

CFR 47 FCC PART 15 SUBPART C(DTS) ISED RSS-247 ISSUE 2

TEST REPORT

For

Carbon Monoxide alarm

MODEL NUMBER: C1-W

REPORT NUMBER: E01A23040510F00401

ISSUE DATE: June 08, 2023

FCC ID: 2AK7XC1-W

IC:30642-C1W

Prepared for

Shenzhen Heiman Technology Co., Ltd.
101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan Street, Longhua
District, Shenzhen, Guangdong, China

Prepared by

Dong Guan Anci Electronic Technology Co., Ltd.

1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan, Lake Hitech Industrial Development Zone, Dongguan City, Guangdong Pr., China.

This report shall not be reproduced, except in full, without the written approval of Dong Guan Anci Electronic Technology Co., Ltd.

TRF No.: 01-R005-3A TRF Originator: GTG TRF Date: 2022-06-29 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E01A23040510F00401 Page 2 of 38

Revision History

Rev.	Issue Date	Revisions	Revised By
VO	June 08, 2023	Initial Issue	

REPORT NO.: E01A23040510F00401 Page 3 of 38

Summary of Test Results					
Test Item	Clause	Limit/Requirement	Result		
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-Gen 6.8	Pass		
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-Gen Clause 8.8	Pass		
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (b)	Pass		
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.1 (a) RSS-Gen Clause 6.7	Pass		
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass		
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 5.5	Pass		
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.205/15.209 RSS-GEN Clause 8.9 and Clause 8.10	Pass		
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass		

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1. AT	TESTATION OF TEST RESULTS	5
2. TES	ST METHODOLOGY	6
3. FA	CILITIES AND ACCREDITATION	6
4. CA	LIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
5. EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	CHANNEL LIST	8
5.3.	MAXIMUM AVERAGE EIRP	8
5.4.	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.7.	SUPPORT UNITS FOR SYSTEM TEST	10
5.8.	SETUP DIAGRAM	10
6. ME	ASURING EQUIPMENT AND SOFTWARE USED	11
7. AN	TENNA PORT TEST RESULTS	12
7.1.	Conducted Output Power	12
7.2.	6dB Bandwidth and 99% Occupied Bandwidth	13
7.3.	Power Spectral Density	15
7.4.	Conducted Band edge and spurious emission	16
7.5.	Duty Cycle	18
8. RA	DIATED TEST RESULTS	19
9. AN	TENNA REQUIREMENT	32
10.	AC POWER LINE CONDUCTED EMISSION	33
ADDEN	DIV. BUOTOORABUO OF THE FUT	0.4

REPORT NO.: E01A23040510F00401 Page 5 of 38

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shenzhen Heiman Technology Co., Ltd.

Address: 101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan

Street, Longhua District, Shenzhen, Guangdong, China

Manufacturer Information

Company Name: Shenzhen Heiman Technology Co., Ltd.

Address: 101, No.4 Dafu Industrial Park, Kukeng Community, Guanlan

Street, Longhua District, Shenzhen, Guangdong, China

EUT Information

EUT Name: Carbon Monoxide alarm

Model: C1-W Series Model: /

Sample Received Date: May 06, 2023

Sample Status: Normal

Sample ID: A23040510 001

Date of Tested: May 06, 2023 to May 12, 2023

APPLICABLE STANDARDS					
STANDARD TEST RESULTS					
CFR 47 FCC PART 15 SUBPART C(DTS)	Pass				
ISED RSS-247 ISSUE 2	Pass				

Checked By:

Prepared By:

Dyson

Project Engineer Project Engineer

Approved By:

Tiger

Duke

Laboratory Supervisor

TRF No.: 01-R005-3A Global Testing, Great Quality.

REPORT NO.: E01A23040510F00401 Page 6 of 38

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DTS)

3. FACILITIES AND ACCREDITATION

Site Description

Name of Firm : Dong Guan Anci Electronic Technology Co., Ltd.

Site Location : 1-2 Floor, Building A, No.11, Headquarters 2 Road, Songshan,

Lake Hi-tech Industrial Development Zone, Dongguan

City, evelopment Zone, Dongguan City, Guangdong Pr., China.

