

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

### Electromagnetic Emissions Test Report (Permissive Change II) In Accordance With Industry Canada Radio Standards Specification 133 issue 2, FCC Part 24 Subpart E on the Thales Navigation Model: Z-Max GPS Receiver

FCC ID: NZI110896

UPN: 4713A-110896

GRANTEE: **Thales Navigation** 471 El Camino Real Santa Clara, CA 95050

TEST SITE: Elliott Laboratories, Inc. 41039 Boyce Road Fremont, CA 94538

**REPORT DATE:** September 16, 2004

FINAL TEST DATE:

September 11, 2004

**AUTHORIZED SIGNATORY:** 

man un

Juan Martinez Senior EMC Engineer



Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

### TABLE OF CONTENTS

| COVER PAGE                                                         |    |
|--------------------------------------------------------------------|----|
| TABLE OF CONTENTS                                                  | 2  |
| FCC CERTIFICATION INFORMATION                                      | 3  |
| DECLARATIONS OF COMPLIANCE                                         | 5  |
| SCOPE                                                              | 6  |
| OBJECTIVE                                                          | 6  |
| SUMMARY OF TEST RESULTS                                            | 7  |
| PART 24E AND RSS-133 TEST SUMMARY                                  | 7  |
| MEASUREMENT UNCERTAINTIES                                          | 8  |
| EQUIPMENT UNDER TEST (EUT) DETAILS                                 | 9  |
| GENERAL                                                            | 9  |
| ENCLOSURE                                                          |    |
| MODIFICATIONS                                                      |    |
| SUPPORT EQUIPMENT                                                  |    |
| EUT INTERFACE PORTS<br>EUT OPERATION DURING TESTING                |    |
| ANTENNA REQUIREMENTS                                               |    |
| TEST SITE                                                          |    |
|                                                                    |    |
| GENERAL INFORMATION<br>CONDUCTED EMISSIONS CONSIDERATIONS          |    |
| RADIATED EMISSIONS CONSIDERATIONS                                  |    |
| MEASUREMENT INSTRUMENTATION.                                       |    |
|                                                                    |    |
| RECEIVER SYSTEM                                                    |    |
| INSTRUMENT CONTROL COMPUTER<br>PEAK POWER METER                    |    |
| FILTERS/ATTENUATORS                                                |    |
| ANTENNAS                                                           |    |
| ANTENNA MAST AND EQUIPMENT TURNTABLE                               |    |
| INSTRUMENT CALIBRATION                                             |    |
| TEST PROCEDURES                                                    | 14 |
| SPECIFICATION LIMITS AND SAMPLE CALCULATIONS                       | 18 |
| RADIATED EMISSIONS SPECIFICATION LIMITS                            | 18 |
| CALCULATIONS – EFFECTIVE RADIATED POWER                            | 18 |
| EXHIBIT 1: Test Equipment Calibration Data                         |    |
| EXHIBIT 2: Test Data Log Sheets                                    |    |
| EXHIBIT 3: Test Configuration Photographs                          |    |
| EXHIBIT 4: Detailed Photographs                                    |    |
| EXHIBIT 5: Operator's Manual<br>EXHIBIT 6: RF Exposure Information |    |
| LAMBIT 6. AT Exposure injointation                                 | 0  |

#### FCC CERTIFICATION INFORMATION

The following information is in accordance with FCC Rules, 47CFR Part 2, Subpart J, Section 2.1033(C) & to Industry Canada RSP-100.

2.1033(c)(1) Grantee: Thales Navigation 471 El Camino Real Santa Clara, CA 95050

**2.1033(c)(2) & RSP-100 (4)** FCC ID: NZI110896 UPN: 4713A-110896

#### 2.1033(c)(3) & RSP-100 (7.2(a)) Instructions/Installation Manual

Please refer to Exhibit 7: User Manual, Theory of Operation, and Tune-up Procedure

#### 2.1033(c)(4) & RSP-100 (7.2(b)(iii)) Type of emissions

FCC 24E & RSS-133: **317KGXW** 

#### 2.1033(c)(5) & RSP-100 (7.2(a)) Frequency Range

FCC 24E & RSS-133: 1850.2 - 1909.8 MHz (1900)

#### 2.1033(c)(6) & RSP-100 (7.2(a)) Range of Operation Power

FCC 24E & RSS-133: 19.6 dBm EIRP (0.091 Watts EIRP)

#### 2.1033(c)(7) & RSP-100 (7.2(a)) Maximum FCC & IC Allowed Power Level

24.235(b) & RSS-133 (6.2): Mobile/portable stations are limited to 2 watts E.I.R.P. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

# 2.1033(c)(8) & RSP-100 (7.2(a)) Applied voltage and currents into the final transistor elements

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(9) & RSP-100 (7.2(a)) Tune-up Procedure

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(10) & RSP 100 (7.2(a)) Schematic Diagram of the Transmitter

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(10) & RSP-100 (7.2(a)) Means for Frequency Stabilization

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(10) & RSP-100 (7.2(a)) Means for Suppression of Spurious radiation

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Modulation

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(10) & RSP-100 (7.2(a)) Means for Limiting Power

This is a Class II permissive change (Information has been provided previously)

# 2.1033(c)(11) & RSP-100 (7.2(g)) Photographs or Drawing of the Equipment Identification Plate or Label

This is a Class II permissive change (Information has been provided previously)

#### 2.1033(c)(12) & RSP-100 (7.2(c)) Photographs of equipment

Refer to Exhibit 5

#### 2.1033(c)(13) & RSP-100 (7.2(a)) Equipment Employing Digital Modulation

This is a Class II permissive change (Information has been provided previously)

# 2.1033(c)(14) & RSP-100 (7.2(b)(ii)) Data taken per Section 2.1046 to 2.1057 and RSS-133 issue 2, Rev. 1.

Refer to Exhibit 2

#### DECLARATIONS OF COMPLIANCE

Equipment Name and Model: Z-Max GPS Receiver

Manufacturer:

Thales Navigation 471 El Camino Real Santa Clara, CA 95050

Tested to applicable standards:

RSS-133 Issue 2, Rev. 1 November 6, 1999 (2GHz Personal Communications Services) FCC Part 24 Subpart E

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC4549 4 Dated March 5, 2003

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of TIA/EIA-603 and the specific RSS standards applicable to this device); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Company Address

Juan Man\_

Juan Martinez Senior EMC Engineer Elliott Laboratories Inc. 41039 Boyce Road Fremont, CA 94538 USA

Date: September 16, 2004

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

#### **SCOPE**

FCC Part 24 Subpart E & IC RSS-133 testing was performed for the equipment mentioned in this report. The equipment was tested in accordance with the procedures specified in Sections 2.1046 to 2.1057 of the FCC Rules & IC RSS-133. TIA-603 was also used as a test procedure guideline to perform some of the required tests.

The intentional radiator above was tested in a simulated typical installation to demonstrate compliance with the relevant FCC & RSS performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

#### OBJECTIVE

The primary objective of the manufacturer is compliance with the FCC 24 Subpart E & IC RSS-133. Certification of these devices is required as a prerequisite to marketing as defined in Section 2.1033 & RSP-100.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to FCC & Industry Canada. FCC & Industry Canada issues a grant of equipment authorization and a certification number upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product that may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

#### SUMMARY OF TEST RESULTS

| l                                                    |                                     |                    |                                                                                                            |                                                                                           |                                                    | -                             |
|------------------------------------------------------|-------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| Part 2<br>Measurements<br>Required<br>Section        | FCC Part 24<br>Subpart E<br>Section | RSS-133<br>Section | Test Performed                                                                                             | Measured Value                                                                            | Test<br>Procedure<br>Used                          | Result                        |
| Modulation<br>Tested                                 | GSM                                 | GSM                | -                                                                                                          | -                                                                                         | -                                                  | -                             |
| 2.1047:<br>Modulation<br>characteristics             | 24.238 (b)                          | 5.6                | 99% Bandwidth                                                                                              | 317 kHz                                                                                   | D                                                  | Complies                      |
| 2.1046: RF<br>power output                           | 24.232 (b)                          | 6.2                | Output Power<br>Test                                                                                       | 19.6 dBm<br>(0.091 Watts EIRP)                                                            | А                                                  | Complies                      |
| 2.1046: RF<br>power output                           | 24.232 (b)                          | 6.2                | Conducted<br>Output Power<br>Test ( <b>Antenna</b><br><b>Conducted</b> )                                   | 27.7 dBm<br>(.589Watts)                                                                   | В                                                  | Complies                      |
| 2.1051:<br>Spurious<br>emissions at<br>antenna Port  | 24.238 (a) &<br>(b)                 | 6.3                | Emission Limits<br>and/or<br>Unwanted<br>Emission 30MHz<br>– 25GHz<br>( <b>Radiated</b><br><b>Method</b> ) | All spurious<br>emissions <<br>-13dBm                                                     | Ν                                                  | Complies                      |
| 2.1049:<br>Occupied<br>Bandwidth                     | 24.238 (a) &<br>(b)                 | 6.3                | Out of Block<br>Emissions<br>( <b>Radiated</b><br><b>Method</b> )                                          | All spurious<br>emissions <<br>-13dBm                                                     | Ι                                                  | Complies                      |
| 2.1053 Field<br>strength of<br>spurious<br>radiation | 24.238 (a) & (b)                    | 6.3                | Radiated<br>Spurious<br>Emissions<br>30MHz – 25GHz                                                         | -25.4 dBm @<br>1849.993 MHz<br>(-12.4dB)                                                  | N                                                  | Complies                      |
| 2.1055:<br>Frequency<br>stability                    | 24.235                              | 7(a)               | Frequency<br>Stability<br>(Frequency Vs.<br>Temperature)                                                   | <0.09 ppm                                                                                 | Reference<br>from Report<br>AC-EX06<br>Test Report | Note 1<br>(Report<br>Page 26) |
| 2.1055:<br>Frequency<br>stability                    | 24.235                              | 7(b)               | Frequency<br>Stability<br>(Frequency Vs.<br>Voltage)                                                       | <0.03 ppm                                                                                 | Reference<br>from Report<br>AC-EX06<br>Test Report | Note 1<br>(Report<br>Page 26) |
| 2.1093:<br>Exposure to<br>portable<br>devices        | 24.52                               | 8                  | Exposure of<br>Humans to RF<br>Fields                                                                      | SAR Report<br>provided                                                                    | N/A                                                | -                             |
| -                                                    | -                                   | 9 (ii)             | Receiver<br>Spurious<br>Emissions<br>( <b>Antenna</b><br><b>Conducted</b> )                                | All spurious<br>emission below 1<br>GHz < 2 nanowatts<br>and above 1 GHz <<br>5 nanowatts | Р                                                  | Complies                      |

