

A.4. POWER SPECTRAL DENSITY

Test Date	2024/10/27~30	Temp./Hum.	23~24°C/56~61%
Cable Loss	1.00 dB	Tested By	Kuper Hsu
Test Voltage	AC 120V 60Hz (Via AC Adapter)	

A.4.1. Power Spectral Density Result

Mode	U-NII	Centre Frequency	Power Spec (dBm/	tral Density 1MHz)	Duty Cycle Factor	Max. Power Spectral Density	Limit
inoue	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linit
		5180	6.557	6.482		6.557	
802.11a	1	5200	6.658	6.174	N/A	6.658	11 dBm/MHz
		5240	6.534	6.082		6.534	
Mode	U-NII	Centre Frequency	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Max. Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	
		5715	4.940	4 420		4.840	
		5745	4.840	4.450		4.640	
802.11a	3 Note2	5785	5.893	4.430 5.442	N/A	5.893	30dBm/500 kHz

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. Max. Power Spectral Density (dBm/1MHz) = Max of each PSD (dBm/1MHz) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

4. Max. Power Spectral Density (dBm/500kHz) = Max of each PSD (dBm/500kHz) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

File Number: C1M2410151

Report Number: EM-F240552

With INPAQ Antenna

Mode U-i	U-NII	NII Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Duty Cycle Antenna Gain (dBi) Factor		Max. Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	AUX	Main	(dBm/1MHz) Note 2	2
		5845	6.934	6.972		1.7	1.8	8.772	
802.11a	4	5865	6.939	7.025	N/A	1.7	1.8	8.825	14dBm/MHz (E.I.R.P.)
		5885	7.020	6.802		1.7	1.8	8.720	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

With LUXSHARE-ICT Antenna

Mode U-N	U-NII	I Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	e Antenna Gain (dBi)		Max. Power Spectral Density	Limit
11040	Band	(MHz)	AUX	Main	10log(1/X)	AUX	Main	(dBm/1MHz) Note 2	Linit
		5845	6.934	6.972		3.8	4.5	11.472	
802.11a	4	5865	6.939	7.025	N/A	3.8	4.5	11.525	14dBm/MHz (E.I.R.P.)
		5885	7.020	6.802		3.8	4.5	11.302	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

Mode	U-NII	Centre	Power Spec (dBm/	etral Density 1MHz)	Duty Cycle	Total Power Spectral Density	Limit
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linit
		5180	5.785	5.508		8.659	
802.11n- HT20	1	5200	5.822	5.473	N/A	8.661	11 dBm/MHz
11120		5240	5.751	5.265		8.525	
Mode	U-NII	Centre Frequency	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Total Power Spectral Density	Limit
Mode	U-NII Band	Centre Frequency (MHz)	Power Spec (dBm/5 AUX	tral Density 00kHz) Main	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) _{Note 4}	Limit
Mode	U-NII Band	Centre Frequency (MHz) 5745	Power Spec (dBm/5 AUX 4.401	tral Density 00kHz) Main 4.626	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) Note 4 7.525	Limit
Mode 802.11n- HT20	U-NII Band 3 _{Note2}	Centre Frequency (MHz) 5745 5785	Power Spec (dBm/5 AUX 4.401 4.864	tral Density 00kHz) Main 4.626 4.803	Duty Cycle Factor 10log(1/X) N/A	Total Power Spectral Density (dBm/500kHz) Note 4 7.525 7.844	Limit 30dBm/500 kHz

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB) = 1dB + 7dB = 8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

With INPAO Antenna

Mode U-N	U-NII	I Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
		5845	4.431	4.368		1.75	9.160	
802.11n- HT20	4	5865	4.363	4.319	N/A	1.75	9.101	14dBm/MHz (E.I.R.P.)
		5885	4.601	4.384		1.75	9.254	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII	J-NII Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
111000	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	2
		5845	4.431	4.368		4.16	11.706	
802.11n- HT20	4	5865	4.363	4.319	N/A	4.16	11.511	14dBm/MHz (E.I.R.P.)
		5885	4.601	4.384		4.16	11.664	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%. 4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi Directional gain = <math>10 \log[(10^{2.7/10} + 10^{4.5/10})/2] = 3.69dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

