

TEST REPORT

Product : Remote control

Model Name : RF590

Report No. : PTC24061815301E-RF01

Prepared for

Shenzhen C&D Electronics Co., Ltd

10/F Tower 1A, Baoneng Science & Technology Park, 1Qingxiang Road, Longhua District,
Shenzhen, Guangdong, China

Prepared by

Precise Testing & Certification Co., Ltd

Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China

TEL: +86-769-3880 8222

FAX: +86-769-3882 6111

Address

Report No.: PTC24061815301E-RF01

1 Test Result Certification

Applicant's name : Shenzhen C&D Electronics Co., Ltd

10/F Tower 1A, Baoneng Science & Technology Park, 1Qingxiang

Address : Road, Longhua District, Shenzhen, Guangdong, China

Manufacture's name : Shenzhen C&D Electronics Co., Ltd

10/F Tower 1A, Baoneng Science & Technology Park, 1Qingxiang

Road, Longhua District, Shenzhen, Guangdong, China

Product name : Remote control

Model name : RF590

Standards : GB/T 9410-2008; ANSI/IEEE Std 149-1979

Test Date : Jun. 21, 2024 to Jul. 02, 2024

Date of Issue : Jul. 03, 2024

Test Result : Pass

This device described above has been tested by PTC, and the test results show that the equipment under test (EUT) is in compliance with the GB/T 9410 and ANSI/IEEE Std 149 requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of PTC, this document may be altered or revised by PTC, personal only, and shall be noted in the revision of the document.

Test Engineer:

Technical Manager:

Revision History of Report

Vision No.	Date	Revisions	Modifier	
00	Jul. 03, 2024	Initial Issue	02 02 02 0	

Contents

1 Test Result Certification	2
2 Test Summary	<u> </u>
3 Test Site	6
3.1 Test Facility	6
3.2 Measurement Uncertainty	
3.3 List Of Test And Measurement Instruments	6
3.4 Test environmental	6
3.5 Test Setup	7
4 EUT Description	3
5 Test Data	
5.1 Typical free space efficiency and gain	
5.2 Typical free space radiation pattern	10
5.3 3D Pattern	
6 EUT setup photo of free space OTA testing	13
7 EUT appearance	14

2 Test Summary

Name	Parameter	Method	Standard no.	
Mobile	Antenna gain	Generic specification	GB/T 9410-2008	
communication antenna	Radiation pattern	for antennas used in the mobile communications		
Antenna	Radiation efficiency	IEEE Standard Test	ANSI/IEEE Std	
	Gain and directivity	Procedures for Antennas	149-1979	

3 Test Site

3.1 Test Facility

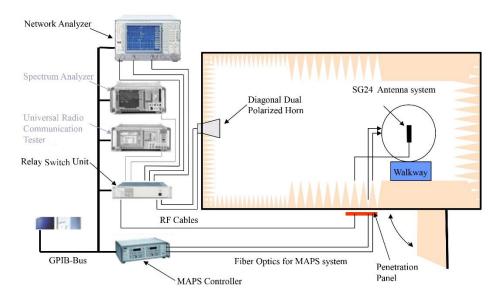
Name	Precise Testing & Certification Co., Ltd
Address	Building 1, No. 6, Tongxin Road, Dongcheng Street, Dongguan, Guangdong, China
CNAS	L5772

3.2 Measurement Uncertainty

The uncertainty was calculated on the basis of the GUM published by ISO, using the inclusion factor of K=2 and the 95% confidence level to express the extended uncertainty.