REPORT NO.: E01A23040510F00401 Page 7 of 38

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports	0.009 MHz ~ 0.15 MHz	2	4.00
Conducted emissions from the AC mains power ports	0.15 MHz ~ 30 MHz	2	3.62
Radiated emissions	9kHz ~ 30MHz	2	2.20
Radiated emissions	30 MHz ~ 1 GHz	2	3.16
Radiated emissions	1 GHz ~ 18 GHz	2	5.64

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E01A23040510F00401 Page 8 of 38

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Carbon Monoxide alarm
Model	C1-W
Ratings	DC 3V

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2412 MHz to 2462 MHz		
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n-HT40		
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g/n: OFDM(64-QAM, 16-QAM, QPSK, BPSK)		
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n: Up to MCS7		
Number of Channels:	IEEE 802.11b/g/n-HT20: 11 IEEE 802.11n-HT40: 7		
Maximum Peak Power:	IEEE 802.11b: 14.77 dBm IEEE 802.11g: 13.36 dBm IEEE 802.11n-HT20: 13.1 dBm IEEE 802.11n-HT40: 11.9 dBm		
Antenna Type:	PCB Antenna		
Antenna Gain:	2.2 dBi		

5.2. CHANNEL LIST

	Channel List for 802.11b/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	4	2427	7	2442	10	2457
2	2417	5	2432	8	2447	11	2462
3	2422	6	2437	9	2452	1	/

	Channel List for 802.11n (40 MHz)						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447	/	/

5.3. MAXIMUM AVERAGE EIRP

IEEE Std. 802.11	Frequency (MHz)	Channel Number	Maximum Conducted AVG Output Power (dBm)
b	2412 ~ 2462	1-11[11]	14.77

REPORT NO.: E01A23040510F00401 Page 9 of 38

g	2412 ~ 2462	1-11[11]	13.36
n HT20	2412 ~ 2462	1-11[11]	13.10
n HT40	2422 ~ 2452	3-9[7]	11.90

5.4. TEST CHANNEL CONFIGURATION

IEEE Std. 802.11 Test Channel Number		Frequency
b	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
g	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT20	CH 1(Low Channel), CH 6(MID Channel), CH 11(High Channel)	2412 MHz, 2437 MHz, 2462 MHz
n HT40	CH 3(Low Channel), CH 6(MID Channel), CH 9(High Channel)	2422 MHz, 2437 MHz, 2452 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Software Beken Wifi Test			est Tool.exe v1.6.0				
NA LLC	Transmit		Test C				
Modulation Mode	Antenna	١	NCB: 20MH	lz	N	ICB: 40MHz	
Wiode	Number	CH 1	CH 6	CH 11	CH 3	CH 6	CH 9
802.11b	1	default	default	default			
802.11g	1	default	default	default			
802.11n HT20	1	default	default	default			
802.11n HT40	1				default	default	default

WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst-case data rates as provided by the client were:

802.11b mode: 1 Mbps 802.11g mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0

REPORT NO.: E01A23040510F00401 Page 10 of 38

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2412-2462	PCB	2.2

Test Mode	Transmit and Receive Mode	Description
IEEE 802.11b	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11g	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT20	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.
IEEE 802.11n HT40	⊠1TX, 1RX	ANT 1 can be used as transmitting/receiving antenna.

Note: The value of the antenna gain was declared by customer.

5.7. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

5.8. SETUP DIAGRAM

REPORT NO.: E01A23040510F00401 Page 11 of 38

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF						
Equipment Manufacturer Model No. Serial No. Last Cal. Due D						
Spectrum Analyzer	Rohde & Schwarz	FSV40	US4024062 3	2022-10-29	2023-10-28	
RF Test Software	MWRF-test	MTS 8310	N/A	N/A	N/A	
Radio Frequency control box	MWRF-test	MW200- RFCB	MW220111 ANCI	2022-05-13	2024-05-10	
Radio Frequency control box	MWRF-test	MW200- RFCB 2#	/	2022-05-13	2024-05-10	