Note 1: No change was made to the frequency stability circuit so no test was performed. Data in table is reference to a previous test report that has been reviewed by the FCC and has been found compliant to the FCC rules.

#### MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

| Measurement Type                          | Frequency Range<br>(MHz) | Calculated Uncertainty<br>(dB) |
|-------------------------------------------|--------------------------|--------------------------------|
| Conducted Emissions<br>Radiated Emissions | 0.15 to 30<br>30 to 1000 | $	\pm	2.4		\pm	3.6		$          |

#### EQUIPMENT UNDER TEST (EUT) DETAILS

#### GENERAL

The Thales Navigation, Inc. model Z-Max GPS Receiver is a mobile surveying instrument. It contains a control module and various options of communications modules. In addition it has a battery module for power when in the portable mode, two external serial ports, one RS232 and one configurable in RS232 or RS422 and a dc input port. The main enclosure has a screw mount in the top that can accommodate the GPS, UHF, VOID (GPS pass through) receive antennas, or an adapter that provides coaxial ports for the GPS receive antenna and UHF receive antenna. If being used as a mobile device the Void or UHF receiver is used and the GPS antenna connects into the top of either, otherwise it connects directly into the screw mount.

The control module contains a BlueTooth FHSS transceiver and is intended to be used for short-distance communications with a control computer. It has an USB Port and a SD Interface.

The communications module may contain a GSM Transceiver and / or an UHF Receiver. The UHF receiver incorporated into this module is either one from a Pacific Crest series that cover the frequency range 410 - 470 MHz or a Thales receiver that covers the same frequency range. The GSM transceiver is a Motorola cellular transceiver module for data communications.

The device is designed to be used in two modes - portable mode and office mode. Portable mode is the mode used for field survey measurements. In this mode the device would be powered from its battery pack and the only peripheral connected would be either an external UHF transceiver or a field computer. Office mode is the mode used to download data from the device. In this mode the USB connection would be employed to transfer data from the instrument into a PC. As this is a professional product the Class A limits are appropriate for office mode.

The sample was received on September 11, 2004 and tested on September 11, 2004. The EUT consisted of the following component(s):

| Manufacturer      | Model     | Description                              | Serial Number |
|-------------------|-----------|------------------------------------------|---------------|
| Thales Navigation | 800963    | Main Unit                                |               |
| Thales Navigation | 800964-08 | Com Module (Pacific Crest UHF Rx and GSM |               |
|                   |           | TRx)                                     |               |
| Thales Navigation | 800964-09 | Com Module (Pacific Crest UHF Rx and GSM |               |
|                   |           | TRx)                                     |               |
| Thales Navigation | 800964-10 | Com Module (Pacific Crest UHF Rx and GSM |               |
|                   |           | TRx)                                     |               |
| Thales Navigation | 800964-07 | Com Module (Thales UHF Rx and GSM TRx)   |               |

#### ENCLOSURE

The main enclosure, which houses the BlueTooth transceiver and the GPS receiver) is primarily constructed from a magnesium alloy. It measures approximately 30cm tall with a triangular base section measuring 10cm x 10cm x 10cm. The optional UHF antenna that connects into the top of the main unit is approximately 60cm long.

The com module, which houses the optional UHF receiver and optional GSM modem, is primarily constructed from a magnesium alloy. It measures approximately 18cm tall and 4cm deep and 8cm wide.

#### **MODIFICATIONS**

The EUT did not require modifications during testing in order to comply with the emission specifications.

#### SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

| Manufacturer | Model        | Description  | Serial Number | FCC ID |
|--------------|--------------|--------------|---------------|--------|
| Dell         | PPX          | Laptop       | 62HMN         | DoC    |
| Globaltek    | AD-740U-1240 | Power Supply | N/A           | N/A    |

No equipment was used as remote support equipment for emissions testing:

#### EUT INTERFACE PORTS

| Port     | Connected To  |             | Cable(s)               |           |
|----------|---------------|-------------|------------------------|-----------|
| TOIL     | Connected 10  | Description | Shielded or Unshielded | Length(m) |
| Serial   | Laptop        | Multiwire   | Shielded               | 1         |
| DC input | AC/DC adaptor | 3 wire      | Unshielded             | 1.8       |

#### EUT OPERATION DURING TESTING

Continuously transmitting at full power on low, middle, and high channels.

#### ANTENNA REQUIREMENTS

The antenna port is a non standard, reverse polarity connector, which meets the requirements of 15.203.

#### TEST SITE

#### GENERAL INFORMATION

Final test measurements were taken on September 11, 2004 at the Elliott Laboratories Chamber #4 located at 41039 Boyce Road, Fremont, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Commission.

#### CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing are performed in conformance with Section 2 of FCC Rules. Measurements are made with the EUT connected to a spectrum analyzer through an attenuator to prevent overloading the analyzer.

#### RADIATED EMISSIONS CONSIDERATIONS

Radiated measurements are performed in an open field environment or Anechoic Chamber. The test site is maintained free of conductive objects within the CISPR 16-1 defined elliptical area.

#### **MEASUREMENT INSTRUMENTATION**

#### **RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers are capable of measuring over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the particular detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. If average measurements above 1000MHz are performed, the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz is used.

#### INSTRUMENT CONTROL COMPUTER

A personal computer is utilized to record the receiver measurements of the field strength at the antenna, which is then compared directly with the appropriate specification limit. The receiver is programmed with appropriate factors to convert the received voltage into filed strength at the antenna. Results are printed in a graphic and/or tabular format, as appropriate.

The test receiver also provides a visual display of the signal being measured.

#### PEAK POWER METER

A peak power meter and thermister mount may be used for output power measurements from transmitters as they provide a broadband indication of the power output.

#### FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or EUT and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transmitters and transient events.

#### ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers

#### ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor drive to vary the antenna height.

The requirements of ANSI C63.4 were used for configuration of the equipment turntable. It specifies that the test height above ground for table-mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

#### INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An appendix of this report contains the list of test equipment used and calibration information.

#### **TEST PROCEDURES**

**General:** For Transmitters with detachable antenna, direct measurements for output power, modulation characterization, occupied bandwidth, and frequency stability are performed with the antenna port of the EUT connected to either the power meter, modulation analyzer, or spectrum analyzer via a suitable attenuator and/or filter. The attenuators and/or filters are used to ensure that the transmitter fundamental will not overload the front end of the measurement instrument.

**Procedure A** – **Power Measurement (Radiated Method)**: The following procedure was used for transmitters that do not use external antennas or with devices with test port were the output power can be measured directly, but Power must still be made with antenna attached.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) A spectrum analyzer was use to measure the power output. The search antenna was located 3 meter from the EUT.
- 3) The spectrum analyzer resolution and video bandwidth was set to 2 MHz to measure the power output. No amplifier was used since the fundamental will cause the amplifier to saturate.
- 4) The EUT was then rotated for a complete 360 degrees and the search antenna was raised and lowered to maximize the fundamental. Both vertical and horizontal polarization's were performed. All correction factors are applied to the fundamental.
- 5) Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a transmit antenna and signal generator. The substitution antenna can be reference to a half-wave dipole in dBi. The signal generator is then set to a fix output level of either 10 or –20dBm. This is then injected into the substitution antenna. The field strength produced by the substitution antenna is then measured. This measured value is then used to determine the conversion factor to convert the EUTs field strength levels to a dBm value.
- 6) Steps 1 to 5 are repeated for the middle and the highest channel.

**Procedure B – Power Measurement (Conducted Method)**: The following procedure was used for transmitters that do use external antennas.