Mode	U-NII	Centre	Power Spec (dBm/	tral Density 1MHz)	Duty Cycle Factor	Total Power Spectral Density	Limit	
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linin	
802.11n-	1	5190	2.784	2.463	N/A	5.637	11 dBm/MHz	
HT40	1	5230	2.845	2.621	N/A	5.745		
Mode	U-NII	Centre	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle	Total Power Spectral Density	Limit	
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linit	
802.11n-	3	5755	0.770	1.105	N/A	3.951	20 d Pm/500 kHz	
HT40	Note2	5795	1.097	0.843	1N/A	3.982	SOUDIII/ SOU KHZ	

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

File Number: C1M2410151

Report Number: EM-F240552

With INPAO Antenna

Mode U-NI Band	U-NII Band	-NII Centre Frequency	Power Spect (dBm/1	ral Density MHz)	Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density (dBm/1MHz)	Limit
	Duild	(MHz)	AUX	Main	$10\log(1/X)$	Note 4	Note 2	
802.11n-	4	5835	3.637	3.359	NT/A	1.75	8.261	14dBm/MHz
HT40	4	5875	3.347	3.245	IN/A	1.75	8.057	(E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Mode U-N Ban	U-NII	U-NII Band Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11n-	4	5835	3.637	3.359	NI/A	4.16	10.671	14dBm/MHz
HT40	4	5875	3.347	3.245	IN/A	4.16	10.467	(E.I.R.P.)

With LUXSHARE-ICT Antenna

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = 10 log[$(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}$] dBi Directional gain = 10 log[$(10^{27/10} + 10^{4.5/10})/2$]= 3.69dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

Mode	U-NII	Centre Frequency	Power Spec (dBm/	tral Density 1MHz)	Duty Cycle Factor	Total Power Spectral Density	Limit
Mode	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Diffit
802.11ac- VHT80	1	5210	1.063	0.397	N/A	3.753	11 dBm/MHz
Mode	U-NII	Centre	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle	Total Power Spectral Density	Limit
Mode	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linnt
802.11ac- VHT80	3 Note2	5775	-2.048	-2.019	N/A	0.977	30dBm/500 kHz

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

With INPAQ Antenna

Mode U	U-NII	Centre Frequency	Power Spect (dBm/1	wer Spectral Density (dBm/1MHz) Duty Cycle Factor		Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11ac- VHT80	4	5855	0.411	0.387	N/A	1.75	5.159	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII Band	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
			AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11ac- VHT80	4	5855	0.411	0.387	N/A	4.16	7.569	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{2.7/10} + 10^{4.5/10})/2] = 3.69$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

With INPAQ Antenna

Mode	U-NII Band	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density (dBm/1MHz)	Limit
			AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11ac- VHT160	4	5815	-4.579	-4.246	N/A	1.75	0.351	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$ Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Total Power Power Spectral Density **Directional Gain** Centre Duty Cycle Spectral Density U-NII (dBm/1MHz) Mode Frequency Factor (dBi) Limit (dBm/1MHz) Band (MHz) 10log(1/X) Note 4 AUX Main Note 2 802.11ac-14dBm/MHz 4 N/A 5815 -4.579-4.246 4.16 2.761 **VHT160** (E.I.R.P.)

With LUXSHARE-ICT Antenna

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{2.7/10} + 10^{4.5/10})/2] = 3.69$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

Mode	U-NII	Centre	Power Spectral Density (dBm/1MHz) Duty Fa		Duty Cycle	Total Power Spectral Density	Limit	
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linit	
		5180	5.684	5.766		8.735		
802.11ax- HE20	1	5200	5.626	5.180	N/A	8.419	11 dBm/MHz	
HE20		5240	5.470	5.161		8.329		
Mode	U-NII	Centre Frequency	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Total Power Spectral Density	Limit	
Mode	U-NII Band	Centre Frequency (MHz)	Power Spec (dBm/5 AUX	tral Density 00kHz) Main	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) _{Note 4}	Limit	
Mode	U-NII Band	Centre Frequency (MHz) 5745	Power Spec (dBm/5 AUX 3.240	200kHz) Main 3.321	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) _{Note 4} 6.291	Limit	
Mode 802.11ax- HE20	U-NII Band 3 Note2	Centre Frequency (MHz) 5745 5785	Power Spec (dBm/5 AUX 3.240 3.644	tral Density 00kHz) Main 3.321 3.560	Duty Cycle Factor 10log(1/X) N/A	Total Power Spectral Density (dBm/500kHz) Note 4 6.291 6.613	Limit 30dBm/500 kHz	

