

Test report No. Page Issued date FCC ID

: 1 of 33 : November 30, 2021 : 2AX5HNNH-102A

: 14034642H-R1

RADIO TEST REPORT

Test Report No.: 14034642H-R1

Applicant : JRC Mobility Inc.

Type of EUT : RADAR SENSOR

Model Number of EUT : NNH-102A

FCC ID : 2AX5HNNH-102A

Test regulation : FCC Part 95 Subpart M: 2017

Test Result : Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- 6. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 14034642H. 14034642H is replaced with this report.

Representative test engineer:

Approved by:

October 22 to 26, 2021

Yunchiro Yamazaki
Engineer

Tsubasa Takayama
Leader

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 2 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

REVISION HISTORY

Original Test Report No.: 14034642H

Revision	Test report No.	Date	Page revised	Contents
- (Original)	14034642H	November 16, 2021	-	-
1	14034642H-R1	November 30, 2021	P. 14	Correction of Fs value to the actual measurement value; From 2.1372 to 2.1423
1	14034642H-R1	November 30, 2021	P.26	Deletion of blanks on the list in APPENDIX 2.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1 Page : 3 of 33

Issued date : November 30, 2021 FCC ID : 2AX5HNNH-102A

Reference: Abbreviations (Including words undescribed in this report)

LIMS A2LA The American Association for Laboratory Accreditation Laboratory Information Management System ACAlternating Current MCS Modulation and Coding Scheme AFH MRA Mutual Recognition Arrangement Adaptive Frequency Hopping Amplitude Modulation N/A AMNot Applicable NIST Amp, AMP Amplifier National Institute of Standards and Technology American National Standards Institute ANSI NS No signal detect Ant, ANT Antenna NSA Normalized Site Attenuation AP Access Point NVLAP National Voluntary Laboratory Accreditation Program ASK Amplitude Shift Keying OBW Occupied Bandwidth Atten., ATT Attenuator **OFDM** Orthogonal Frequency Division Multiplexing AVP/M Power meter Average BPSK Binary Phase-Shift Keying PCB Printed Circuit Board BR Bluetooth Basic Rate PER Packet Error Rate ВТ Bluetooth PHY Physical Layer BT LE Bluetooth Low Energy PK Peak BW Bandwidth PΝ Pseudo random Noise Cal Int Calibration Interval PRBS Pseudo-Random Bit Sequence CCK Complementary Code Keying PSD Power Spectral Density Ch., CH Channel QAM Quadrature Amplitude Modulation CISPR Comite International Special des Perturbations Radioelectriques QP Quasi-Peak CW Continuous Wave QPSK Quadri-Phase Shift Keying DBPSK Differential BPSK RBW Resolution Bandwidth DC Direct Current RDS Radio Data System D-factor Distance factor RE Radio Equipment Dynamic Frequency Selection RF DFS Radio Frequency DOPSK Differential OPSK RMS Root Mean Square DSSS Direct Sequence Spread Spectrum RSS Radio Standards Specifications EDR Enhanced Data Rate RxReceiving EIRP, e.i.r.p. Equivalent Isotropically Radiated Power SA, S/A Spectrum Analyzer **EMC** ElectroMagnetic Compatibility SG Signal Generator **EMI** ElectroMagnetic Interference SVSWR Site-Voltage Standing Wave Ratio EN European Norm TR Test Receiver ERP, e.r.p. Effective Radiated Power Tx Transmitting European Union VBW Video Bandwidth Equipment Under Test EUT Vert. Vertical Fac. WLAN Wireless LAN **FCC** Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum FM Frequency Modulation Freq. Frequency **FMCW** Frequency Modulated Continuous Wave FSK Frequency Shift Keying **GFSK** Gaussian Frequency-Shift Keying **GNSS** Global Navigation Satellite System GPS Global Positioning System Horizontal Hori. ICES Interference-Causing Equipment Standard

JAB Japan Accreditation Board LAN Local Area Network

LAN Local Area Network
LNA Low Noise Amplifier

UL Japan, Inc. Ise EMC Lab.

IEC

IEEE

ILAC ISED

ISO

IF

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

International Electrotechnical Commission

Intermediate Frequency

Institute of Electrical and Electronics Engineers

International Organization for Standardization

International Laboratory Accreditation Conference

Innovation, Science and Economic Development Canada

Test report No. Page **Issued date**

FCC ID

: 14034642H-R1 : 4 of 33

: November 30, 2021 : 2AX5HNNH-102A

CONTENTS PAGE

SECTION 1: Customer information	5
SECTION 2: Equipment under test (EUT)	5
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	
SECTION 5: Radiated Spurious Emission	
SECTION 6: Frequency Stability	
APPENDIX 1: Test data	
Occupied bandwidth	16
Radiated Power	
Modulation characteristics	
Field strength of spurious radiation	
Frequency Stability	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	28
Radiated Power	
Field strength of spurious radiation	
Worst Case Position	
Frequency Stability	2.2

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14034642H-R1

 Page
 : 5 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

SECTION 1: Customer information

Company Name : JRC Mobility Inc.

Address : Advanced Technology Center J20-4F 834, Inasatomachi, Nagano-shi,

Nagano, 381-2289 Japan

Telephone Number : +81-26-214-5759 Contact Person : Kazutoshi Tsuda

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : RADAR SENSOR

Model Number : NNH-102A

Serial Number : Refer to SECTION 4.2 Receipt Date : October 12, 2021

Condition : Prototype

(Not for Sale: This sample is equivalent to production line items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: NNH-102A (referred to as the EUT in this report) is a RADAR SENSOR.