- 1) Set the EUT to maximum power and to the lowest channel.
- 2) Either a power meter or a spectrum analyzer was used to measure the power output.
- 3) If a spectrum analyzer was used a resolution and video bandwidth 1MHz was used to measure the power output. Corrected for any external attenuation used for the protection of the input of analyzer. In addition, For CDMA or TDMA modulations set spectrum analyzer resolution to 1MHz and video to 30 kHz. Use video averaging with a 100-sample rate.
- 4) If a power meter was used, corrected for any external attenuation used for the protection of the input of the sensor head. Also set the power sensor correction by setting up the frequency range that will be measured.
- 5) Repeat this for the high channel and all modulations that will be used and all output ports used for transmission

**Procedure D - Occupied Bandwidth (Conducted Method):** Either for analog, digital, or data modulations, occupied bandwidth was performed. The EUT was set to transmit the appropriate modulation at maximum power. The bandwidth was measured using following methods:

- 1) The built-in 99% function of the spectrum analyzer was used.
- 2) If the built-in 99% is not available then the following method is used:

26-dB was subtracted to the maximum peak of the emission. Then the display line function was used, in conjunction with the marker delta function, to measure the emissions bandwidth.

3) For the above two methods a resolution and video bandwidth of 10 or 30 kHz was used to measure the emission's bandwidth.

**Procedure H - Other Types of Equipment:** Either digital or data modulated signals were simulated, by software or external sources, to performed the required tests. The EUT was set to transmit the appropriate digital modulation.

**Procedure I – Bandedge:** Where Bandedge measurements are specified the following procedure was performed:

- 1) Set the transmitting signal as close as possible to the edge of the frequency band/block as specified in the standard. Power is set to maximum
- 2) Set the spectrum analyzer display line function to 84.4 dBuV/m.
- 3) Set the spectrum analyzer bandwidth to the minimum 1% of the emission bandwidth. The emission bandwidth is determined by using **procedure D**.
- 4) A spectrum analyzer was use to measure the radiated field strength. The search antenna was located 3 meter from the EUT.
- 5) The spectrum analyzer resolution and video bandwidth was set to 1MHz to measure the total bandwidth power of the signal. No amplifier was used since the fundamental will cause the amplifier to saturate.
- 6) The EUT was then rotated for a complete 360 degrees and the search antenna was raised and lowered to maximize the fundamental. Both vertical and horizontal polarization's were performed. All correction factors are applied to the fundamental.
- 7) Set the marker function to the FCC or IC specified frequency band/block, which gave a field strength result in dBuV/m.
- 8) Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a transmit antenna and signal generator. The substitution antenna can be reference to a half-wave dipole in dBi. The signal generator is then set to a fix output level of either -10 or 20dBm. This is then injected into the substitution antenna. The field strength produced by the substitution antenna is then measured. This measured value is then used to determine the conversion factor to convert the EUTs field strength levels to a dBm value.
- 9) Steps 1 to 8 were repeated for all modulations and output ports that will be used for transmission. Also, Bandedge is determined for blocks A (high edge), D, B, E, F, C (low edge).
- 10) Bandedge substitution level must not exceed the -13-dBm limit.

**Procedure N - Field Strength Measurement:** The EUT was set on the turntable and the search antenna position 3 meters away. The output antenna terminal was terminated with a 50-ohm terminator (If antenna was permanently attach or internal to device, radiated emission was performed with antenna attached). The EUT was set at the middle of the frequency band and set at maximum output power.

For the first scan, a pre-liminary measurement is performed. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. One or more of these is with the antenna polarized vertically while the one or more of these are with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

For the final measurement, Substitution method is performed on spurious emissions not being 20-dB below the calculated radiated limit. Substitution method is performed by replacing the EUT with a transmit antenna and signal generator. The substitution antenna can be reference to a half-wave dipole in dBi. The signal generator is then set to a fix output level of either -10 or -20dBm. This is then injected into the substitution antenna. The field strength produced by the substitution antenna is then measured. This measured value is then used to determine the conversion factor to convert the EUTs field strength levels to a dBm value.

**Procedure P – Receiver Antenna Conducted Emissions:** Receiver spurious emission was measured at the antenna terminal, as a port was available.

- 1) Set the receiver was set to the midpoint of the operating band as specified in the standard.
- 2) Set the spectrum analyzer display line function to 2 nanowatts for measurements below 1 GHz and 5 nanowatts for measurements above 1 GHz.
- 3) Set the spectrum analyzer bandwidth to 1 MHz.
- 4) For the spectrum analyzer, the start frequency was set to 30 MHz and the stop frequency set to the 5<sup>th</sup> harmonic of the receiver LO. All spurious or intermodulation emission must not exceed the specified limit.

#### SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

#### RADIATED EMISSIONS SPECIFICATION LIMITS

The limits for radiated emissions are based on the power of the transmitter at the operating frequency. Data is measured in the logarithmic form of decibels relative to one milliwatt (dBm) or one microvolt/meter (dBuV/m,). The field strength of the emissions from the EUT is measured on a test site with a receiver.

Below is a formula example used to calculate the attenuation requirement, relative to the transmitters power output, in dBuV/m. For this example an operating power range of 3 watts is used. The radiated emissions limit for spurious signals outside of the assigned frequency block is  $43+10Log_{10}$  (mean output power in watts) dB below the measured amplitude at the operating power.

#### CALCULATIONS - EFFECTIVE RADIATED POWER

$$E(V/m) = \frac{\sqrt{30 * P * G}}{d}$$

E= Field Strength in V/m P= Power in Watts (for this example we use 3 watts) G= Gain of antenna in numeric gain (Assume 1.64 for ERP) d= distance in meters

$$E(V/m) = \frac{\sqrt{30 * 3 \text{ watts } * 1.64 \text{ dB}}}{3 \text{ meters}}$$

 $20 * \log (4.049 \text{ V/m} * 1,000,000) = 132.14 \text{ dBuV/m} @ 3 \text{ meters}$ 

FCC Rules request an attenuation of  $43 + 10 \log (3)$  or 47.8 dB for all emissions outside the assigned block, the limit for spurious and harmonic emissions is:

132.1 dBuV/m - 47.8 dB = 84.3 dBuV/m @ 3 meter.

Note: Substitution Method is performed for spurious emissions with less than 20dB of margin relative to the calculated field strength limit.

# EXHIBIT 1: Test Equipment Calibration Data

1 Page

| <u>Manufacturer</u> | Description                                  | Model #        | Asset # | <u>Cal Due</u> |
|---------------------|----------------------------------------------|----------------|---------|----------------|
| Miteq               | Preamplifier, 1-18GHz                        | AFS44          | 1346    | 08-Jan-05      |
| EMCO                | Horn Antenna D. Ridge 1-18 GHz (SA40 horn)   | 3115           | 1386    | 24-Mar-05      |
| Hewlett Packard     | EMC Spectrum Analyzer 9kHz - 40 GHz, Fremont | 8564E (84125C) | 1393    | 26-Mar-05      |

| Lingineer. Juan marting | 54                           |         |                 |
|-------------------------|------------------------------|---------|-----------------|
| <u>Manufacturer</u>     | Description                  | Model # | Asset # Cal Due |
| Com-Power               | Pre Amplifier, 30-1000MHz    | PA-103  | 1543 26-Nov-04  |
| Rohde & Schwarz         | EMI Test Receiver, 20Hz-7GHz | ESIB7   | 1630 05-Jan-05  |
| Sunol Sciences          | Biconilog, 30-3000MHz        | JB3     | 1657 24-Feb-05  |
|                         |                              |         |                 |

### EXHIBIT 2: Test Data Log Sheets

#### ELECTROMAGNETIC EMISSIONS

#### TEST LOG SHEETS

AND

#### MEASUREMENT DATA

T57109 13 Pages



# EMC Test Data

| Client          | Thales Navigation  | Job Number:      | 157066 |
|-----------------|--------------------|------------------|--------|
|                 |                    |                  |        |
| Model:          | Z-Max GPS Reciever | T-Log Number:    | T57109 |
|                 |                    | Account Manager: | Rod    |
| Contact:        | Chales Branch      |                  |        |
| Emissions Spec: | FCC 24E, RSS-133   | Class:           | Radio  |
| Immunity Spec:  |                    | Environment:     |        |

EMC Test Data

For The

# **Thales Navigation**

Model

### Z-Max GPS Reciever

Date of Last Test: 9/11/2004



# EMC Test Data

| Client:         | Thales Navigation            | Job Number:      | J57066 |
|-----------------|------------------------------|------------------|--------|
| Model:          | Z-Max GPS Reciever           | T-Log Number:    | T57109 |
|                 |                              | Account Manager: | Rod    |
| Contact:        | Chales Branch                |                  |        |
| Emissions Spec: | FCC 24E, RSS-133             | Class:           | Radio  |
| Immunity Spec:  | Enter immunity spec on cover | Environment:     |        |

### EUT INFORMATION

#### **General Description**

The EUT is a mobile surveying instrument. It contains a control module and various options of communications modules. In addition it has a battery module for power when in the portable mode, two external serial ports, one RS232 and one configurable in RS232 or RS422 and a dc input port. The main enclosure has a screw mount in the top that can accommodate the GPS, UHF, VOID (GPS pass through) receive antennas, or an adapter that provides coaxial ports for the GPS receive antenna and UHF receive antenna. If being used as a mobile device the Void or UHF receiver is used and the GPS antenna connects into the top of either, otherwise it connects directly into the screw mount.