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB) = 1dB + 7dB = 8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

With INPAO Antenna

Mode	U-NII Band (I	Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
		(MHz)	AUX	Main	$10\log(1/X)$	Note 4	(dBm/1MHz) Note 2	
		5845	4.209	4.151		1.75	8.940	
802.11ax- HE20	4	5865	4.178	4.224	N/A	1.75	8.961	14dBm/MHz (E.I.R.P.)
		5885	4.387	4.537		1.75	9.223	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain	Total Power Spectral Density	Limit
	Band		AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	Linit
		5845	4.209	4.151		4.16	11.350	
802.11ax- HE20	4	5865	4.178	4.224	N/A	4.16	11.371	14dBm/MHz (E.I.R.P.)
		5885	4.387	4.537		4.16	11.633	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi Directional gain = <math>10 \log[(10^{2.7/10} + 10^{4.5/10})/2] = 3.69dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

File Number: C1M2410151

Report Number: EM-F240552

Mode	U-NII	Centre	Power Spectral Density (dBm/1MHz)		Duty Cycle	Total Power Spectral Density	Limit	
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Lillit	
802.11ax-	1	5190	2.760	2.498	NI/A	5.641	11 dDm/MUz	
HE40	1	5230	2.751	2.894	N/A	5.833	11 dBm/MHZ	
Mode	U-NII Band	Centre	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Total Power Spectral Density	Limit	
Widde		(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linit	
802.11ax-	3	5755	-0.097	0.000	NI/A	2.962	20.10 /500.1.11	
HE40	Note2	5795	0.546	-0.055	IN/A	3.266	SOUDIII/SOU KHZ	

Note :1. All results have been included cable loss

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB) = 1dB + 7dB = 8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

With INPAQ Antenna

Mode	U-NII Dand	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band		AUX	Main	$10\log(1/X)$	Note 4	(dBm/1MHz) Note 2	
802.11ax-	4	5835	3.069	3.276	NI/A	1.75	7.934	14dBm/MHz
HE40	4	5875	3.265	3.106	IN/A	1.75	7.947	(E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII Danal	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band		AUX	Main	$10\log(1/X)$	Note 4	(dBm/1MHz) Note 2	2
802.11ax-	4	5835	3.069	3.276	NI/A	4.16	10.344	14dBm/MHz
HE40	4	5875	3.265	3.106	N/A	4.16	10.357	(E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$ Directional gain = $10 \log[(10^{27/10} + 10^{4.5/10})/2] = 3.69dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

File Number: C1M2410151

Report Number: EM-F240552

Mode	U-NII	Centre	Power Spectral Density (dBm/1MHz)		Duty Cycle	Total Power Spectral Density	Limit
Band		(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Laillit
802.11ax- HE80	1	5210	0.943	0.182	N/A	3.589	11 dBm/MHz
Moda	U-NII	Centre Frequency	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Total Power Spectral Density	Limit
inoue	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linnt
802.11ax- HE80	3 Note2	5775	-3.118	-3.194	N/A	-0.146	30dBm/500 kHz

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

With INPAQ Antenna

Mode	U-NII Band	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
			AUX	Main	10log(1/X)	Note 4	Spectral Density (dBm/1MHz) Note 2	Lillint
802.11ax- HE80	4	5855	0.434	-0.052	N/A	1.75	4.958	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII Band	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
			AUX	Main	10log(1/X)	Note 4	Spectral Density (dBm/1MHz) Note 2	Linit
802.11ax- HE80	4	5855	0.434	-0.052	N/A	4.16	7.368	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{3.8/10} + 10^{4.5/10})/2] = 4.16$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

With INPAQ Antenna

Mode	U-NII Band	Centre Frequency (MHz)	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
			AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11ax- HE160	4	5815	-4.553	-4.375	N/A	1.75	0.297	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$ Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Total Power Power Spectral Density **Directional Gain** Centre Duty Cycle Spectral Density U-NII (dBm/1MHz) Mode Frequency Factor (dBi) Limit (dBm/1MHz) Band (MHz) 10log(1/X) Note 4 AUX Main Note 2 802.11ax-14dBm/MHz 4 N/A 5815 -4.553 -4.375 4.16 2.707 HE160 (E.I.R.P.)