Item	Uncertainty	
Antenna gain	±0.68dB	
Radiation efficiency	±0.68dB	

3.3 List Of Test And Measurement Instruments


Name of Equipment	Manufacturer	Serial No.	Last Cal.	Calibration Interval
24 probe microwave chamber	YIHENG ELECTPONC	4*4*4	Jan. 10,2024	1 Year
Network Analyzer	E5071C	Agilent	Jan. 10,2024	1 Year
XH.PassiveTest 2.7.6	XH-IOT	€ K €	1 4 4 4	

3.4 Test environmental

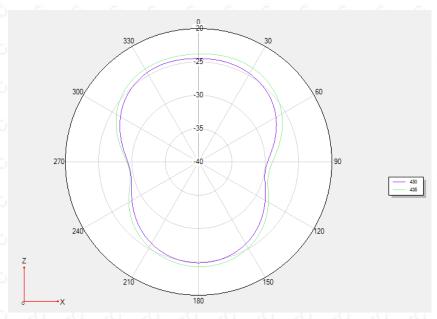
Environment Parameter		Selected Values During the Testes			
3	Relative Humidity	45	% to 55%		
χO	Value	Temperature(°C)	Voltage(V)		
	NTNV	20 to 24	N/A		

3.5 Test Setup

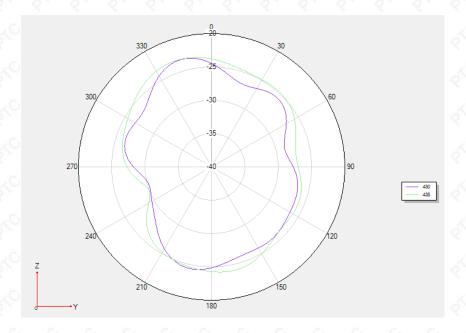
4 **EUT Description**

Product Name	Remote control
Sample Model	RF590
Size	1 40 40 40 40 40 40 40 40 40 40 40 40
Test Item	Antenna gain; Radiation pattern and efficiency
Antenna Type	PCB Antenna
Frequency Range	430MHz-435MHz

5 Test Data


5.1 Typical free space efficiency and gain

Frequency/MHz	Efficiency / dB	Efficiency / %	Max Gain/dBi	Avg Gain/dBi
400	-31.11	0.08	-26.18	-31.11
405	-31.25	0.07	-26.4	-31.25
410	-29.89	0.10	-25.01	-29.89
415	-29.86	0.10	-24.73	-29.86
420	-28.93	0.13	-23.66	-28.93
425	-28.75	0.13	-23.48	-28.75
430	-28.33	0.15	-23.25	-28.33
435	-27.88	0.16	-23.17	-27.88

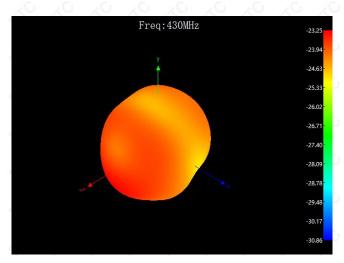

5.2 Typical free space radiation pattern (1) X-Z Plane:

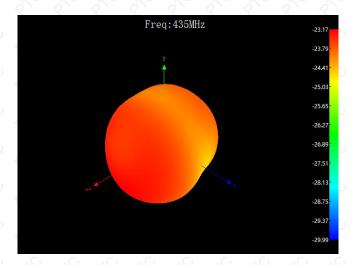
V Phi=0

(2) Y-Z Plane:


V Phi=90

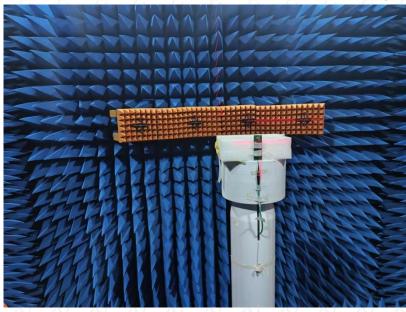
(3)X-Y Plane:


H Theta=90

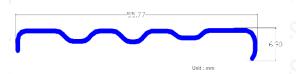


5.3 3D Pattern

3D Pattern for 430MHz



3D Pattern for 435MHz



6 EUT setup photo of free space OTA testing

******THE END REPORT*****