The control module contains a BlueTooth FHSS transceiver and is intended to be used for short-distance communications with a control computer. It has an USB Port and a SD Interface.

The communications module may contain a GSM Transceiver and / or an UHF Receiver. The UHF receiver incorporated into this module is either one from a Pacific Crest series that cover the frequency range 410 - 470 MHz or a Thales receiver that covers the same frequency range. The communication module can also contain a Motorola cellular transceiver module for data communications.

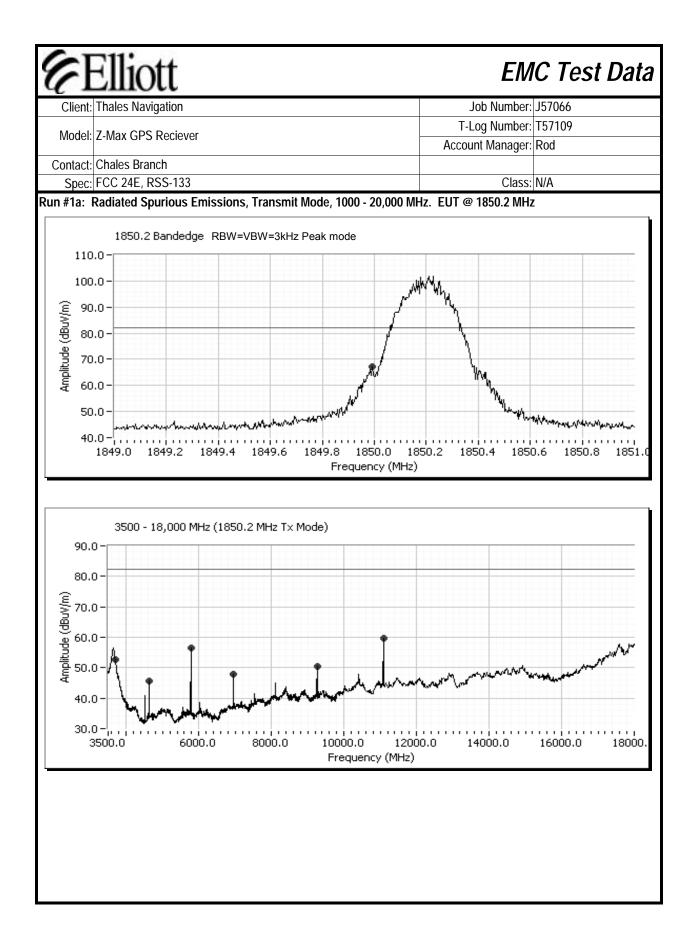
The device is designed to be used in two modes - portable mode and office mode. Portable mode is the mode used for field survey measurements. In this mode the device would be powered from its battery pack and the only peripheral connected would be either an external UHF transceiver or a field computer. Office mode is the mode used to download data from the device. In this mode the USB connection would be employed to transfer data from the instrument into a PC. As this is a professional product the Class A limits are appropriate.

|                   |           | Equipment Under Test |               |           |
|-------------------|-----------|----------------------|---------------|-----------|
| Manufacturer      | Model     | Description          | Serial Number | FCC ID    |
| Thales Navigation | 800963    | Main Unit            | N/A           | NZI110896 |
| Thales Navigation | 800964-08 | Com Module (Pacific  | N/A           | NZI110896 |
|                   |           | Crest UHF Rx and PCS |               |           |
|                   |           | TRx)                 |               |           |
| Thales Navigation | 800964-09 | Com Module (Pacific  | N/A           | NZI110896 |
|                   |           | Crest UHF Rx and PCS |               |           |
|                   |           | TRx)                 |               |           |
| Thales Navigation | 800964-10 | Com Module (Pacific  | N/A           | NZI110896 |
|                   |           | Crest UHF Rx and PCS |               |           |
|                   |           | TRx)                 |               |           |
| Thales Navigation | 800964-07 | Com Module (Thales   | N/A           | NZI110896 |
|                   |           | UHF Rx and PCS TRx)  |               |           |

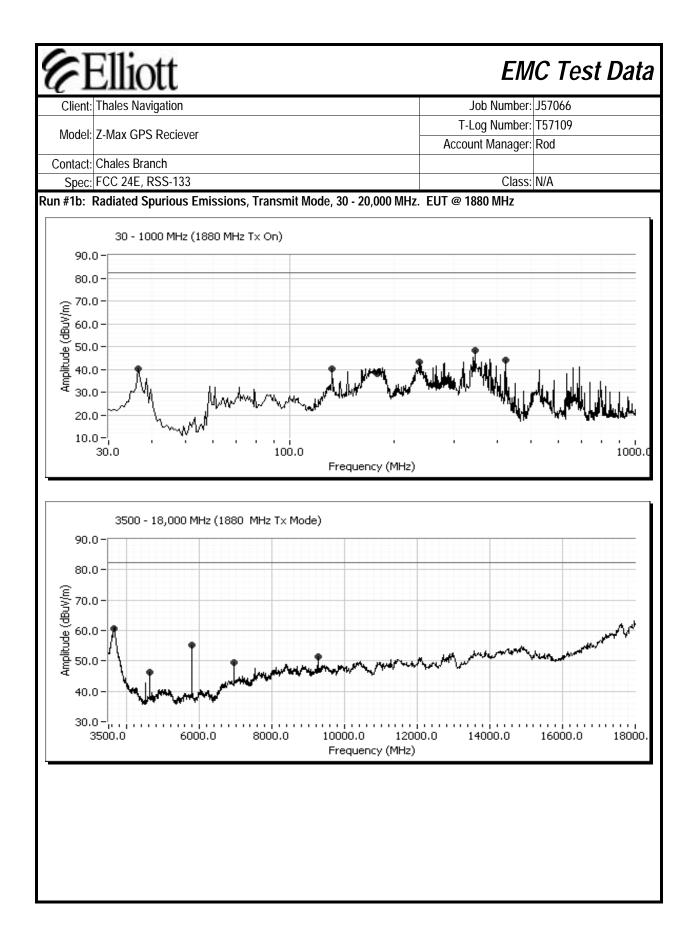
#### **Equipment Under Test**

| _                                                                                                                                                                                                                                                        |                                                                                                                    |                                                                                                                   |                                                              |                                                           |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|------------------------|
| <b>Ellio</b>                                                                                                                                                                                                                                             | tt                                                                                                                 |                                                                                                                   |                                                              | ЕМ                                                        | C Test Data            |
| Client                                                                                                                                                                                                                                                   | t: Thales Navigatio                                                                                                | 'n                                                                                                                |                                                              | Job Number:                                               | J57066                 |
|                                                                                                                                                                                                                                                          | I: Z-Max GPS Reci                                                                                                  |                                                                                                                   |                                                              | T-Log Number:                                             | T57109                 |
|                                                                                                                                                                                                                                                          | 1                                                                                                                  |                                                                                                                   |                                                              | Account Manager:                                          | Rod                    |
| Contact                                                                                                                                                                                                                                                  | t: Chales Branch                                                                                                   |                                                                                                                   |                                                              |                                                           |                        |
|                                                                                                                                                                                                                                                          | : FCC 24E, RSS-1                                                                                                   |                                                                                                                   |                                                              | Class:                                                    | Radio                  |
| Immunity Spec                                                                                                                                                                                                                                            | : Enter immunity s                                                                                                 | pec on cover                                                                                                      |                                                              | Environment:                                              |                        |
| The following UHF radio<br>performed on each recein<br>Pacific Crest 800964-(<br>Pacific Crest 800964-1<br>Pacific Crest800964-1<br>Thales Navigation 800<br>The following BlueTooth<br>Samsung BTMZ5012x<br>The following PCS modu<br>Motorola IHDT6AC1 | iver module.<br>08 410-430MHz<br>09 430-450MHz<br>10 450-470MHz<br>0964-07 410-470 M<br>1 radio was tested w<br>x0 | 1Hz<br>vith Z-Max:                                                                                                | may be incorporat                                            | ed into the communication                                 | ons module. Tests were |
| alloy. It measures app<br>antenna that connects                                                                                                                                                                                                          | proximately 30cm ta<br>s into the top of the<br>ch houses the optic                                                | BlueTooth transceiv<br>all with a triangular<br>main unit is approx<br>onal UHF receiver a<br>ately 18cm tall and | r base section mea<br>ximately 60cm long<br>and optional GSM | asuring 10cm x 10cm x 1<br>g.<br>modem, is primarily cons |                        |
| Mod. #                                                                                                                                                                                                                                                   | Test                                                                                                               | Date                                                                                                              |                                                              | Modification                                              |                        |
| 1                                                                                                                                                                                                                                                        | -                                                                                                                  | -                                                                                                                 |                                                              | None                                                      |                        |
| · · · ·                                                                                                                                                                                                                                                  |                                                                                                                    | L1                                                                                                                |                                                              |                                                           |                        |
| Modifications applied                                                                                                                                                                                                                                    | are assumed to be                                                                                                  | used on subseque                                                                                                  | ent tests unless oth                                         | nerwise stated as a furthe                                | er modification.       |