General Specification

Rating : DC 12 V

Clock frequency(ies) in the system : 600 MHz (Millimeter Wave Radar Sensor IC)

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 78.161GHz
Bandwidth : 2.164 GHz

Modulation : Frequency modulation (FMCW)

Antenna Type : Patch Array Antenna Antenna Connector : None (Internal Antenna)

Antenna Gain : 16.9 dBi

Steerable Antenna : electronically (Digital Beam Forming)
Usage location : Unmanned Ground Vehicle mounted

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 6 of 33

Issued date : November 30, 2021 FCC ID : 2AX5HNNH-102A

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 95 Subpart M

FCC Part 95 final revised on November 2, 2017

Title : FCC 47CFR Part95 – PERSONAL RADIO SERVICES

Subpart M – The 76-81 GHz Band Radar Service

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: N/A	FCC: N/A	N/A	N/A	*1)
Occupied bandwidth	FCC: ANSI C63.26-2015 5.4 Occupied bandwidth	FCC: Section 2.1049		Complied a)	Radiated
Radiated Power Modulation characteristics	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing ANSI C63.10-2013 6. Standard test methods 9. Procedures for testing millimeter-wave systems	FCC: Section 95.3367 Section 2.1046 Section 2.1047		Complied b)	Radiated
Field strength of spurious radiation	FCC: ANSI C63.26-2015 5.5 Radiated emissions testing	FCC: Section 95.3379 (a) Section 2.1053 Section 2.1057	8.3 dB 28799.3 MHz, AV, Vertical	Complied c)	Radiated
Frequency stability	FCC: ANSI C63.26-2015 5.6 Frequency stability testing	FCC: Section 95.3379 (b) Section 2.1055	See data.	Complied d)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Occupied bandwidth)
- b) Refer to APPENDIX 1 (data of Radiated Power and Modulation characteristics)
- c) Refer to APPENDIX 1 (data of Field strength of spurious radiation)
- d) Refer to APPENDIX 1 (data of Frequency Stability)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

Supplied Voltage Information

The EUT provides stable voltage constantly to RF Part regardless of input voltage. Instead of a new battery, DC power supply was used for the test.

Antenna Information

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

^{*} In case any questions arise about test procedure, ANSI C63.26-2015 and C63.10-2013 are also referred.

Test report No. : 14034642H-R1 Page : 7 of 33

Issued date : November 30, 2021 FCC ID : 2AX5HNNH-102A

3.4 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Ise EMC Lab.

13c Elvi C Edo.				
	Conducted emission			
Frequency range	using AMN(LISN)			
	(+/-)			
0.009 MHz -	2.9 dB			
0.15 MHz	2.9 UD			
0.15 MHz -	3.4 dB			
30 MHz	3.4 UD			

	Radiated emission
Test distance	(+/-)
	9 kHz - 30 MHz
3 m	3.3 dB
10 m	3.2 dB

	Radiated emission (Below 1 GHz)			
Polarity	(3 m*) (+/-)		(10 m*) (+/-)	
1 Glarity	30 MHz - 200 MHz	200 MHz -	30 MHz -	200 MHz -
		1000 MHz	200 MHz	1000 MHz
Horizontal	4.8 dB	5.2 dB	4.8 dB	5.0 dB
Vertical	5.0 dB	6.3 dB	4.8 dB	5.0 dB

Radiated emission (Above 1 GHz)						
(3 m*) (+/-) (1 m*) (+/-) (0.5 m*) (+/-)						
1 GHz -	6 GHz -	10 GHz -	26.5 GHz -	26.5 GHz -	1 GHz -	
6 GHz	18 GHz	26.5 GHz	40 GHz	40 GHz	18 GHz	
4.9 dB	5.2 dB	5.5 dB	5.5 dB	5.5 dB	5.2 dB	

^{*}Measurement distance

Radiated emission	Uncertainty [+/- dB]	Distance
40 GHz - 50 GHz	4.1	>= 0.5 m
50 GHz - 75 GHz	5.1	>= 0.5 m
75 GHz - 110 GHz	5.4	>= 0.5 m
110 GHz - 170 GHz	5.2	>= 3.8 cm*
170 GHz - 260 GHz	5.0	>= 2.5 cm*

^{*}under consideration about Uncertainty for testing at 1 cm distance

Radiated Emission (with Block downconverter)	Uncertainty [+/- dB]	Distance
75 GHz - 83 GHz	4.4*	>= 0.5 m

^{*} This value was used for 75 GHz - 83 GHz in this report.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1 Page : 8 of 33

Issued date : November 30, 2021 FCC ID : 2AX5HNNH-102A

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 Semi Anechoic Chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 Semi Anechoic Chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 Semi Anechoic Chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 Shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 Semi Anechoic Chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 Shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 Semi Anechoic Chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 Measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 Shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 Measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 Shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 Measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 Measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 Shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 M easurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 M easurement room	2.6 x 3.4 x 2.5	N/A	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 Semi Anechoic Chambers and No.3 and No.4 Shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14034642H-R1

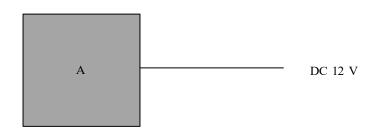
 Page
 : 9 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**


Mode		Test Item
Normal operating mode		Occupied bandwidth
		Radiated Power
		Modulation characteristics
		Field strength of spurious radiation
		Frequency stability
Power of the EUT was set b	by the software as follows;	
- Power settings:	10dBm	
- Software:	src_SurroundMonitoring	_all Rev.016

^{*}This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	RADAR SENSOR	NNH-102A	874000000901	JRC Mobility Inc.	EUT

List of cables used

No.	Name	Length (m)	Shi	eld	Remarks
			Cable Connector		
1	DC Cable	5.1	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 10 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

SECTION 5: Radiated Spurious Emission

Test Procedure

[For below 30 MHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical polarization (antenna angle: 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.) and horizontal polarization.