With LUXSHARE-ICT Antenna

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{3.8/10} + 10^{4.5/10})/2] = 4.16$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

This test report may be reproduced in full only. The document may only be updated by Audix Technology Corp. personnel. Any changes will be noted in the Document History section of the report.

Mode	U-NII Rand	Centre	Power Spec (dBm/	etral Density 1MHz)	Duty Cycle	Total Power Spectral Density	Limit	
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linnt	
		5180	5.484	5.238		8.373		
802.11be- EHT20	1	5200	5.514	5.189	N/A	8.365	11 dBm/MHz	
211120		5240	5.423	5.032		8.242		
			Power Spectral Density (dBm/500kHz)					
Mode	U-NII	Centre Frequency	Power Spec (dBm/5	tral Density 00kHz)	Duty Cycle Factor	Total Power Spectral Density	Limit	
Mode	U-NII Band	Centre Frequency (MHz)	Power Spec (dBm/5 AUX	tral Density 00kHz) Main	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) _{Note 4}	Limit	
Mode	U-NII Band	Centre Frequency (MHz) 5745	Power Spec (dBm/5 AUX 3.074	tral Density 00kHz) Main 3.258	Duty Cycle Factor 10log(1/X)	Total Power Spectral Density (dBm/500kHz) _{Note 4} 6.177	Limit	
Mode 802.11be- EHT20	U-NII Band 3 Note2	Centre Frequency (MHz) 5745 5785	Power Spec (dBm/5 AUX 3.074 3.433	tral Density 00kHz) Main 3.258 3.373	Duty Cycle Factor 10log(1/X) N/A	Total Power Spectral Density (dBm/500kHz) _{Note 4} 6.177 6.413	Limit 30dBm/500 kHz	

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB) = 1dB + 7dB = 8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

With INPAO Antenna

Mode	U-NII Band	Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
		5845	4.310	4.593		1.75	9.214	
802.11be- EHT20	4	5865	4.302	4.227	N/A	1.75	9.025	14dBm/MHz (E.I.R.P.)
		5885	4.286	4.186		1.75	8.997	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII	VII Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
		5845	4.310	4.593		4.16	11.624	
802.11be- EHT20	4	5865	4.302	4.227	N/A	4.16	11.435	14dBm/MHz (E.I.R.P.)
		5885	4.286	4.186		4.16	11.407	

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%. 4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi Directional gain = <math>10 \log[(10^{3.8/10} + 10^{4.5/10})/2] = 4.16dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

File Number: C1M2410151

Report Number: EM-F240552

Mode	U-NII	Centre	Power Spec (dBm/	tral Density 1MHz)	Duty Cycle	Total Power Spectral Density	Limit
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Linit
802.11be-	1	5190	3.011	3.146	NI/A	6.089	11 dDm/MU
EHT40	1	5230	3.296	3.173	N/A	6.245	
Mode	U-NII	Centre	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral Density	Limit
Widde	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linit
802.11be-	3	5755	0.169	0.133	N/A	3.161	20dBm/500 1/11
EHT40	Note2	5795	0.478	0.477	IN/A	3.488	SOUDIII/SOU KHZ

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

File Number: C1M2410151

Report Number: EM-F240552

With INPAO Antenna

Mode	U-NII	U-NII Centre Frequency	Power Spect (dBm/1	ral Density MHz)	Duty Cycle Factor	Directional Gain (dBi) Total Power Spectral Density		Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11be-	4	5835	2.952	3.249	NI/A	1.75	7.863	14dBm/MHz
EHT40	4	5875	3.151	3.156	IN/A	1.75	7.914	(E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Mode U-	U-NII	Centre Frequency	Power Spect (dBm/1	ral Density MHz)	Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11be-	4	5835	2.952	3.249	NI/A	4.16	10.273	14dBm/MHz
EHT40	4	5875	3.151	3.156	IN/A	4.16	10.324	(E.I.R.P.)