Test Equipment of Radiated emissions below 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	100302	2022/5/13	2024/5/10	
Bilog Antenna	Schwarzbeck	VULB9163	VULB9163- 1290	2022/12/12	2023/12/11	
RF Cable	ZKJC	ZT06S-NJ- NJ-11M	19060398	2022/5/13	2024/5/10	
RF Cable	ZKJC	ZT06S-NJ- NJ-0.5M	19060400	2022/5/13	2024/5/10	
RF Cable	ZKJC	ZT06S-NJ- NJ-2.5M	19060404	2022/5/13	2024/5/10	
EMI Test Receiver	ROHDE&SCH WARZ	ESPI7	100502	2022/10/8	2023/10/7	
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021/11/13	2024/11/12	

Test Equipment of Radiated emissions above 1GHz						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
Low noise Amplifiers	A-INFO	LA1018N400 9	J101313052 4001	2022/5/13	2024/5/10	
Horn antenna	A-INFO	LB-10180-SF	J203109061 2123	2022/5/15	2024/5/10	
RF Cable	ZKJC	ZT26-NJ-NJ- 11M	19060401	2022/5/13	2024/5/10	
RF Cable	ZKJC	ZT26-NJ-NJ- 2.5M	19060402	2022/5/13	2024/5/10	
RF Cable	ZKJC	ZT26-NJ-NJ- 0.5M	19060403	2022/5/13	2024/5/10	
Spectrum Analyzer	Rohde & Schwarz	FSV40	US40240623	2022-10-29	2023-10-28	
3m Semi- anechoic Chamber	Keysight	9m*6m*6m	N/A	2021/11/13	2024/11/12	
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A	

REPORT NO.: E01A23040510F00401 Page 12 of 38

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	ROHDE&SCH WARZ	ESCI	101358	2022/5/13	2024/5/10
1# Shielded Room	chengyu	8m*4m*3.3m	N/A	2022/11/22	2025/11/21
LISN	ROHDE&SCH WARZ	ENV216	101413	2022/10/8	2023/10/7
Test Software	Farad	EZ-EMC (Ver.ANCI- 3A1)	N/A	N/A	N/A
RF Cable	N/A	ZT06S-NJ- NJ-2.5M	19044022	2022/05/13	2024/05/10

7. ANTENNA PORT TEST RESULTS

7.1. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5		

TEST PROCEDURE

Connect the EUT to a low loss RF cable from the antenna port to the power sensor (video bandwidth is greater than the occupied bandwidth).

Measure peak emission level, the indicated level is the peak output power, after any corrections for external attenuators and cables.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E01A23040510F00401 Page 13 of 38

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	6 dB Bandwidth	≥ 500 kHz	2400-2483.5		
ISED RSS-Gen Clause 6.7	99 % Occupied Bandwidth	For reporting purposes only.	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW
Detector	Peak
IRR///	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
IV/BW/	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW
Trace	Max hold
Sweep	Auto couple

- a) Use the $99\ \%$ power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.
- b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

REPORT NO.: E01A23040510F00401 Page 14 of 38

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E01A23040510F00401 Page 15 of 38

7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit Frequency Ra (MHz)			
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	PEAK	
RBW	3 kHz ≤ RBW ≤ 100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E01A23040510F00401 Page 16 of 38

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 2			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test	
Detector	Peak	
RBW	100 kHz	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple.	

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

1.5020	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TRF No.: 01-R005-3A Global Te

REPORT NO.: E01A23040510F00401 Page 17 of 38

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E01A23040510F00401 Page 18 of 38

7.5. DUTY CYCLE

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E01A23040510F00401 Page 19 of 38

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-Peak	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)) Field strength (microvolts/meter) Measurement distance (meters	
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

		GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
3.020 - 3.028	162.0125 - 167.17	13.25 - 13.4
4.125 - 4.128	167.72 - 173.2	14.47 - 14.5
4.17725 - 4.17775	240 – 285	15.35 - 16.2
4.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
6.215 - 6.218	608 - 614	23.6 - 24.0
6.26775 - 6.26825	960 - 1427	31.2 - 31.8
6.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
8.291 - 8.294	1645.5 - 1646.5	Above 38.6
8.362 - 8.366	1680 - 1710	
8.37625 - 8.38675	1718.8 - 1722.2	
8.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3280 – 3287	
16.42 - 16.423	3332 - 3339	
16.69475 - 16.69525	3345.8 - 3358	
16.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
37.5 - 38.25	5350 - 5460	
73 - 74.6	7250 - 7750	
74.8 - 75.2	8025 – 8500	
108 – 138		

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

REPORT NO.: E01A23040510F00401 Page 21 of 38

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

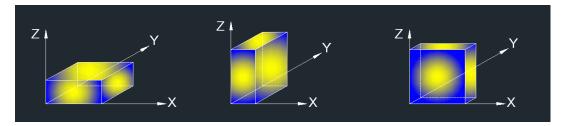
RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

REPORT NO.: E01A23040510F00401 Page 22 of 38

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.