[For above 30 MHz, up to 1 GHz]

The EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz, up to 40 GHz]

The EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m (frequency range 9 kHz - 30 MHz: loop antenna was fixed height at 1.0 m) and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer.

The test was made with the detector (RBW/VBW) in the following table.

Test Antennas are used as below;

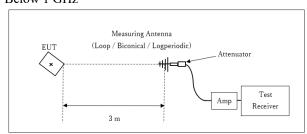
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn

Frequency	9 kHz to 150 kHz	150 kHz to 30 MHz	30 MHz to 1 GHz	1 GHz to 40 GHz
Instrument used	Test Receiver	Test Receiver	Test Receiver	Spectrum Analyzer
Detector	CISPR QP, Average	CISPR QP, Average	CISPR QP	Average *1)
IF Bandwidth	200 Hz	9 kHz	120 kHz	RBW: 1 MHz
				VBW: 3 MHz

^{*1)} A RMS average mode was used with the following settings:

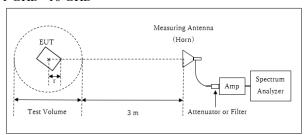
Sweep time is set higher than EUT cycle time multiply the number of sweep points.

The number of sweep points are set be higher than the span of the spectrum analyzer divided by the RBW.

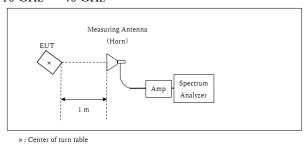

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Refer to Figure 1 about Direction of the Loop Antenna.


Test report No. : 14034642H-R1
Page : 11 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

[Test setup] Below 1 GHz


× : Center of turn table

1 GHz - 10 GHz

- \boldsymbol{r} : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 40 GHz

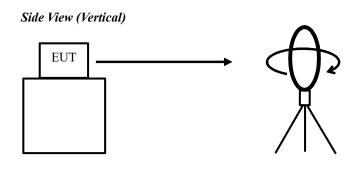
Distance Factor: $20 \times \log (4.0 \text{ m}^*/3.0 \text{ m}) = 2.5 \text{ dB}$ * Test Distance: (3 + Test Volume /2) - r = 4.0 m

Test Volume: 2 m

Test Distance: 3 m

(Test Volume has been calibrated based on CISPR 16-1-4.) $r=0.0\ m$

* The test was performed with r = 0.0 m since that yielded the worst emission levels from the EUT.


Distance Factor: $20 \times \log (1.0 \text{ m}^* / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

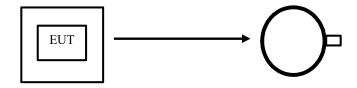
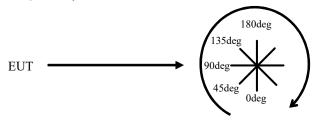

Test report No. : 14034642H-R1
Page : 12 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

Figure 1: Direction of the Loop Antenna

.....


Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

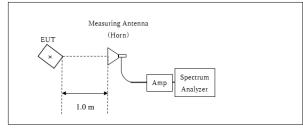
Forward direction: clockwise

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 13 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

[Above 40 GHz]

The test was performed based on "Procedures for testing millimeter-wave systems" of ANSI C63.10-2013. The EUT was placed on a urethane platform, raised 1.5 m above the conducting ground plane. The measurements were performed on handheld method.

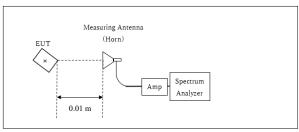

Set spectrum analyzer RBW, VBW, span, etc., to the proper values. Note these values. Enable two traces—one set to "clear write," and the other set to "max hold." Begin hand-held measurements with the test antenna (horn) at a distance of 1 m from the EUT in a horizontally polarized position. Slowly adjust its position, entirely covering the plane 1 m from the EUT. Observation of the two active traces on the spectrum analyzer will allow refined horn positioning at the point(s) of maximum field intensity. Repeat with the horn in a vertically polarized position. If the emission cannot be detected at 1 m, reduce the RBW to increase system sensitivity. Note the value. If the emission still cannot be detected, move the horn closer to the EUT, noting the distance at which a measurement is made.

Note the maximum level indicated on the spectrum analyzer. Adjust this level, if necessary, by the antenna gain, filter loss, conversion loss of the external mixer and gain of LNA used, at the frequency under investigation. Calculate the field strength of the emission at the measurement distance from the Friis' transmission equation.

Frequency	40 GHz to 76 GHz	81 GHz to 110 GHz	110 GHz to 231 GHz
Final measurement distance	1.0 m	1.0 m	0.01 m
with 1 MHz RMS detector			

[Test setup]

40 GHz - 76 GHz, 81 GHz - 110 GHz



*Test Distance: 1.0 m

×: Center of turn table

x: Center of turn table

110 GHz - 231 GHz

*Test Distance: 0.01 m

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1 Page : 14 of 33 **Issued date** : November 30, 2021 FCC ID : 2AX5HNNH-102A

[About fundamental measurement]

The carrier levels were confirmed at maximum direction of transmission. The maximum direction was searched under carefully since beam-widths are extremely narrow.

