.000 50.12 -10.75 -6.87 43.25 54.00 AVG 3 2745.000 51.55 -3.7947.76 74.00 -26.24 peak 2745.000 50.36 -3.7946.57 54.00 -7.43**AVG** 4 3660.000 42.45 -1.8340.62 74.00 -33.38 5 peak 3660.000 39.59 **AVG** 6 41.42 -1.8354.00 -14.41

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1830.000	47.74	-6.87	40.87	74.00	-33.13	peak
2		1830.000	46.44	-6.87	39.57	54.00	-14.43	AVG
3		2745.000	47.12	-3.79	43.33	74.00	-30.67	peak
4	*	2745.000	45.96	-3.79	42.17	54.00	-11.83	AVG
5		3660.000	43.17	-1.83	41.34	74.00	-32.66	peak
6		3660.000	42.21	-1.83	40.38	54.00	-13.62	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		1854.000	48.18	-6.68	41.50	74.00	-32.50	peak
2		1854.000	46.25	-6.68	39.57	54.00	-14.43	AVG
3		2781.000	54.69	-3.76	50.93	74.00	-23.07	peak
4	*	2781.000	53.63	-3.76	49.87	54.00	-4.13	AVG
5		3708.000	44.38	-2.03	42.35	74.00	-31.65	peak
6		3708.000	42.39	-2.03	40.36	54.00	-13.64	AVG

No. N	Иk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	•	1854.000	45.56	-6.68	38.88	74.00	-35.12	peak
2	•	1854.000	43.25	-6.68	36.57	54.00	-17.43	AVG
3	2	2781.000	44.34	-3.76	40.58	74.00	-33.42	peak
4	2	2781.000	42.35	-3.76	38.59	54.00	-15.41	AVG
5	(3708.000	45.92	-2.03	43.89	74.00	-30.11	peak
6 *	k (3708.000	43.70	-2.03	41.67	54.00	-12.33	AVG

Calculation formula:

Measurement (dB μ V/m) = Reading Level (dB μ V) + Correct Factor (dB) Over (dB) = Measurement (dB μ V/m) – Limit (dB μ V/m) Correct Factor (dB)= Antenna Factor+ Cable loss- Amplifier gain

Photographs of the test setup

Refer to Appendix - Test Setup Photos.