Above 1G
The setting of the spectrum analyser

RBW	1 MHz
1\/B\/\/	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.

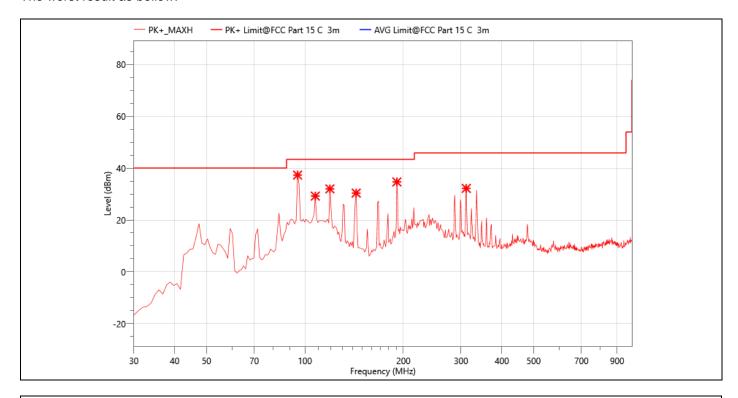
REPORT NO.: E01A23040510F00401 Page 23 of 38

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST ENVIRONMENT

Temperature	24 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

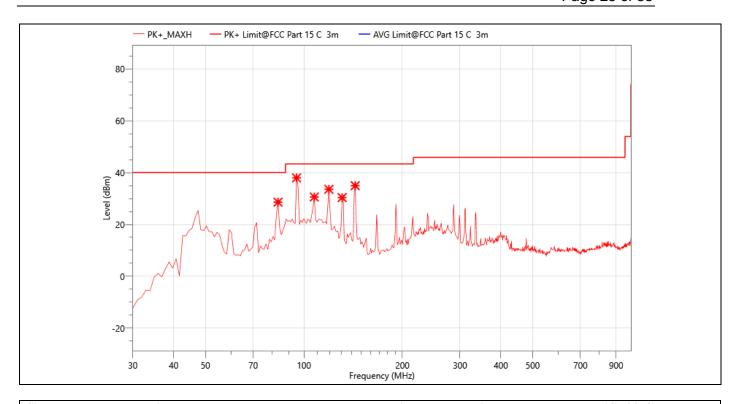

TEST RESULTS

REPORT NO.: E01A23040510F00401 Page 24 of 38

TEST RESULTS

Undesirable radiated Spurious Emission below 1GHz (30MHz to 1GHz)

The worst result as bellow:


Site: LAB Antenna: Horizontal Temperature(C):23(C)
Limit: FCC Part 15 Class B 3m Radiation(QP) Humidity(%):57%

EUT: Carbon Monoxide alarm Test Time: 2023-05-12 M/N.: C1-W Power Rating: DC 3V

Mode: 802.11b 2412MHz Test Engineer: Luffy Note:

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
94.99	60.97	37.32	43.50	6.18 PK+		I	-23.65
107.6	52.26	29.22	43.50	14.28	PK+	Η	-23.04
119.24	53.81	32	43.50	11.5 PK+		Η	-21.81
143.49	50.87	30.38	43.50	13.12	13.12 PK+		-20.49
191.02	54.35	34.68	43.50	8.82	PK+	Η	-19.67
311.3	51.17	32.18	46.00	13.82	PK+	Н	-18.99

REPORT NO.: E01A23040510F00401 Page 25 of 38

Site: LAB **Antenna: Vertical** Temperature(C):23(C) FCC Part 15 Class B 3m Radiation(QP) Limit: **Humidity(%):57%** EUT: Carbon Monoxide alarm **Test Time:** 2023-05-12 DC 3V M/N.: **C1-W Power Rating:** Mode: 802.11b 2412MHz **Test Engineer:** Luffy **Note:**