The carrier levels were measured in the far field. The distance of the far field was calculated from follow equation.

$$r = \frac{2D^2}{\lambda}$$

where

r is the distance from the radiating element of the EUT to the edge of the far field, in m D is the largest dimension of both the radiating element and the test antenna (horn), in m (The antenna aperture size of test antenna was used for this caluculation.) Lambda is the wavelength of the emission under investigation [300/f (MHz)], in m

Frequency	Wavelength	N	laximum Dimentio	n	Far Field	Tested
		EUT	Test Antenna	Maximum	Boundary	Distance
	Lambda			D	r	
[GHz]	[mm]	[m]	[m]	[m]	[m]	[m]
78.161	3.8	0.032750	0.026162	0.032750	0.559	1.0

- The carrier level and noise levels were confirmed at each position of X, Y axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

The Peak Power results was applied to the desensitization correction factor by KDB653005 4.(c). The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B.

Desensitization factor was calculated from follow equation.

$$\alpha = \frac{1}{\sqrt{1 + \left(\frac{2In(2)}{\pi}\right)^2 \left(\frac{Fs}{Ts B^2}\right)^2}}$$

And

FMCW Desensitization factor = $20 \text{ Log } (\alpha)$

Where

Fs is FMCW Sweep Width or Chirp Width Ts is FMCW Sweep Time

B is -3dB Bandwidth of Gaussian RBW Filter

F_s	T_s	В	α	FMCW
				Desensitization factor
[GHz]	[us]	[MHz]		[dB]
2.1423	46.2	1.0	0.221	-13.11

Fs and B were used the actual measurement value, and Ts was referred to the values in the specifications.

Measurement range : 9 kHz - 231 GHz : APPENDIX Test data Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 15 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

SECTION 6: Frequency Stability

Test Procedure

The block downconverter was placed in side of the temperature chamber's drain hole.

The power supply was set to nominal operating voltage (100 %), and the spectrum mask was measured at 20 deg. C. After that, EUT power supply was varied between 85 % and 115 % of nominal voltage and the frequency excursion of the EUT emission mask was recorded.

The EUT operating temperature was raised to 70 deg. C, and the frequency excursion of the EUT emission mask was recorded. Measurements were repeated at each 10 deg. C decrement down to -30 deg. C.

Both lower and upper frequencies of the -20 dB Bandwidth were recorded.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14034642H-R1

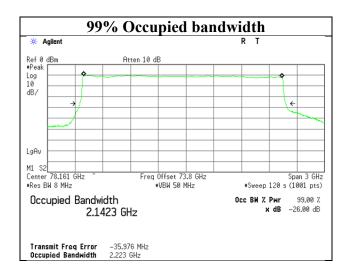
 Page
 : 16 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

APPENDIX 1: Test data

Occupied bandwidth


Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date October 22, 2021
Temperature / Humidity 22 deg. C / 46 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

99 % Occupied bandwidth [GHz] 2.1423

[Data]

The measurement was performed with Peak detector and Max Hold since the duty cycle was not $100\ \%$.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 17 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

Radiated Power

Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

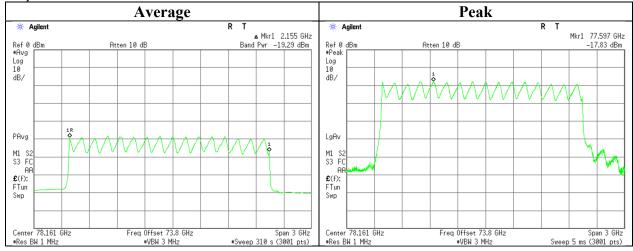
Date October 22, 2021
Temperature / Humidity 22 deg. C / 46 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

Power	Freq.	Measured	Rx	Down	IF	Tested	FSL	Duty	FMCW	EI	RP	Lmit	Margin
		Power	Ant.	Converter	Cable	Distance		Factor	desensitization				
			Gain	Gain	Loss				Factor				
	[GHz]	[dBm]	[dBi]	[dB]	[dB]	[m]	[dB]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[dB]
Average	78.161	-19.29	23.16	13.29	1.84	1.0	70.30	6.22	-	22.62	182.81	50	27.38
Peak	78.161	-17.83	23.16	13.29	1.84	1.0	70.30	-	-13.11	30.97	1250.26	55	24.03

Calculating formula:

 $FSL~(Free~Space~path~Loss) = 10~* \\ log \\ 10 \\ ((~4~*Pi~*Tested~Distance~/~Lambda~)~^2)$

Average EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL + Duty Factor


Peak EIRP = Measured Power - Rx Ant. Gain - Down Converter Gain + IF Cable Loss + FSL - FCMW desensitization factor

The test method referred to KDB653005 4.(c).

The derivation of the Duty Factor is given in next page (Modulation characteristics).