Photographs of the EUT

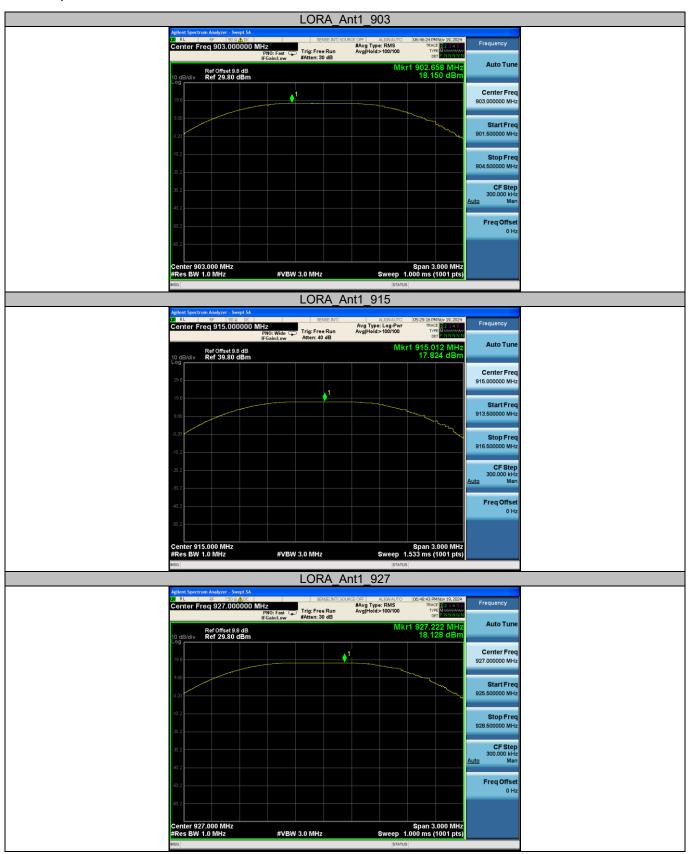
Refer to Appendix - EUT Photos

Appendix

7 Appendix A: DTS Bandwidth

Test Result

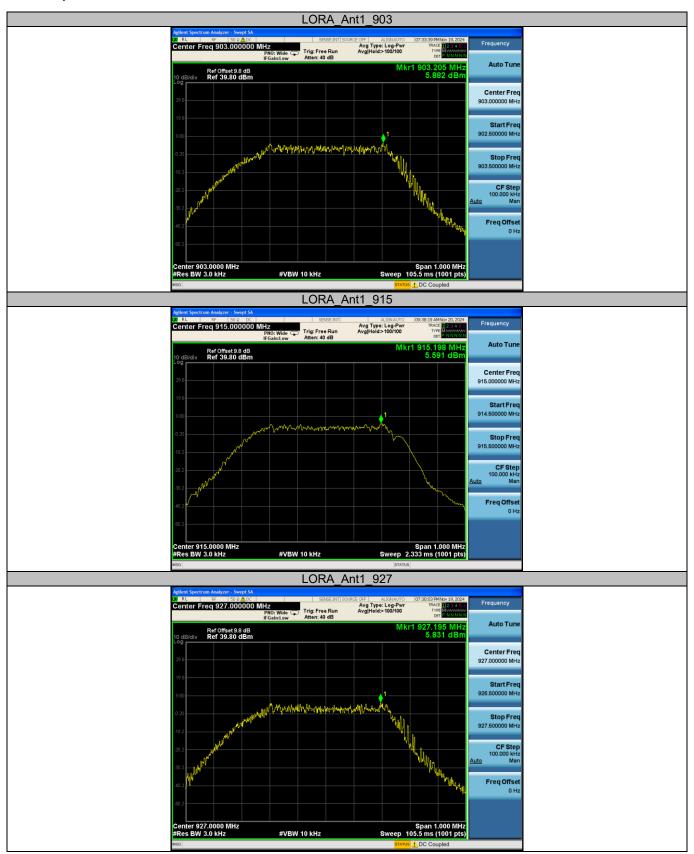
Test Mode	Antenna	Frequency [MHz]	DTS BW [MHz]	Limit [MHz]	Verdict
LORA	Ant1	903	0.745	0.5	PASS
		915	0.702	0.5	PASS
		927	0.703	0.5	PASS



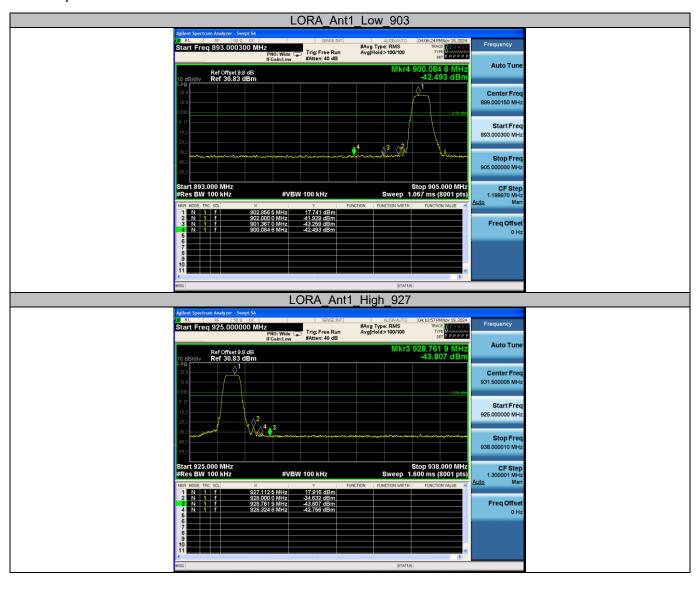
8 Appendix C: Maximum conducted output power

Test Result

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Verdict
LORA	Ant1	903	18.15	≤30	PASS
		915	17.824	≤30	PASS
		927	18.128	≤30	PASS

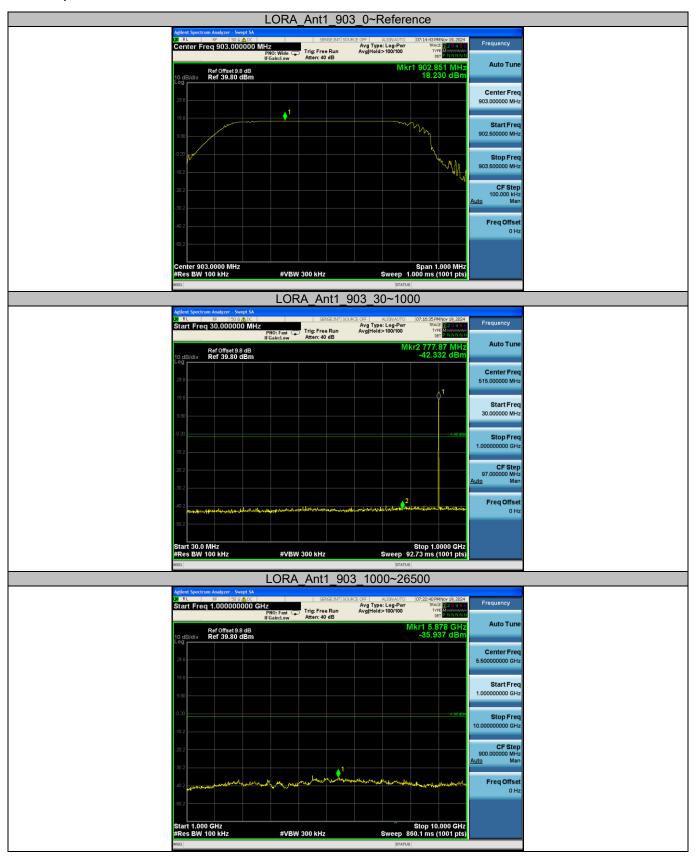


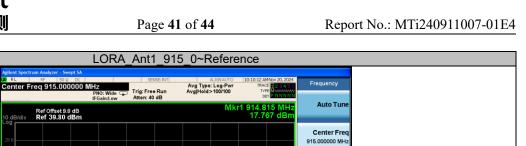
9 Appendix D: Maximum power spectral density