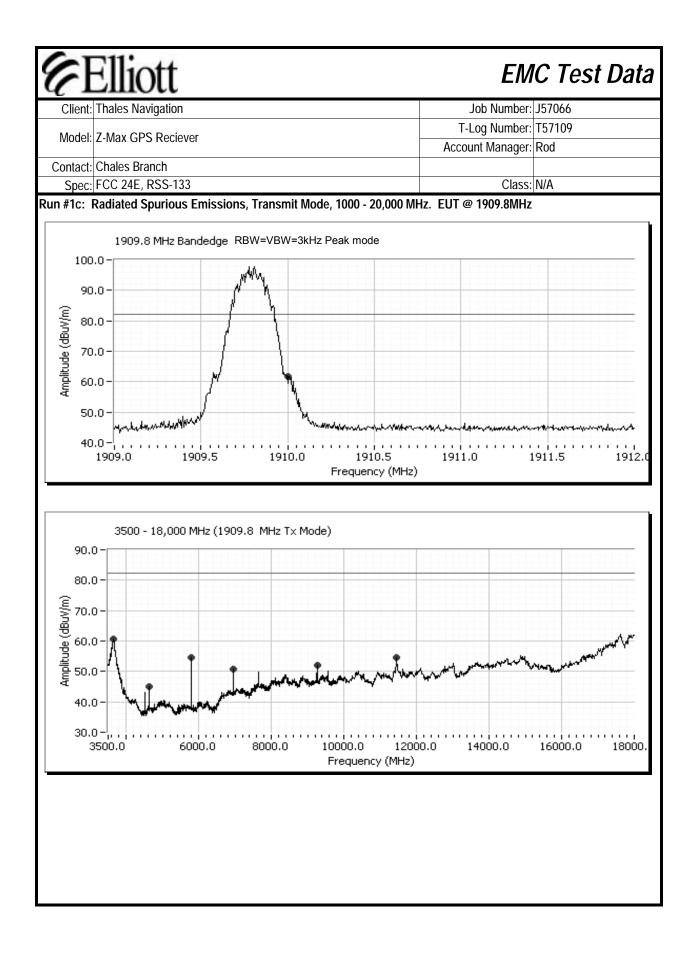



# EMC Test Data

|                                                   | Thales Navigation                                           |                                                                                    | Job Number:                                                               |                      |
|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|
| Model:                                            | Z-Max GPS Reciever                                          |                                                                                    | T-Log Number:                                                             |                      |
|                                                   |                                                             |                                                                                    | Account Manager:                                                          | Rod                  |
| Contact:                                          | Chales Branch                                               |                                                                                    |                                                                           |                      |
| Emissions Spec:                                   | FCC 24E, RSS-133                                            |                                                                                    | Class:                                                                    | Radio                |
| Immunity Spec:                                    | Enter immunity spec on co                                   | over                                                                               | Environment:                                                              |                      |
|                                                   |                                                             | t Configuratio                                                                     |                                                                           |                      |
|                                                   |                                                             | Description                                                                        | Serial Number                                                             | FCC ID               |
| Manufacturer                                      | Model                                                       | Description                                                                        | Seliai Nullibel                                                           | 10010                |
| Manufacturer<br>Dell                              | Model<br>PPX                                                |                                                                                    | 62HMN                                                                     | DoC                  |
|                                                   | PPX<br>AD-740U-1240                                         | Laptop<br>Power Supply                                                             | 62HMN<br>N/A                                                              |                      |
| Dell<br>Globaltek                                 | PPX<br>AD-740U-1240<br><b>Rem</b>                           | Laptop<br>Power Supply<br>note Support Equip                                       | 62HMN<br>N/A                                                              | DoC<br>N/A           |
| Dell                                              | PPX<br>AD-740U-1240                                         | Laptop<br>Power Supply                                                             | 62HMN<br>N/A                                                              | DoC                  |
| Dell<br>Globaltek<br>Manufacturer                 | PPX<br>AD-740U-1240<br><b>Rem</b><br>Model                  | Laptop<br>Power Supply<br>note Support Equip                                       | 62HMN<br>N/A<br>ment<br>Serial Number                                     | DoC<br>N/A           |
| Dell<br>Globaltek<br>Manufacturer                 | PPX<br>AD-740U-1240<br><b>Rem</b><br>Model                  | Laptop<br>Power Supply<br>note Support Equip<br>Description<br>rface Cabling and F | 62HMN<br>N/A<br>ment<br>Serial Number<br>Cable(s)                         | DoC<br>N/A<br>FCC ID |
| Dell<br>Globaltek<br>Manufacturer<br>None<br>Port | PPX<br>AD-740U-1240<br>Rem<br>Model<br>Inte<br>Connected To | Laptop<br>Power Supply<br>note Support Equip<br>Description<br>rface Cabling and F | 62HMN<br>N/A<br>nent<br>Serial Number<br>Cable(s)<br>Shielded or Unshield | DoC<br>N/A<br>FCC ID |
| Dell<br>Globaltek<br>Manufacturer<br>None         | PPX<br>AD-740U-1240<br>Rem<br>Model                         | Laptop<br>Power Supply<br>note Support Equip<br>Description<br>rface Cabling and F | 62HMN<br>N/A<br>ment<br>Serial Number<br>Cable(s)                         | DoC<br>N/A<br>FCC ID |

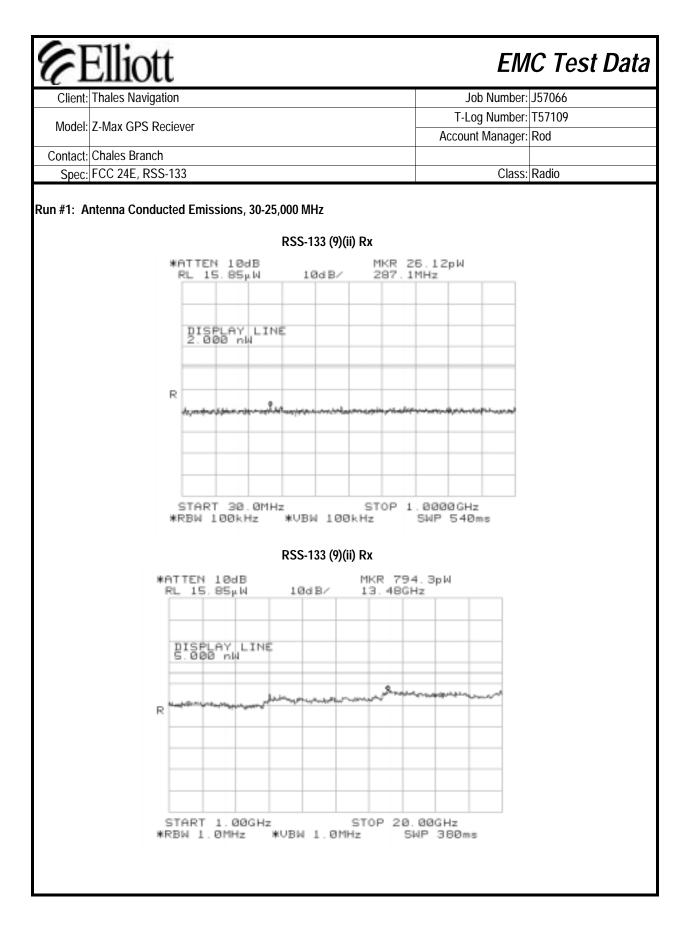

**EUT Operation During Emissions** Continuously transmitting at full power on low, middle, and high channels.

| ССШ                           | ott                                                                                                                      |                                     |                     | EM                      | C Test         |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|-------------------------|----------------|
| Client: Thales Na             | vigation                                                                                                                 |                                     | Jo                  | b Number:               | J57066         |
|                               |                                                                                                                          |                                     | T-Lo                | g Number:               | T57109         |
| Model: Z-Max GP               | 'S Reciever                                                                                                              |                                     |                     | Manager:                |                |
| Contact: Chales Bra           | anch                                                                                                                     |                                     |                     | 0                       |                |
| Spec: FCC 24E,                | RSS-133                                                                                                                  |                                     |                     | Class:                  | N/A            |
|                               | Radiated Spu                                                                                                             | rious Emissi                        | ons, FCC            | 24E                     |                |
| est Specifics                 |                                                                                                                          |                                     |                     |                         |                |
|                               | The objective of this test session specification listed above.                                                           | on is to perform final qu           | alification testing | g of the EU             | F with respect |
| Date of Test:                 | 9/11/2004                                                                                                                | Config. Use                         | ed: 1               |                         |                |
| Test Engineer:                | Juan Martinez                                                                                                            | Config Chang                        |                     |                         |                |
| Test Location:                | Fremont Chamber #4                                                                                                       | EUT Voltag                          | je: 120V/60Hz       |                         |                |
|                               | support equipment were locate<br>tenna was located 3 meters from                                                         |                                     | adiated spurious    | s emissions             | testing.       |
|                               |                                                                                                                          |                                     |                     |                         |                |
| mbient Conditio               | ons: Temperature                                                                                                         | 20.3 °C                             |                     |                         |                |
| Ambient Conditio              | DINS: Temperature:<br>Rel. Humidity                                                                                      |                                     |                     |                         |                |
| Summary of Res                | Rel. Humidity                                                                                                            | 52 %                                |                     |                         |                |
| Run #                         | Rel. Humidity                                                                                                            | 52 %                                | Result              | Ma                      | -              |
| Run #                         | Rel. Humidity<br>ults<br>Test Performed<br>Power Output (Conducted)                                                      | 52 %                                | Pass                | 27.7                    | dBm            |
| Summary of Res                | Rel. Humidity<br>ults<br>Test Performed<br>Power Output (Conducted)<br>Power Output (Radiated)                           | 52 %                                |                     |                         | dBm            |
| Run #<br>1c<br>1a-1c          | Rel. Humidity.<br>ults<br>Test Performed<br>Power Output (Conducted)<br>Power Output (Radiated)<br>RE, 30 - 20,000 MHz - | 52 %<br>Limit<br>FCC 24E<br>FCC 24E | Pass<br>Pass        | 27.7                    | dBm<br>m EIRP  |
| ummary of Reso<br>Run #<br>1c | Rel. Humidity<br>ults<br>Test Performed<br>Power Output (Conducted)<br>Power Output (Radiated)                           | 52 %                                | Pass                | 27.7<br>19.6dB<br>-12.4 | dBm<br>m EIRP  |