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
83.35	52.48	28.61	40.00	11.39	11.39 PK+		-23.87
94.99	61.63	37.98	43.50	5.52	PK+	V	-23.65
107.6	53.65	30.61	30.61 43.50		PK+	V	-23.04
119.24	55.39	.39 33.58 43.50		9.92	PK+	V	-21.81
130.88	51.32	30.37	43.50	13.13	PK+	V	-20.95
143.49	55.45	34.96	43.50	8.54	PK+	V	-20.49

Note: 1. Result Level = Read Level+ Antenna Factor+ Cable Loss- Amp. Factor

REPORT NO.: E01A23040510F00401 Page 26 of 38

• Undesirable radiated Spurious Emission Above 1GHz (1GHz to 40GHz) All modes has been tested and the worst result (801.11b) recorded as below:

Temperature : 24° C Test Date : 2023-05-12 Humidity : 55° % Test By: Mace Test mode: 801.11° Frequency(MHz): 2412

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
1194	62.08	39.38	74.00	34.62	PK+	V	-22.7
1344	62	39.34	74.00	34.66	PK+	V	-22.66
1398	63.6	40.94	74.00	33.06	PK+	V	-22.66
1600	60.31	38.61	74.00	35.39	PK+	V	-21.7
2000	57.9	39.45	74.00	34.55	PK+	V	-18.45
2864	57.19	40.77	74.00	33.23	PK+	V	-16.42
1016	57.3	35.35	74.00	38.65	PK+	Н	-21.95
1450	57.91	35.33	74.00	38.67	PK+	Н	-22.58
1668	60.59	39.48	74.00	34.52	PK+	Η	-21.11
1824	62.76	42.93	74.00	31.07	PK+	Н	-19.83
2022	56.4	38.05	74.00	35.95	PK+	Ι	-18.35
2902	55.67	39.55	74.00	34.45	PK+	Η	-16.12

Temperature : 24°C Test Date : 2023-05-12

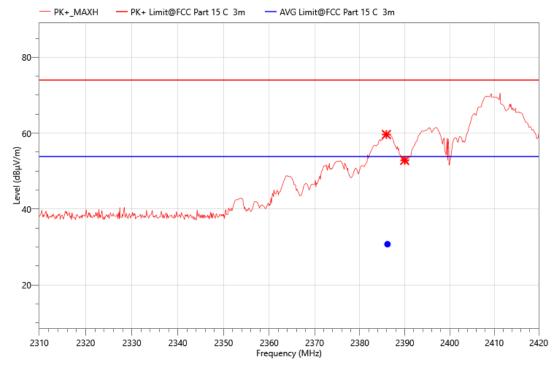
Humidity: 55 % Test By: Mace Test mode: 801.11b Frequency(MHz): 2437

Freq. (MHz)	Reading (dBµV)	Meas. (dΒμV/m)	Limit (dBµV/m)	Margin (dΒμV/m)	Det.	Pol.	Corr. (dB)
1196	60.5	37.82	74.00	36.18	PK+	V	-22.68
1400	60.08	37.41	74.00	36.59	PK+	V	-22.67
1666	57.25	36.12	74.00	37.88	PK+	V	-21.13
1846	56.63	36.93	74.00	37.07	PK+	V	-19.7
2136	55.55	37.53	74.00	36.47	PK+	V	-18.02
2652	55.75	39.03	74.00	34.97	PK+	V	-16.72
1008	58.29	36.44	74.00	37.56	PK+	Н	-21.85
1764	60.59	40.25	74.00	33.75	PK+	Н	-20.34
1886	65.89	46.51	74.00	27.49	PK+	Н	-19.38
1962	56.66	37.98	74.00	36.02	PK+	Н	-18.68
2676	69.35	52.41	74.00	21.59	PK+	Н	-16.94
2908	56.42	40.3	74.00	33.7	PK+	Н	-16.12