The derivation of the FMCW Desensitization Factor is given in Keysight Application Note 5952 1039 Appendix B. (Refer Section 5)

[Data]

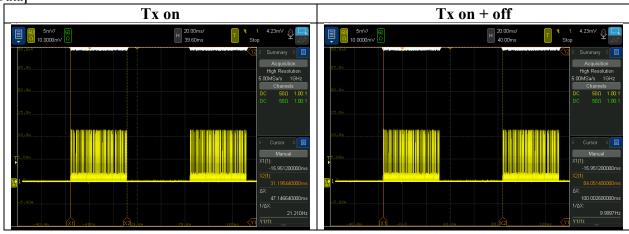
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

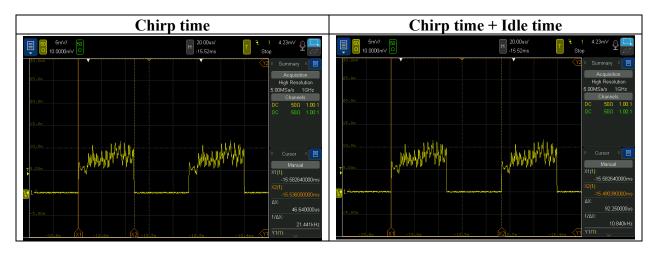
Test report No. : 14034642H-R1 Page : 18 of 33 **Issued date** : November 30, 2021 FCC ID : 2AX5HNNH-102A

Modulation characteristics

Report No. 14034642H Test place Ise EMC Lab. No. 3

Semi Anechoic Chamber


October 22, 2021 22 deg. C / 46 % RH Temperature / Humidity Yuichiro Yamazaki Engineer Mode Normal operating mode


	Tx On	Tx On + Off	Chirp	Chirp time	Number of	Chirp time	Duty factor
	time	time	time	+ Idle time	Chirp*	(Total)	
	[ms]	[ms]	[us]	[us]		[ms]	[dB]
Measured	47.147	100.003	46.640	92.250	512	23.880	6.220
Declared *	47.200	100.000	46.200	92.200	512	23.654	6.261

Calculating formula:

Chirp time (Total) = Chirp time * Number of Chirp Duty factor = 10 * log (Chirp time (Total) / Tx On + Off time)

[Data]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} See the application document.

 Test report No.
 : 14034642H-R1

 Page
 : 19 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

Field strength of spurious radiation (Below 40 GHz)

Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date October 24, 2021
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	32.1	22.2	-	17.8	7.1	32.3	14.8	-	40.0	-	25.2	1	
Hori.	50.0	24.4	-	11.2	7.4	32.3	10.8	-	40.0	-	29.2	-	
Hori.	64.8	23.6	-	6.8	7.7	32.3	5.8	-	40.0	-	34.2	-	
Hori.	81.0	22.3	-	7.1	7.9	32.3	5.0	-	40.0	-	35.0	-	
Hori.	95.5	22.3	-	9.5	8.1	32.2	7.7	-	43.5	-	35.9	-	
Hori.	900.0	22.3	-	22.2	13.6	31.0	27.1	-	46.0	-	18.9	-	
Hori.	28799.3	-	72.2	43.6	2.7	74.3	-	44.3	-	53.9	-	9.6	
Hori.	38515.6	-	65.4	43.9	4.9	74.0	-	40.2	-	53.9	-	13.8	
Vert.	32.1	31.5	-	17.8	7.1	32.3	24.1	-	40.0	-	15.9	1	
Vert.	50.0	36.6	-	11.2	7.4	32.3	23.0	-	40.0	-	17.0	-	
Vert.	64.8	35.7	-	6.8	7.7	32.3	17.9	-	40.0	-	22.1	-	
Vert.	81.0	27.7	-	7.1	7.9	32.3	10.4	-	40.0	-	29.6	-	
Vert.	95.5	25.6	-	9.5	8.1	32.2	11.0	-	43.5	-	32.6	-	
Vert.	900.0	22.2	-	22.2	13.6	31.0	27.0	-	46.0	-	19.0	-	
Vert.	28799.3	-	73.5	43.6	2.7	74.3	-	45.6	-	53.9	-	8.3	
Vert.	38515.6	-	62.3	43.9	4.9	74.0	-	37.1	-	53.9	-	16.8	

 $Result = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier)$

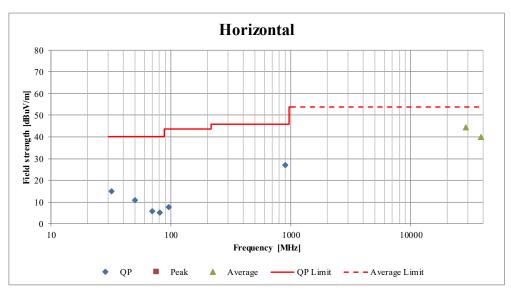
Distance factor: 1 GHz - 10 GHz $20 \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.5 \text{ dB}$

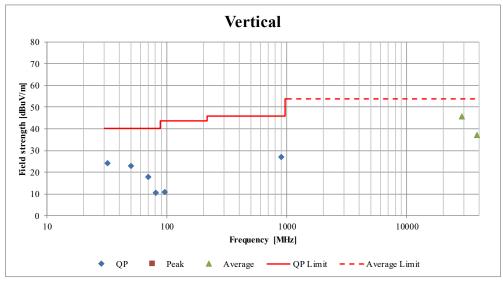
10 GHz - 40 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.