No deviations were made from the requirements of the standard.



| E         |                           | htt               |                 |                     |                 |                |              | FM            | C Test    | + Data |
|-----------|---------------------------|-------------------|-----------------|---------------------|-----------------|----------------|--------------|---------------|-----------|--------|
|           | Thales Na                 |                   |                 |                     |                 |                |              | ob Number:    |           |        |
| Cilent.   | THAIES INC                | iviyalion         |                 |                     |                 |                | -            | og Number:    |           |        |
| Model:    | Z-Max GF                  | S Reciev          | /er             |                     |                 |                |              | nt Manager:   |           |        |
| Contact   | Chales Br                 | anch              |                 |                     |                 |                | 710000       | in manager.   | 1100      |        |
|           | FCC 24E,                  |                   | 3               |                     |                 |                |              | Class:        | N/A       |        |
| Frequency | Level                     | Pol               | FCC 24          | 1F Note 1           | Detector        | Azimuth        | Height       | Comments      |           |        |
| MHz       | dBµV/m                    | v/h               | Limit           | Margin              | Pk/QP/Avg       | degrees        | meters       | ooninionta    |           |        |
| 1850.201  | 111.0                     | V                 | -               | -                   | PK              | 201            | 1.2          | Fundament     | al        |        |
| 1850.336  | 111.0                     | H                 | -               | -                   | PK              | 258            | 1.0          | Fundament     |           |        |
| 1849.993  | 67.4                      | H                 | -               | -                   | Peak            | 258            | 1.0          | Bandedge      |           |        |
| 9260.061  | 52.6                      | H                 | 82.2            | -29.6               | PK              | 3              | 1.0          | RBW=VBW       | /=1MHz    |        |
| 6944.969  | 50.7                      | H                 | 82.2            | -31.5               | PK              | 118            | 1.0          | RBW=VBW       |           |        |
| 5787.531  | 55.8                      | H                 | 82.2            | -26.4               | PK              | 126            | 1.8          | RBW=VBW       |           |        |
| 11101.66  | 59.2                      | V                 | 82.2            | -23.0               | PK              | 196            | 1.0          | RBW=VBW       |           |        |
| 4630.045  | 48.6                      | Ĥ                 | 82.2            | -33.7               | PK              | 210            | 1.0          | RBW=VBW       |           |        |
| 3699.090  | 56.7                      | V                 | 82.2            | -25.5               | PK              | 255            | 1.6          | RBW=VBW       |           |        |
|           |                           | -                 |                 |                     |                 |                |              | 1             |           |        |
|           | field stren<br>Node: Fina |                   | Strength an     | d Substitu          | tion Measur     | ements         |              |               |           |        |
| Frequency | Substitut                 | tion mea          | surements       | Site                | FU              | T measureme    | ents         | eirp Limit    | erp Limit | Margin |
| MHz       | Pin <sup>1</sup>          | Gain <sup>2</sup> | FS <sup>3</sup> | Factor <sup>4</sup> | FS <sup>5</sup> | eirp (dBm)     | erp (dBm)    | dBm           | dBm       | dB     |
| 1850.201  | -10.0                     | 8.5               | 90.4            | 91.9                | 111.0           | 19.1           | 16.9         | uDin          | uDili     | uD     |
| 1850.336  | -10.0                     | 8.5               | 90.4<br>91.3    | 92.8                | 111.0           | 18.2           | 16.0         |               |           |        |
| 1849.993  | -10.0                     | 8.5               | 91.3            | 92.8                | 67.4            | -25.4          | -27.6        | -13.0         |           | -12.4  |
| 1047.773  | -10.0                     | 0.5               | 71.5            | 72.0                | 07.4            | -20.4          | -27.0        | -13.0         |           | -12.7  |
| Note 1:   | Pin is the                | input pov         | ver (dBm) to    | the substit         | tution antenr   | a              |              |               |           |        |
| Note 2:   |                           |                   |                 |                     |                 | ipole has a ga | ain of 2.2dB | i.            |           |        |
| Note 3:   |                           |                   |                 |                     |                 | ubstitution ar |              |               |           |        |
| Note 4:   |                           |                   | <b>v</b>        | •                   |                 | d strength in  |              | an eirp in dE | 3m.       |        |
| Note 5:   |                           |                   | as measure      |                     |                 | <u> </u>       |              |               |           |        |
|           |                           |                   |                 | 0                   |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |
|           |                           |                   |                 |                     |                 |                |              |               |           |        |