REPORT NO.: E01A23040510F00401 Page 27 of 38

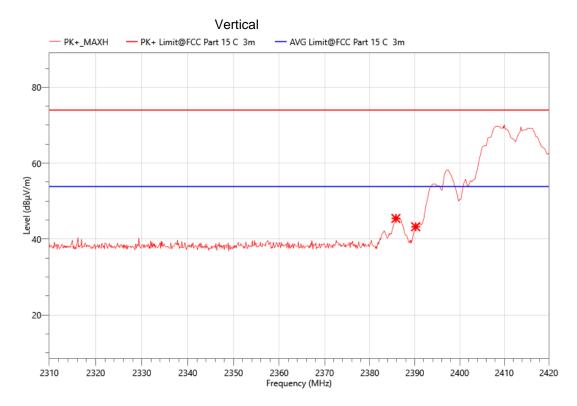
Temperature Humidity: Test mode:	24°C 55 % 801.1°	lb	Test Date : Test By: Frequency(Mace	=		
Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
7275	51.34	44.99	74.00	29.01	PK+	V	-6.35
9645	51.55	47.17	74.00	26.83	PK+	V	-4.38
11160	49.85	49.19	74.00	24.81	PK+	V	-0.66
13965	48.55	49.15	74.00	24.85	PK+	V	0.6
16695	46.59	52.83	74.00	21.17	PK+	V	6.24
17100	46.49	52.75	74.00	21.25	PK+	V	6.26
7215	51.48	45.07	74.00	28.93	PK+	Н	-6.41
8565	50.91	45.06	74.00	28.94	PK+	Н	-5.85
11295	48.36	47.75	74.00	26.25	PK+	Н	-0.61
13545	49.26	49.55	74.00	24.45	PK+	Н	0.29
15300	47.05	49.58	74.00	24.42	PK+	Н	2.53
17040	46.61	52.84	74.00	21.16	PK+	Н	6.23

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz). (2) Emission Level= Reading Level+Probe Factor +Cable Loss. (3) EIRP[dBm] = E[dB μ V/m] + 20 log(d[meters]) - 104.77


d is the measurement distance in 3 meters

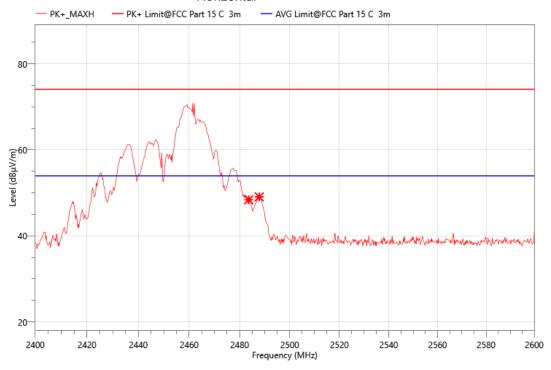
REPORT NO.: E01A23040510F00401 Page 28 of 38

Band Edge

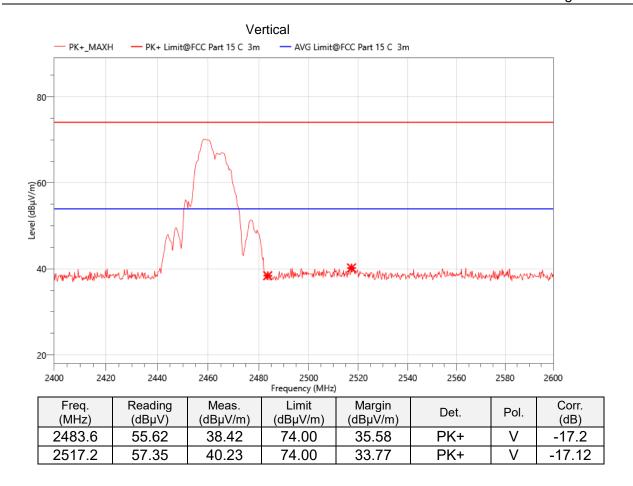

802.11b 2412MHz

Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
2385.9	77.12	59.65	74.00	14.35	PK+	Н	-17.47
2389.97	70.32	52.84	74.00	21.16	PK+	Н	-17.48

REPORT NO.: E01A23040510F00401 Page 29 of 38



Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
2385.79	62.94	45.47	74.00	28.53	PK+	V	-17.47
2390.19	60.75	43.27	74.00	30.73	PK+	V	-17.48


REPORT NO.: E01A23040510F00401 Page 30 of 38

802.11b 2462MHz

Horizontal

Freq. (MHz)	Reading (dBµV)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
2483.6	65.59	48.39	74.00	25.61	PK+	Н	-17.2
2487.8	66.26	49.08	74.00	24.92	PK+	Н	-17.18

Note:802.11b, 802.11g, 802.11n (HT-20), 802.11n (HT-40), 802.11n (VHT-20), 802.11ax (HE-20), 802.11ac (VHT-40), 802.11ax (HE-40) all has been tested, the worst case is 802.11a, only shown the worst case.