Test Result

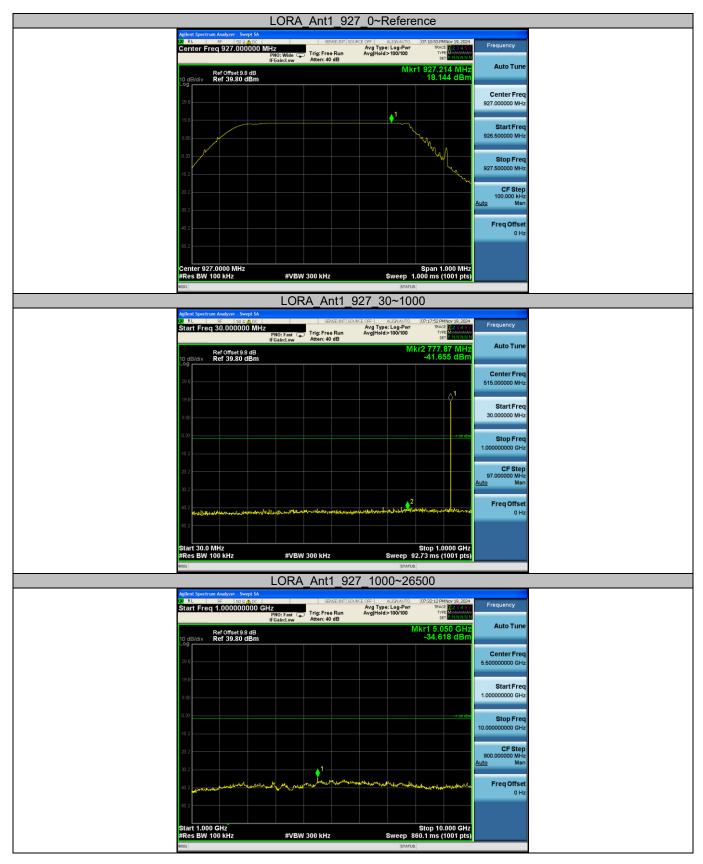
Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
LORA	Ant1	903	5.882	≤8.00	PASS
		915	5.591	≤8.00	PASS
		927	5.831	≤8.00	PASS

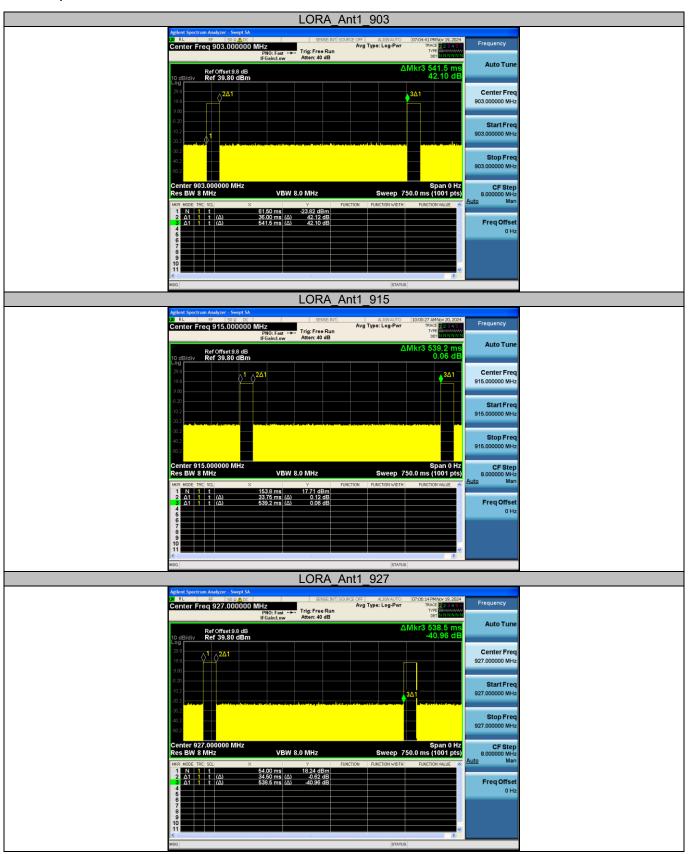
Page 38 of 44 Report No.: MTi240911007-01E4




10 Appendix E: Band edge measurements

11 Appendix F: Conducted Spurious Emission





12 Appendix G: Duty Cycle

Test Result

Test Mode	Antenna	Frequency [MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]
LORA	Ant1	903	36	541.5	6.65	2.08
		915	33.75	539.2	6.26	2.08
		927	34.5	538.5	6.41	2.08

Page 44 of 44 Report No.: MTi240911007-01E4

----End of Report----