| Client                                                                                                          | Thales Na                                                                                                                                                                                          | vigation                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   | J                                                                                                                           | ob Number:                                                                                            | J57066                                                                                             |                                            |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Madal                                                                                                           | 7 Mar 00                                                                                                                                                                                           |                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   | T-L                                                                                                                         | og Number:                                                                                            | T57109                                                                                             |                                            |
| Model                                                                                                           | Z-Max GF                                                                                                                                                                                           | 'S Reciev                                                                                                                                                                                            | /er                                                                                                                                                                                        |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   | Accou                                                                                                                       | nt Manager:                                                                                           | Rod                                                                                                |                                            |
| Contact                                                                                                         | Chales Br                                                                                                                                                                                          | anch                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                             |                                                                                                       |                                                                                                    |                                            |
|                                                                                                                 | FCC 24E,                                                                                                                                                                                           |                                                                                                                                                                                                      | 3                                                                                                                                                                                          |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                             | Class:                                                                                                | N/A                                                                                                |                                            |
| Frequency                                                                                                       |                                                                                                                                                                                                    | Pol                                                                                                                                                                                                  | FCC 24                                                                                                                                                                                     | 1F Note 1                                                                                                                                                                                                 | Detector                                                                                                                                                                                                                   | Azimuth                                                                                                                                                                           | Height                                                                                                                      | Comments                                                                                              |                                                                                                    |                                            |
| MHz                                                                                                             | dBµV/m                                                                                                                                                                                             | v/h                                                                                                                                                                                                  | Limit                                                                                                                                                                                      | Margin                                                                                                                                                                                                    | Pk/QP/Avg                                                                                                                                                                                                                  | degrees                                                                                                                                                                           | meters                                                                                                                      |                                                                                                       |                                                                                                    |                                            |
| 1879.914                                                                                                        |                                                                                                                                                                                                    | V                                                                                                                                                                                                    | -                                                                                                                                                                                          | -                                                                                                                                                                                                         | PK                                                                                                                                                                                                                         | 209                                                                                                                                                                               | 1.2                                                                                                                         | Fundament                                                                                             | al                                                                                                 |                                            |
| 1880.084                                                                                                        | 109.5                                                                                                                                                                                              | H                                                                                                                                                                                                    | -                                                                                                                                                                                          | -                                                                                                                                                                                                         | PK                                                                                                                                                                                                                         | 273                                                                                                                                                                               | 1.0                                                                                                                         | Fundament                                                                                             |                                                                                                    |                                            |
| 36.493                                                                                                          | 40.4                                                                                                                                                                                               | V                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -41.9                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 76                                                                                                                                                                                | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 132.806                                                                                                         | 40.2                                                                                                                                                                                               | H                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -42.0                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 98                                                                                                                                                                                | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 179.339                                                                                                         | 38.0                                                                                                                                                                                               | Н                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -44.2                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 118                                                                                                                                                                               | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 237.776                                                                                                         | 43.1                                                                                                                                                                                               | Н                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -39.1                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 290                                                                                                                                                                               | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 343.487                                                                                                         | 48.3                                                                                                                                                                                               | H                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -33.9                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 261                                                                                                                                                                               | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 423.447                                                                                                         | 44.1                                                                                                                                                                                               | H                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -38.1                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 181                                                                                                                                                                               | 2.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 3650.000                                                                                                        | 60.6                                                                                                                                                                                               | V                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -21.6                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 139                                                                                                                                                                               | 1.8                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 4630.000                                                                                                        | 46.1                                                                                                                                                                                               | H                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -36.1                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 209                                                                                                                                                                               | 1.0                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
| 5790.000                                                                                                        | 55.2                                                                                                                                                                                               | Н                                                                                                                                                                                                    | 82.2                                                                                                                                                                                       | -27.1                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                       | 24                                                                                                                                                                                | 1.4                                                                                                                         | RBW=VBW                                                                                               |                                                                                                    |                                            |
|                                                                                                                 | 111.7                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                             |                                                                                                       |                                                                                                    |                                            |
|                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                   |                                                                                                                             |                                                                                                       |                                                                                                    |                                            |
| 6943.334<br>9259.167                                                                                            | 49.6<br>51.3<br>The limit i<br>detailed in<br>limit beca                                                                                                                                           | H<br>H<br>n the tabl<br>n the EN s<br>use it doe                                                                                                                                                     | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi                                                                                                                                | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres                                                                                                                                            | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the                                                                                                                                                          | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane                                                                                                                     | 1.0<br>1.0<br>has been c<br>bagation: E<br>e. The actua                                                                     | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . T<br>al signal leve                                 | r the erp or e<br>This limit is a c                                                                | conservativ<br>erp or eirp,                |
| 6943.334<br>9259.167                                                                                            | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit beca<br>is determi<br>field stren                                                                                                              | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.                                                                                                                           | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti                                                                                                                | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure                                                                                                                              | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all                                                                                                                                         | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with l                                                                                                   | 1.0<br>1.0<br>has been c<br>bagation: E<br>e. The actua                                                                     | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . T<br>al signal leve                                 | /=1MHz<br>/=1MHz<br>rm the erp or e<br>This limit is a c                                           | onservativ<br>erp or eirp                  |
| 6943.334<br>9259.167<br>Note 1:                                                                                 | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren                                                                                                             | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.                                                                                                                           | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an                                                                                                  | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br>d Substitu                                                                                                                | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur                                                                                                                          | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with l<br>eements                                                                                        | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20                                                      | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir                 | r = 1MHz<br>= 1MHz<br>m the erp or e<br>this limit is a c<br>l, in terms of<br>n relative to th    | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Note 1:                                                                                 | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina                                                                                               | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.                                                                                                                           | 82.2<br>82.2<br>e above is a<br>standard us<br>so not consi<br>a substitution<br>trength another<br>surements                                                                              | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br><b>d Substitu</b><br>Site                                                                                                 | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur                                                                                                                          | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with li<br>ements<br>T measureme                                                                         | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20<br>ents                                              | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>eirp Limit   | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp,<br>e calculate                |
| 6943.334<br>9259.167<br>Note 1:<br>Fransmit I<br>Frequency<br>MHz                                               | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit beca<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup>                                                               | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>tion meas<br>Gain <sup>2</sup>                                                                           | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup>                                                                  | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br><b>d Substitu</b><br>Site<br>Factor <sup>4</sup>                                                                          | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup>                                                                                                 | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>measureme<br>eirp (dBm)                                                             | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20<br>ents<br>ents<br>erp (dBm)                         | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>eirp Limit   | r = 1MHz<br>= 1MHz<br>m the erp or e<br>this limit is a c<br>l, in terms of<br>n relative to th    | conservativ<br>erp or eirp,<br>e calculate |
| 6943.334<br>9259.167<br>Note 1:<br>Fransmit I<br>Frequency<br>MHz<br>1879.914                                   | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0                                                     | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>Gain <sup>2</sup><br>8.6                                                                                 | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substitution<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9                                                        | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br>d Substitu<br>Site<br>Factor <sup>4</sup><br>90.3                                                                         | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9                                                                                        | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>eements<br>T measureme<br>eirp (dBm)<br>19.6                                                  | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20<br>ents<br>erp (dBm)<br>17.4                         | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>eirp Limit   | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Jote 1:<br>Fransmit I<br>Frequency<br>MHz<br>1879.914                                   | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit beca<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup>                                                               | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>tion meas<br>Gain <sup>2</sup>                                                                           | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup>                                                                  | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br><b>d Substitu</b><br>Site<br>Factor <sup>4</sup>                                                                          | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup>                                                                                                 | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>measureme<br>eirp (dBm)                                                             | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20<br>ents<br>ents<br>erp (dBm)                         | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>eirp Limit   | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Jote 1:<br>Frequency<br>MHz<br>1879.914<br>1880.084                                     | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0<br>-10.0                                            | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>tion meas<br>Gain <sup>2</sup><br>8.6<br>8.6                                                             | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9<br>90.0                                                  | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres<br>on measure<br><b>d Substitu</b><br>Site<br>Factor <sup>4</sup><br>90.3<br>91.4                                                          | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9<br>109.5                                                                               | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with l<br>ements<br>T measureme<br>eirp (dBm)<br>19.6<br>18.1                                            | 1.0<br>1.0<br>has been c<br>pagation: E<br>e. The actua<br>ess than 20<br>ents<br>erp (dBm)<br>17.4                         | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>eirp Limit   | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Jote 1:<br>Fransmit I<br>Frequency<br>MHz<br>1879.914<br>1880.084                       | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0<br>-10.0<br>Pin is the                              | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>tion meas<br>Gain <sup>2</sup><br>8.6<br>8.6                                                             | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9<br>90.0<br>ver (dBm) to                                  | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres-<br>on measure<br><b>d Substitu</b><br>Site<br>Factor <sup>4</sup><br>90.3<br>91.4<br>o the substit                                        | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9<br>109.5                                                                               | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>T measureme<br>eirp (dBm)<br>19.6<br>18.1                                           | 1.0<br>1.0<br>has been c<br>bagation: E<br>e. The actua<br>ess than 20<br>ents<br>erp (dBm)<br>17.4<br>15.9                 | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>dB of margir | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Jote 1:<br>Fransmit I<br>Frequency<br>MHz<br>1879.914<br>1880.084<br>Jote 1:<br>Jote 2: | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0<br>-10.0<br>Pin is the<br>Gain is the               | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>tion meas<br>Gain <sup>2</sup><br>8.6<br>8.6<br>input pov<br>e gain (df                                  | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9<br>90.0<br>ver (dBm) to<br>3i) for the su                | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres-<br>on measure<br><b>d Substitu</b><br>Site<br>Factor <sup>4</sup><br>90.3<br>91.4<br>o the substitution a                                 | Peak<br>Peak<br>nate field stro<br>uation for fre<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9<br>109.5                                                                               | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>T measureme<br>eirp (dBm)<br>19.6<br>18.1<br>ia<br>ia                               | 1.0<br>1.0<br>has been c<br>bagation: E<br>e. The actua<br>ess than 20<br>ents<br>erp (dBm)<br>17.4<br>15.9<br>ain of 2.2dB | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>dB of margir | r=1MHz<br>rm the erp or e<br>This limit is a c<br>el, in terms of<br>n relative to th<br>erp Limit | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Jote 1:<br>Frequency<br>MHz<br>1879.914<br>1880.084<br>Jote 1:<br>Jote 2:<br>Jote 3:    | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Mode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0<br>-10.0<br>Pin is the<br>Gain is the               | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>al Field S<br>Gain <sup>2</sup><br>8.6<br>8.6<br>8.6<br>input pov<br>e gain (dif<br>field strer                        | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9<br>90.0<br>ver (dBm) to<br>3i) for the su<br>gth (dBuV/i | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres-<br>on measure<br><b>d Substitu</b><br><b>Site</b><br>Factor <sup>4</sup><br>90.3<br>91.4<br>o the substitution a<br>m) measure            | Peak<br>Peak<br>nate field stro<br>uation for free<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9<br>109.5<br>tution antenr<br>antenna. A d                                             | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>T measureme<br>eirp (dBm)<br>19.6<br>18.1<br>ia<br>ipole has a ga<br>ubstitution ar | 1.0<br>1.0<br>has been c<br>pagation: E<br>ass than 20<br>ents<br>erp (dBm)<br>17.4<br>15.9<br>ain of 2.2dB<br>atenna.      | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>dB of margir | rent free free free free free free free fre                                                        | erp or eirp<br>e calculate                 |
| 6943.334<br>9259.167<br>Note 1:<br>Fransmit I<br>Frequency<br>MHz                                               | 49.6<br>51.3<br>The limit i<br>detailed ir<br>limit becar<br>is determi<br>field stren<br>Vode: Fina<br>Substitut<br>Pin <sup>1</sup><br>-10.0<br>-10.0<br>Pin is the<br>Gain is the<br>Site Facto | H<br>H<br>n the tabl<br>n the EN s<br>use it doe<br>ned from<br>gth limit.<br>hI Field S<br>Gain <sup>2</sup><br>8.6<br>8.6<br>8.6<br>8.6<br>input pow<br>e gain (dif<br>field strer<br>or - this is | 82.2<br>82.2<br>e above is a<br>standard us<br>es not consi<br>a substituti<br>trength an<br>surements<br>FS <sup>3</sup><br>88.9<br>90.0<br>ver (dBm) to<br>3i) for the su<br>gth (dBuV/i | -32.6<br>-30.9<br>an approxin<br>ing Friis' eq<br>der the pres-<br>on measure<br><b>d Substitu</b><br><b>d Substitu</b><br><b>d Substitu</b><br><b>o</b> the substitution a<br>m) measure<br>tor to conve | Peak<br>Peak<br>Peak<br>nate field stro<br>uation for free<br>sence of the<br>ement for all<br>tion Measur<br>EU<br>FS <sup>5</sup><br>109.9<br>109.5<br>tution antenr<br>antenna. A d<br>ed from the s<br>ert from a fiel | 126<br>10<br>ength limit. It<br>ee space prop<br>ground plane<br>signals with le<br>ements<br>T measureme<br>eirp (dBm)<br>19.6<br>18.1<br>ia<br>ia                               | 1.0<br>1.0<br>has been c<br>pagation: E<br>ass than 20<br>ents<br>erp (dBm)<br>17.4<br>15.9<br>ain of 2.2dB<br>atenna.      | RBW=VBW<br>RBW=VBW<br>alculated for<br>= 30PG/d . 1<br>al signal leve<br>dB of margir<br>dB of margir | rent free free free free free free free fre                                                        | erp or eirp<br>e calculate                 |