Test report No. : 14034642H-R1
Page : 20 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A


Field strength of spurious radiation (Below 40 GHz) (Plot data, Worst case)

Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date October 24, 2021
Temperature / Humidity 20 deg. C / 40 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14034642H-R1

 Page
 : 21 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

Field strength of spurious radiation (above 40 GHz)

Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date October 23, 2021
Temperature / Humidity 22deg. C / 43 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

Freq.	Reading	Rx	Filter	LNA	Mixer	IF	Meas.	FSL	EI	RP	Powe	er density a	ıt 3 m	Remarks
		Ant.	loss	gain	loss	cable	range				Result	Limit	Margin	
		gain				loss	D						_	
[GHz]	[dBm]	[dBi]	[dB]	[dB]	[dB]	[dB]	[m]	[dB]	[dBm]	[mW]	[pW/cm ²]	[pW/cm ²]	[dB]	
49.553	-58.55	22.43	0.00	32.01	0.00	9.01	1.0	66.34	-37.64	0.000172	0.15	600	35.95	NS
54.458	-69.31	23.26	0.22	26.78	0.00	0.00	1.0	67.16	-51.97	0.000006	0.01	600	50.29	NS
69.540	-67.09	24.31	0.46	21.23	0.00	0.00	1.0	69.29	-42.88	0.000052	0.05	600	41.20	NS
74.002	-64.20	24.47	1.12	20.55	0.00	0.00	1.0	69.83	-38.27	0.000149	0.13	600	36.59	NS
75.248	-74.77	22.95	0.00	0.00	-15.03	1.05	1.0	69.97	-41.72	0.000067	0.06	600	40.04	NS
82.358	-76.01	23.50	0.00	0.00	-12.14	2.61	1.0	70.76	-38.28	0.000149	0.13	600	36.60	NS
89.672	-52.68	23.88	0.60	33.54	0.00	0.00	1.0	71.49	-38.01	0.000158	0.14	600	36.32	NS
98.368	-46.23	24.39	0.45	34.62	0.00	0.00	1.0	72.30	-32.50	0.000563	0.50	600	30.81	NS
103.271	-44.11	24.65	0.42	31.08	0.00	0.00	1.0	72.72	-26.70	0.002137	1.89	600	25.02	NS
113.925	-88.63	22.42	0.00	17.57	64.04	0.00	0.01	33.57	-31.00	0.000794	0.70	600	29.32	NS
120.756	-88.98	22.67	0.00	19.56	52.72	0.00	0.01	34.08	-44.41	0.000036	0.03	600	42.73	NS
131.617	-88.74	22.99	0.00	19.92	53.20	0.00	0.01	34.83	-43.62	0.000043	0.04	600	41.94	NS
141.682	-89.22	23.22	0.00	18.90	55.03	0.00	0.01	35.47	-40.84	0.000082	0.07	600	39.15	NS
142.126	-90.08	23.22	0.00	18.99	54.48	0.00	0.01	35.50	-42.31	0.000059	0.05	600	40.63	NS
153.395	-90.90	23.36	0.00	17.81	58.09	0.00	0.01	36.16	-37.82	0.000165	0.15	600	36.13	NS
164.956	-91.30	23.41	0.00	14.36	61.12	0.00	0.01	36.79	-31.16	0.000765	0.68	600	29.48	NS
167.497	-91.81	23.41	0.00	13.68	62.55	0.00	0.01	36.92	-29.43	0.001141	1.01	600	27.74	NS
175.805	-89.14	22.53	0.00	0.00	59.04	0.00	0.01	37.34	-15.28	0.029624	26.19	600	13.60	NS
181.094	-88.63	22.66	0.00	0.00	58.64	0.00	0.01	37.60	-15.05	0.031296	27.67	600	13.36	NS
193.010	-88.88	22.90	0.00	0.00	57.65	0.00	0.01	38.15	-15.97	0.025272	22.35	600	14.29	NS
194.468	-89.71	22.93	0.00	0.00	56.92	0.00	0.01	38.22	-17.51	0.017761	15.70	600	15.82	NS
207.496	-89.36	23.13	0.00	0.00	57.79	0.00	0.01	38.78	-15.92	0.025615	22.65	1000	16.45	NS
210.284	-90.29	23.17	0.00	0.00	57.63	0.00	0.01	38.90	-16.93	0.020286	17.94	1000	17.46	NS
224.574	-90.73	23.31	0.00	0.00	63.95	0.00	0.01	39.47	-10.62	0.086695	76.66	1000	11.15	NS
229.243	-91.03	23.34	0.00	0.00	62.80	0.00	0.01	39.65	-11.93	0.064176	56.74	1000	12.46	NS

Calculation: FSL (Free Space path Loss) = $10 * \log ((4 * Pi * D / \lambda)^2)$

EIRP = Reading - Rx Ant. gain + Filter loss - LNA gain + Mixer loss + IF cable loss + FSL

Power density Result at 3 m = EIRP / $(4 * Pi * 300^{2})$

These calculation results are same as results which were calculated with formulas described in the Section 9 of ANSI C63.10-2013.

The equipment were not used for factor 0 dB of the data sheets.

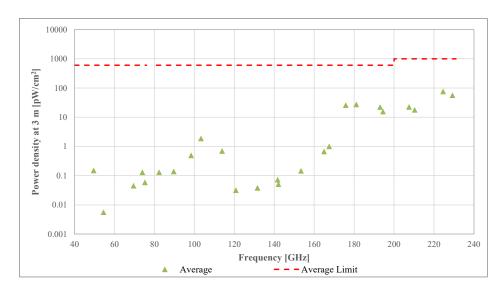
The converion loss is automatically corrected in the mixer, so the factor of data sheet were 0 dB.

NS: No signal detected.

There is no spurious emission from 40 GHz to 231 GHz except for operating band (76 GHz to 81 GHz). The values in the table are Floor Noise in each measurement frequency band.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


Test report No. : 14034642H-R1
Page : 22 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

Field strength of spurious radiation (Above 40 GHz) (Plot data, Worst case)

Report No. 14034642H Test place Ise EMC Lab.