REPORT NO.: E01A23040510F00401 Page 32 of 38

9. ANTENNA REQUIREMENT

REQUIREMENT

The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and 15.247 and RSS-Gen issue 5 6.8.

FCC part 15C section 15.247 and RSS 247 requirements:

Systems operating in the 2402-2480MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

DESCRIPTION

Pass

REPORT NO.: E01A23040510F00401 Page 33 of 38

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

TEST PROCEDURE

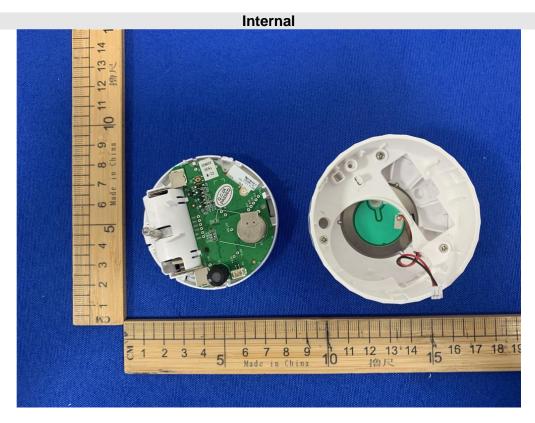
The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

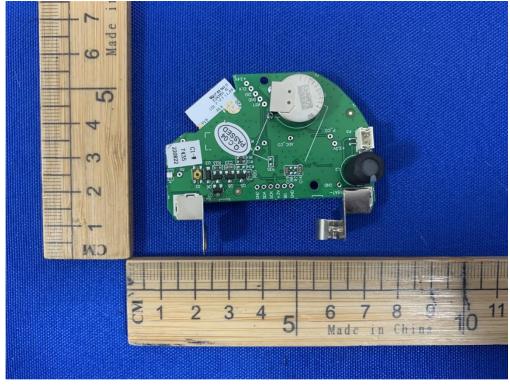
The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

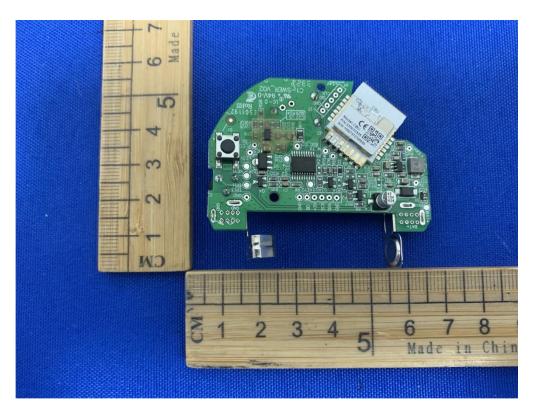
TEST ENVIRONMENT

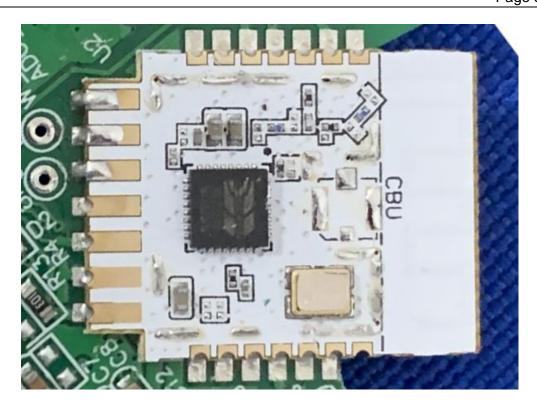
Temperature	1	Relative Humidity	/
Atmosphere Pressure	/		

TEST RESULTS


APPENDIX: PHOTOGRAPHS OF THE EUT







REPORT NO.: E01A23040510F00401 Page 38 of 38

END OF REPORT