| E                                                                                                | Ellic                                                 | ott                                                                           |                               |                                                             |                                  |                                                  |              | EM             | C Test                                                  | <sup>•</sup> Data |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------|----------------------------------|--------------------------------------------------|--------------|----------------|---------------------------------------------------------|-------------------|
| Client:                                                                                          | Thales Na                                             | vigation                                                                      |                               |                                                             |                                  |                                                  | J            | ob Number:     | J57066                                                  |                   |
|                                                                                                  |                                                       |                                                                               |                               |                                                             |                                  |                                                  | T-L          | og Number:     | T57109                                                  |                   |
| Model:                                                                                           | Z-Max GP                                              | 'S Reciev                                                                     | /er                           |                                                             |                                  |                                                  |              | nt Manager:    |                                                         |                   |
| Contact:                                                                                         | Chales Br                                             | anch                                                                          |                               |                                                             |                                  |                                                  |              |                |                                                         |                   |
| Spec:                                                                                            | FCC 24E,                                              | <b>RSS-13</b>                                                                 | 3                             |                                                             |                                  |                                                  |              | Class:         | N/A                                                     |                   |
| Frequency                                                                                        | Level                                                 | Pol                                                                           | FCC 24                        | 4E Note 1                                                   | Detector                         | Azimuth                                          | Height       | Comments       |                                                         |                   |
| MHz                                                                                              | dBµV/m                                                | v/h                                                                           | Limit                         | Margin                                                      | Pk/QP/Avg                        | degrees                                          | meters       |                |                                                         |                   |
| 3650.000                                                                                         | 60.6                                                  | V                                                                             | 82.2                          | -21.6                                                       | Peak                             | 63                                               | 2.0          | RBW=VBW        | =1MHz                                                   |                   |
| 4630.000                                                                                         | 45.1                                                  | Н                                                                             | 82.2                          | -37.1                                                       | Peak                             | 84                                               | 1.0          | RBW=VBW        | =1MHz                                                   |                   |
| 5785.000                                                                                         | 54.7                                                  | Н                                                                             | 82.2                          | -27.5                                                       | Peak                             | 121                                              | 1.8          | RBW=VBW        | =1MHz                                                   |                   |
| 6943.334                                                                                         | 50.6                                                  | Н                                                                             | 82.2                          | -31.6                                                       | Peak                             | 122                                              | 1.0          | RBW=VBW        | =1MHz                                                   |                   |
| 9259.167                                                                                         | 52.1                                                  | Н                                                                             | 82.2                          | -30.1                                                       | Peak                             | 83                                               | 1.0          | RBW=VBW        | =1MHz                                                   |                   |
| 11453.33                                                                                         | 54.7                                                  | V                                                                             | 82.2                          | -27.5                                                       | Peak                             | 206                                              | 1.6          | RBW=VBW        | =1MHz                                                   |                   |
| 1909.73                                                                                          | 106.2                                                 | V                                                                             | -                             | -                                                           | PK                               | 213                                              | 1.1          | Fundament      | al                                                      |                   |
| 1909.74                                                                                          | 107.2                                                 | Н                                                                             | -                             | -                                                           | PK                               | 272                                              | 1.0          | Fundament      | al                                                      |                   |
| 1910.01                                                                                          | 61.7                                                  | Η                                                                             | 82.2                          | -20.5                                                       | Peak                             | 273                                              | 1.0          | Bandedge       |                                                         |                   |
| Note 1:                                                                                          | limit becau<br>is determi<br>field stren              | use it doe<br>ned from<br>gth limit.                                          | es not consi<br>a substituti  | der the pres<br>on measure                                  | sence of the                     | ground plane<br>signals with I                   | e. The actua | al signal leve | This limit is a d<br>I, in terms of<br>a relative to th | erp or eirp,      |
| Trunsmit I                                                                                       |                                                       |                                                                               | a engar un                    | u oubsiliu                                                  |                                  | emento                                           |              |                |                                                         |                   |
| Frequency                                                                                        | Substitut                                             | ion meas                                                                      | surements                     | Site                                                        | EU                               | r measureme                                      | ents         | eirp Limit     | erp Limit                                               | Margin            |
| MHz                                                                                              | Pin <sup>1</sup>                                      | Gain <sup>2</sup>                                                             | FS <sup>3</sup>               | Factor <sup>4</sup>                                         | FS <sup>5</sup>                  | eirp (dBm)                                       | erp (dBm)    | dBm            | dBm                                                     | dB                |
| 1909.73                                                                                          | -9.5                                                  | 8.6                                                                           | 88.7                          | 89.6                                                        | 106.2                            | 16.6                                             | 14.4         |                |                                                         |                   |
| 1909.74                                                                                          | -9.5                                                  | 8.6                                                                           | 89.0                          | 89.9                                                        | 107.2                            | 17.2                                             | 15.0         |                |                                                         |                   |
| 1910.01                                                                                          | -9.5                                                  | 8.6                                                                           | 89.0                          | 89.9                                                        | 61.7                             | -28.2                                            | -30.4        | -13.0          |                                                         | -15.2             |
| Note 1:<br>Note 2:<br>Note 3:<br>Note 4:<br>Note 5:<br>Antenna C<br>Frequency<br>MHz<br>1880.000 | Gain is the<br>FS is the f<br>Site Facto<br>EUT field | e gain (d<br>field strei<br>r - this is<br>strength<br>Output<br>Dutput<br>m) | Bi) for the si<br>ngth (dBuV/ | ubstitution a<br>m) measure<br>tor to conve<br>d during ini | ed from the s<br>ert from a fiel | pole has a ga<br>ubstitution ar<br>d strength in | ntenna.      |                | m.                                                      |                   |
|                                                                                                  |                                                       |                                                                               |                               |                                                             |                                  |                                                  |              |                |                                                         |                   |

| 41                      | 111011                                                                                                                                                                             |                                              |                      | EMC Test Da                         |  |  |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------------|--|--|
| Client:                 | Thales Navigation                                                                                                                                                                  |                                              |                      | lob Number: J57066                  |  |  |
| Model:                  | Z-Max GPS Reciever                                                                                                                                                                 |                                              |                      | .og Number: T57109                  |  |  |
|                         |                                                                                                                                                                                    |                                              | Account Manager: Rod |                                     |  |  |
|                         | Chales Branch<br>FCC 24E, RSS-133                                                                                                                                                  |                                              | Class: Radio         |                                     |  |  |
| Test Spe                |                                                                                                                                                                                    | Receiver En                                  | nission              | S                                   |  |  |
|                         | Dbjective: The objective of this test session specification listed above.                                                                                                          | is to perform final qua                      | lification testi     | ng of the EUT with respect to the   |  |  |
| Test I                  | e of Test: 9/11//2004<br>Engineer: jmartinez<br>Location: FT Chamber# 4                                                                                                            | Config. Used<br>Config Change<br>EUT Voltage |                      | DHz                                 |  |  |
| Analyzer.<br>to receive | vas connected directly to Spectrum Analyze<br>A external output connector was available<br>ed at midpoint of the operating range.<br>Conditions:<br>Rel. Humidity:<br>y of Results |                                              |                      |                                     |  |  |
| Summary                 | •                                                                                                                                                                                  |                                              |                      | Marcia                              |  |  |
| 5                       | # Test Performed                                                                                                                                                                   | Limit                                        | Result               | Mardin                              |  |  |
| Summary<br>Run<br>1     | # Test Performed<br>RE, 30 - 25,000 MHz, Antenna<br>Conducted Emissions                                                                                                            | Limit<br>RSS-133 (9)                         | Result<br>Pass       | Margin<br>794.3 pW @ 13,4800<br>MHz |  |  |



# **EXHIBIT 3: Test Configuration Photographs**

2 Pages

### EXHIBIT 4: Detailed Photographs of Thales Navigation Model Z-Max GPS ReceiverConstruction

1 Page

# EXHIBIT 5: Operator's Manual for Thales Navigation Model Z-Max GPS Receiver

2 Pages

# EXHIBIT 6: RF Exposure Information

2 Pages