Semi Anechoic Chamber No. 3

Date October 23, 2021
Temperature / Humidity 22deg. C / 43 % RH
Engineer Yuichiro Yamazaki
Mode Normal operating mode

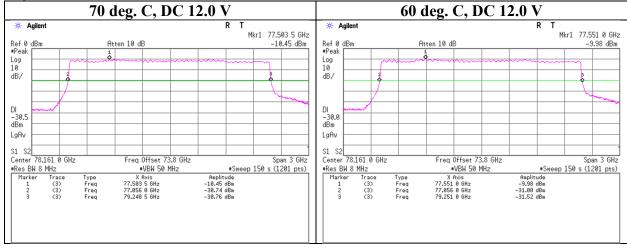
^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 14034642H-R1 Test report No. : 23 of 33 Page : November 30, 2021 **Issued date** FCC ID : 2AX5HNNH-102A

Frequency Stability

Report No. 14034642H Test place Ise EMC Lab. Shielded Room

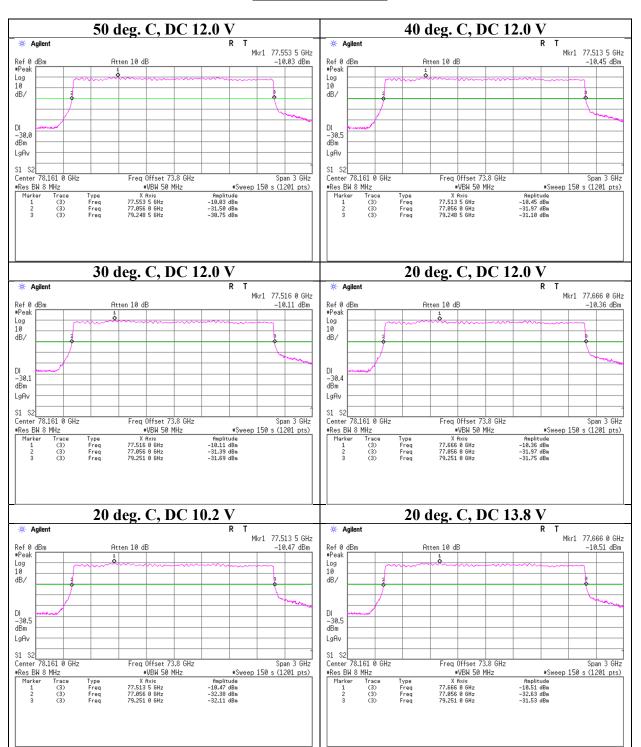

No. 6

October 26, 2021 Temperature / Humidity 24 deg. C / 37 % RH Engineer Yuichiro Yamazaki Mode Normal operating mode

Test Co	ondition	Measured -20	dBc Frequency	Remarks
Temperature	Power Supply	Lower Result	Upper Result	
[deg. C]	[V]	[GHz]	[GHz]	
70	12.0	77.056	79.249	Customer requested temperature
60	12.0	77.056	79.251	Customer requested temperature
50	12.0	77.056	79.249	
40	12.0	77.056	79.249	
30	12.0	77.056	79.251	
20	12.0	77.056	79.251	
20	10.2	77.056	79.251	85 % of the minimum operating voltage, DC 12 V * 0.85
20	13.8	77.056	79.251	115 % of the maximum operating voltage, DC 12 V * 1.15
10	12.0	77.059	79.251	
0	12.0	77.059	79.251	
-10	12.0	77.061	79.251	
-20	12.0	77.059	79.251	
-30	12.0	77.059	79.251	Customer requested temperature

Fundamental emissions were contained within the frequency band 76 GHz - 81 GHz during all conditions of operation.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Test report No.
 : 14034642H-R1

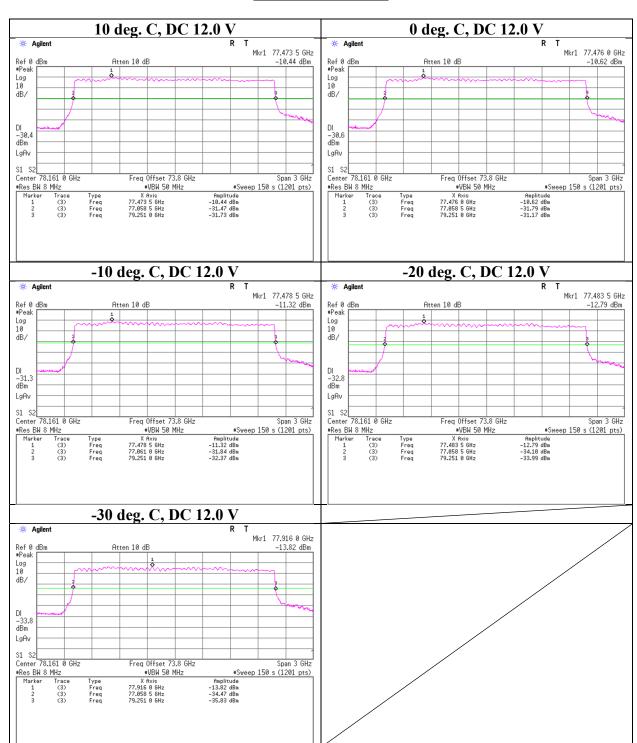
 Page
 : 24 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN


 Test report No.
 : 14034642H-R1

 Page
 : 25 of 33

 Issued date
 : November 30, 2021

 FCC ID
 : 2AX5HNNH-102A

Frequency Stability

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14034642H-R1
Page : 26 of 33
Issued date : November 30, 2021
FCC ID : 2AX5HNNH-102A