With LUXSHARE-ICT Antenna

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = 10 log[$(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}$] dBi Directional gain = 10 log[$(10^{38/10} + 10^{4.5/10})/2$]= 4.16dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

Mode	U-NII Pand	Centre Frequency	Power Spec (dBm/	tral Density IMHz) Duty Cycle Factor		Total Power Spectral Density	Limit
Mode	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/1MHz) Note 3	Limit
802.11be- EHT80	1	5210	1.025	0.576	N/A	3.817	11 dBm/MHz
Mode	U-NII	U-NII Centre Frequency		Power Spectral Density (dBm/500kHz)		Total Power Spectral Density	Limit
inoue	Band	(MHz)	AUX	Main	10log(1/X)	(dBm/500kHz) Note 4	Linnt
802.11be- EHT80	3 Note2	5775	-2.989	-3.331	N/A	-0.146	30dBm/500 kHz

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

With INPAQ Antenna

Mode	U-NII	Centre Frequency	Power Spectral Density (dBm/1MHz) Duty Cyc Factor		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11be- EHT80	4	5855	0.361	0.065	N/A	1.75	4.976	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII Dand	Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHZ) Note 2	
802.11be- EHT80	4	5855	0.361	0.065	N/A	4.16	7.386	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) +

Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{3.8/10} + 10^{4.5/10})/2] = 4.16$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

Report Number: EM-F240552

With INPAO Antenna

Mode	U-NII	Centre Frequency	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Directional Gain (dBi)	Total Power Spectral Density	Limit
	Band	(MHz)	AUX	Main	10log(1/X)	Note 4	(dBm/1MHz) Note 2	
802.11be- EHT160	4	5815	-5.245	-4.418	N/A	1.75	-0.052	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$ Directional gain = $10 \log[(10^{1.8/10} + 10^{1.7/10})/2] = 1.75 dBi$

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

With LUXSHARE-ICT Antenna

Mode	U-NII Band	-NII Centre Frequency (MHz)	Power Spect (dBm/1	ral Density MHz)	Duty Cycle Factor	Duty Cycle Directional Gain Factor (dBi)	Total Power Spectral Density (dBm/1MHz)	Limit
		(MITZ)	AUX	Main	$1010g(1/\Lambda)$	14010 4	Note 2	
802.11be- EHT160	4	5815	-5.245	-4.418	N/A	4.16	2.358	14dBm/MHz (E.I.R.P.)

Note :1. All results have been included cable loss.

2. Max. Power Spectral Density (dBm/1MHz) (EIRP) = Max of each PSD (dBm/1MHz) (AUX or Main) + Antenna Gain (dBi) + Duty Cycle Factor(dB) when duty cycle is less than 98%.

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) (EIRP)= Sum to individual PSD (dBm/1MHz) + Directional Gain (dBi) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 d) ii), transmit signals are completely uncorrelated, then

Directional gain = $10 \log[(10^{G1/10} + 10^{G2/10} + ... + 10^{GN/10})/N_{ANT}] dBi$

Directional gain = $10 \log[(10^{3.8/10} + 10^{4.5/10})/2] = 4.16$ dBi

The MIMO is uncorrelated and supported SDM(Spatial Division Multiplexing) mode only. This radio device doesn't support beamforming and Cyclic Delay Diversity (CDD).

File Number: C1M2410151

Report Number: EM-F240552

Mode	U-NII	Centre Frequency	RU	Power Spec (dBm/	ctral Density (1MHz)	Duty Cycle Factor	Total Power Spectral	Limit
	Band	(MHz)	Configuration	AUX	Main	10log(1/X)	Density (dBm) Note 3	
000 11			26/0	6.626	7.159	0.155	10.066	
802.11ax-	1	5180	52/37	6.680	6.411	0.155	9.713	11 dBm/MHz
HE20			106/53	6.750	6.603	0.155	9.842	
Mode	U-NII Band	Centre Frequency	RU Configuration	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral Density (dBm)	Limit
		(MHz)	8	AUX	Main	10log(1/X)	Note 4	
			26/0	11.621	12.133	0.155	15.050	
		5745	52/37	9.541	9.262	0.155	12.569	
802.11ax-	3		106/53	6.039	5.998	0.155	9.184	20 dD /500 l-U-
HE20 Note2	Note2		26/8	11.549	11.614	0.155	14.747	300DIII/300 KHZ
		5825	52/40	8.687	8.677	0.155	11.847	1
			106/54	5.838	5.853	0.155	9.011	

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 3	
802.11ax- HE40	1	5190	242/61	6.461	5.790	0.141	9.290	11 dBm/MHz
Mode	U-NII Band	Centre Frequency (MHz) Config	RU	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral	Limit
			Configuration	AUX	Main	10log(1/X)	Density (dBm) Note 4	
802.11ax-	3	5755	242/61	3.399	3.244	0.141	6.473	20dDm/500 1.11a
HE40	Note2	5795	242/62	3.541	3.150	0.141	6.501	SUUDIII/SUU KHZ

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Mode	U-NII	Centre Frequency	RU	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Total Power Spectral	Limit
	Band	(MHz)	Configuration	AUX	Main	10log(1/X)	Density (dBm) Note 3	
802.11ax- HE80	1	5210	484/65	2.980	2.441	0.150	5.879	11 dBm/MHz
Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 4	
802.11ax-	3	5775	484/65	-0.096	-0.186	0.150	3.020	20dDm/500 1.11a
HE80	Note2	5775	484/66	-0.123	-0.338	0.150	2.931	SUUDIII/SUU KHZ

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

File Number: C1M2410151

Report Number: EM-F240552

Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 3	
002 111			26/0	6.491	6.769	0.155	9.798	11 dBm/MHz
802.11be-	1	5180	52/37	6.791	6.379	0.155	9.755	
EH120			106/53	6.725	6.803	0.155	9.929	
Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral Density (dBm)	Limit
				AUX	Main	$10\log(1/X)$	Note 4	
	3	3 Note2 5825	26/0	11.675	11.574	0.155	14.790	
			52/37	8.931	8.825	0.155	12.044	
802.11be- EHT20			106/53	5.929	5.888	0.155	9.074	20 dD /500 l-U-
	Note2		26/8	11.860	11.570	0.155	14.883	300Bm/500 KHZ
			52/40	8.983	8.657	0.155	11.988	
			106/54	5.991	5.702	0.155	9.014	

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Report Number: EM-F240552

Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 3	
802.11be- EHT40	1	5190	242/61	6.221	5.993	0.150	9.269	11 dBm/MHz
Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 4	
802.11be-	3	5755	242/61	3.483	3.434	0.150	6.619	20dDm/500 1.11a
EHT40	Note2	5795	242/62	3.075	2.947	0.150	6.172	SUUDIII/SUU KHZ

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/1MHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 3	
802.11be- EHT80	1	5210	484/65	2.892	2.372	0.155	5.805	11 dBm/MHz
Mode	U-NII Band	Centre Frequency (MHz)	RU Configuration	Power Spectral Density (dBm/500kHz)		Duty Cycle Factor	Total Power Spectral	Limit
				AUX	Main	10log(1/X)	Density (dBm) Note 4	
802.11be-	3	5775	484/65	-0.272	0.009	0.155	3.036	20dDm/500 1.11a
EHT80	Note2	5775	484/66	0.095	-0.340	0.155	3.048	SUUDIII/SUU KHZ

Note :1. All results have been included cable loss.

2. BWCF 7dB (100kHz converted to 500kHz) has been included in the test result.

For UNII Band 3, Ref Offset of measured plot: Cable Loss (dB) + BWCF (dB)= 1dB+7dB=8dB

3. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/1MHz) = Sum to individual PSD (dBm/1MHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

4. According to KDB 662911 D01 E)2)a), Total Power Spectral Density (dBm/500kHz) = Sum to individual PSD (dBm/500kHz) + Duty Cycle Factor (dB) when duty cycle is less than 98%.

File Number: C1M2410151

Report Number: EM-F240552

A.4.2. Measurement Plots

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552

Note: We only presented max result (worst case) plots for each test mode

File Number: C1M2410151

Report Number: EM-F240552