APPENDIX 2: Test instruments

Test equipment (1/2)

Test ed	quipment (1	1/2)	1				_	
Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/07/2021	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-MEMI -02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	_	-	-
RE	MAEC-03-S VSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MSA-03	141884	Spectrum Analyzer	Keysight Technologies Inc	E4448A	MY44020357	03/10/2021	12
RE	MHA-35	180544	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-10-S1	17343-01	06/24/2021	12
RE	MCC-66	141328	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	28636/2	04/16/2021	12
RE	MMX-05	142050	Block Downconverter	EMC Instruments Corporation	PS-X30-W10117A	13715	03/02/2021	12
RE	MDT-05	142529	Detector	HEROTEK, INC.	DT1840P	484823		
RE	MDO-10	211944	Digital Storage Oscilloscope	Keysight Technologies Inc	DSOX6002A	MY59380318	10/07/2021	12
RE	MSA-19	182484	Signal Analyzer	Keysight Technologies Inc	N9030B	MY57143159	06/18/2021	12
RE	MCC-220	151897	Microwave Cable	Huber+Suhner	SF101EA/11PC24/11PC24/ 2.5M	SN MY1726/ 1EA	04/12/2021	12
RE	MPA-25	159919	Power Amplifier	SAGE Millimeter, Inc.	SBP-4035033018-2F2F-S1	12559-01	06/02/2021	12
RE	MHA-31	142041	Horn Antenna	Oshima Prototype Engineering Co.	A16-187	1	09/30/2021	12
RE	MHA-33	180634	Horn Antenna	SAGE Millimeter, Inc.	SAZ-2410-15-S1	17343-01	06/24/2021	12
RE	MPA-23	142055	Power Amplifier	SAGE Millimeter, Inc.	SBP-5037532015-1515-N1	11599-01	03/05/2021	12
RE	MMX-07	186076	Wave guide Harmonic Mixer	Keysight Technologies Inc	M1971V	MY56390208	05/18/2021	12
RE	MLF-01	201432	WR-15 Low Pass Filter	Oshima Prototype Engineering Co.	2020-0142-02	001	09/29/2021	12
RE	MHF-29	154635	High Pass Filter 83 GHz - 110 GHz	Oshima Prototype Engineering Co.	A17-016	1	05/18/2021	12
RE	MMX-08	186077	Wave guide Harmonic Mixer	Keysight Technologies Inc	M1971W	MY56390146	05/18/2021	12
RE	MPA-31	180607	Power Amplifier	SAGE Millimeter, Inc.	SBP-7531142515-1010-E1	17343-01	10/18/2021	12
RE	MDPLX-01	142026	Diplexer	OML INC.	DPL26	-	11/10/2020	12
RE	MHA-24		Horn Antenna	Custom Microwave Inc.	HO6R	_	09/30/2021	12
RE	MMX-03	142049	Harmonic Mixer	OML INC.	M06HWD	D100709-1	11/09/2020	12
RE	MPA-29	176027	D-Band Low Noise Amplifier	SAGE Millimeter, Inc.	SBL-1141741860-0606-EI	15235-01	07/08/2021	12
RE	MHA-27	142039	Horn Antenna	Custom Microwave Inc.	HO4R	-	09/30/2021	12
RE	MMX-04	142053	Harmonic Mixer	OML INC.	M04HWD	Y100709-1	12/02/2020	12
RE	MCC-135	142032	Microwave Cable	Huber+Suhner	SUCOFLEX102	37511/2	09/18/2021	12
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MHA-29	141517	Horn Antenna 26.5-40GHz	ETS-Lindgren	3160-10	152399	08/27/2021	12
RE	MCC-224	160324	Coaxial Cable	Huber+Suhner	SUCOFLEX 102A	MY009/2A	11/17/2020	12
RE	MPA-22	141588	Pre Amplifier	MITEQ, Inc	AMF-6F-2600400-33-8P / AMF-4F-2600400-33-8P	1871355 / 1871328	09/30/2021	12
RE	MHA-02	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/28/2021	12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 14034642H-R1 Test report No. Page : 27 of 33 **Issued date** : November 30, 2021

FCC ID : 2AX5HNNH-102A

Test equipment (2/2)

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/09/2021	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess-Elektronik OHG	VHA9103+BBA9106	1915	08/21/2021	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/19/2021	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)		VUSLP9111B	9111B-191	08/21/2021	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/18/2021	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess-Elektronik OHG	BBHA9120D	258	10/01/2020	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/03/2021	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/04/2021	12
RE	MPA-14	141583	Pre Amplifier	SONOMA INSTRUMENT	310	260833	02/18/2021	12
RE	MCC-112	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/421-010/ RFM-E321(SW)	-/00640	07/19/2021	12
RE	MLPA-01	141254	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	04/17/2021	12
RE	MCC-255	207745	Coaxial Cable	UL Japan Inc.	-	-	05/17/2021	12
RE	MOS-24	90289	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0005	01/15/2021	12
RE	MMM-12	141547	DIGITAL HiTESTER	HIOKI E.E. CORPORATION	3805	60500120	02/01/2021	12
RE	MJM-24	142225	Measure	ASKUL	-	-	-	-
RE	MCH-04	141429	Temperature and Humidity Chamber	Espec	PL-2KP	14015723	08/05/2021	12

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item: RE: Radiated Emission test

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN