

DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2

Motorola Solutions Inc. EME Test Laboratory

Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. Date of Report: 5/7/2021 Report Revision: A

Responsible Engineer:Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer)Report Author:Puteri Alifah Ilyana Binti Nor Rahim (EME Engineer)

Date/s Tested: 4/13/2021-4/14/202, 4/16/202, 4/19/2021, 4/22/2021, 5/7/2021

Manufacturer: Motorola Solutions Inc.

DUT Description: Handheld Portable – T380 FRS CONSUMER RADIO 462-467MHz Equipment Yellow

Test TX mode(s): CW (PTT)

Max. Power output: 1.4W (462.5500 MHz – 462.7250 MHz), 0.7W (467.5625MHz - 467.7125 MHz) **Nominal Power:** 1.1W (462.5500 MHz – 462.7250 MHz), 0.5W (467.5625MHz - 467.7125 MHz)

Tx Frequency Bands: 462.5500 MHz – 462.7250 MHz, 467.5625 MHz - 467.7125 MHz

Signaling type: FM

Model(s) Tested: T38X (PMUE5740A)

Model(s) Certified: T38X (PMUE5740A), T38X (PMUE5737A)

Serial Number(s): 16510XF0135

Classification: General Population / Uncontrolled

Applicant Name: Motorola Solutions Inc.

Applicant Address: 800 West Sunrise Boulevard, Fort Lauderdale, Florida 33322

FCC ID: AZ489FT4966; 462.5500 MHz – 462.7250 MHz, 467.5625 MHz - 467.7125 MHz IC: 109U-89FT4966; 462.5500 MHz – 462.7250 MHz, 467.5625 MHz - 467.7125 MHz

ISED Test Site registration: 24843 FCC Test Firm Registration 823256

The test results clearly demonstrate compliance with FCC General Population / Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory.

I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated.

2

Sun Hock Saw Approved Signatory Approval Date: 5/7/2021

Part 1 of 2

1.0	Introduction			
2.0	FCC S	AR Summary	4	
3.0	Abbrev	riations / Definitions	4	
4.0	Referen	nced Standards and Guidelines	5	
5.0	SAR L	imits	6	
6.0	Descrip	otion of Device Under Test (DUT)	6	
7.0	Option	al Accessories and Test Criteria	7	
	7.1	Antennas	7	
	7.2	Battery	7	
	7.3	Body worn Accessories	7	
	7.4	Audio Accessories	8	
8.0	Descrip	otion of Test System	9	
	8.1	Descriptions of Robotics/Probes/Readout Electronics	9	
	8.2	Description of Phantom(s)	. 10	
	8.3	Description of Simulated Tissue	. 10	
9.0	Additio	onal Test Equipment	.11	
10.0	SAR M	Ieasurement System Validation and Verification	.11	
	10.1	System Validation	.11	
	10.2	System Verification	.11	
	10.3	Equivalent Tissue Test Results	.12	
11.0	Enviro	nmental Test Conditions	.12	
12.0	DUT Test Setup and Methodology			
	12.1	Measurements	.13	
	12.2	DUT Configuration(s)	. 14	
	12.3	DUT Positioning Procedures	. 14	
		12.3.1 Body	. 14	
		12.3.2 Head		
	10.4	12.3.3 Face		
		DUT Test Channels		
	12.5	SAR Result Scaling Methodology		
		DUT Test Plan		
13.0		est Data		
	13.1	Assessments at the Body for 462.5500-462.7250 MHz.		
	13.2	Assessments at the Face for 462.5500-462.7250 MHz.		
	13.3	Assessments at the Body for 467.5625-467.7125 MHz		
	13.4	Assessments at the Face for 467.5625-467.7125 MHz		
	13.5	Assessments for ISED Canada		
	13.6	Shortened Scan Assessment		
		Summary		
		llity Assessment		
16.0	System	Uncertainty	.22	

APP	ENDICES	
A	Measurement Uncertainty Budget	23
В	Probe Calibration Certificates	
C	Dipole Calibration Certificates	
Part	2 of 2	
APP	ENDICES	
D	System Verification Check Scans	2
E	DUT Scans	9
F	Shorten Scan of Highest SAR Configuration	22
G	DUT Test Position Photos	
Н	DUT, Body worn and audio accessories Photos	25

Report Revision History

Date	Revision	Comments
5/7/2021	A	Initial release

1.0 Introduction

This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number T38X (PMUE5740A). This device is classified as General Population/Uncontrolled.

2.0 FCC SAR Summary

Table 1

		Max Calc at	Max Calc at	
Equipment Class	Frequency band	Body (W/kg)	Face (W/kg)	
	(MHz)	1g-SAR	1g-SAR	
EDE	462.5500 - 462.7250	0.89	0.42	
FRF	467.5625 - 467.7125	0.93	0.45	

3.0 Abbreviations / Definitions

CNR: Calibration Not Required

CW: Continuous Wave DUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation

FRF: Part 95 Family Radio Face Held Transmitter

NA: Not Applicable PTT: Push to Talk

RSM: Remote Speaker Microphone SAR: Specific Absorption Rate

Audio accessories: These accessories allow communication while the DUT is worn on the body.

Body worn accessories: These accessories allow the DUT to be worn on the body of the user.

Maximum Power: Defined as the upper limit of the production line final test station.

4.0 Referenced Standards and Guidelines

This product is designed to comply with the following applicable national and international standards and guidelines.

- IEC62209-1 (2016) Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997.
- IEEE 1528 (2013), Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- American National Standards Institute (ANSI) / Institute of Electrical and Electronics Engineers (IEEE) C95. 1-1992
- Institute of Electrical and Electronics Engineers (IEEE) C95.1-2005
- International Commission on Non-Ionizing Radiation Protection (ICNIRP) 1998
- Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
- RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands)
- Australian Communications Authority Radio communications (Electromagnetic Radiation Human Exposure) Standard (2014)
- ANATEL, Brazil Regulatory Authority, Resolution No. 303 of July 2, 2002
 "Regulation of the limitation of exposure to electrical, magnetic, and electromagnetic fields in the radio frequency range between 9 kHz and 300 GHz." and "Attachment to resolution # 303 from July 2, 2002"
- IEC62209-2 Edition 1.0 2010-03, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz).
- FCC KDB 643646 D01 SAR Test for PTT Radios v01r03
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 RF Exposure Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06

5.0 SAR Limits

Table 2

	SAR (W/kg)			
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)		
Spatial Average - ANSI - (averaged over the whole body)	0.08	0.4		
Spatial Peak - ANSI - (averaged over any 1-g of tissue)	1.6	8.0		
Spatial Peak – ICNIRP/ANSI - (hands/wrists/feet/ankles averaged over 10-g)	4.0	20.0		
Spatial Peak - ICNIRP - (Head and Trunk 10-g)	2.0	10.0		

6.0 Description of Device Under Test (DUT)

This device operates in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device.

Table 3 below summarizes the bands, maximum duty cycles and maximum output powers limit by applied different type of battery. Maximum output powers are defined as upper limit of the production line final test station.

Table 3

Band (MHz)	Transmission	Duty Cycle (%)	Max Power (W)
462.5500 - 462.7250	FM	*50	1.40
467.5625 - 467.7125	FM	*50	0.70

Note - * includes 50% PTT operation

The intended operating positions are "at the face" with the DUT at least 2.5 cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio.

7.0 Optional Accessories and Test Criteria

This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in 4.0 to assess compliance of the device.

7.1 Antennas

There is one fixed antenna offered for this product. The Table below lists its descriptions.

Table 4

Antenna No.	Antenna Model	Description	Selected for test	Tested
1	Fixed antenna	462-468MHz, 1.45dBi gain	Yes	Yes

7.2 Battery

There is one battery offered for this product. The Table below lists their descriptions.

Table 5

Battery No.	Battery Models	Description	Selected for test	Tested
1	HKNN4014B	Battery Pack, Battery, Lithium-Ion, 1130mAh, 3.7VDC, Kit (BT60)	Yes	Yes

7.3 Body worn Accessories

All body worn accessories were considered. The Table below lists the body worn accessories, and body worn accessory descriptions.

Table 6

Body worn No.	Body worn Models	Description	Selected for test	Tested	Comments
1	1564028V01	TLKR- T3 T40 T50 T60 XTB Belt Clip	Yes	Yes	
2	42015005001	Carry Landyard	Yes	Yes	
3	AY000753A02	Short Lanyard (Equipment Yellow)	Yes	Yes	Tested with AY000755A01
4	AY000755A01	Carabineer	Yes	Yes	Tested with AY000753A02
5	PMLN7706AR	Carry Pouch	Yes	Yes	
6	AY000753A03	SHORT LANYARD (NAVY BLUE)	No	No	By similarity to AY000753A02

7.4 Audio Accessories

All audio accessories were considered. The Table below lists the offered audio accessories and their descriptions. Exhibit 7B illustrates photos of the tested audio accessories.

Table 7

Audio No.	Audio Acc. Models	Description	Selected for test	Tested	Remarks
1	53724C (NTN8867A)	Remote Speaker Mic	Yes	Yes	Default audio
2	IXTN4011A	SINGLE PIN EARPIECE WITH BOOM MIC/VOX	Yes	Yes	
3	53725B (NTN8868C)	Headset w/Swivel Boom Microphone	Yes	Yes	
4	53727B (NTN8870E)	EARBUD WITH PTT MICROPHONE SINGLE PIN	No	No	By similarity to IXTN4011A
5	56320B (NTN9396B)	Earpiece w/Boom Microphone	Yes	Yes	
6	1518 (GU6443A)	1518 TACTICAL HEADSET	Yes	Yes	
7	PMLN7705AR	Single Pin Throat Mic with PTT/VOX	Yes	Yes	

8.0 Description of Test System

8.1 Descriptions of Robotics/Probes/Readout Electronics

Table 8

Dosimetric System type	System version	DAE type	Probe Type
Schmid & Partner			EX3DV4
Engineering AG	6.14.0.959	DAE4	(E-Field)
SPEAG DASY 6			(L-Picia)

The DASY6TM system is operated per the instructions in the DASY6TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations.

8.2 Description of Phantom(s)

Table 9

Phantom Type	Phantom(s) Used	Material Parameters	Phantom Dimensions LxWxD (mm)	Material Thickness (mm)	Support Structure Material	Loss Tangent (wood)
Triple Flat	NA	200MHz -6GHz; Er = 3-5, Loss Tangent = \leq 0.05	280x175x175			
SAM	NA	300MHz -6GHz; Er = < 5, $Loss Tangent = \le 0.05$	Human Model	2mm +/- 0.2mm	Wood	< 0.05
Oval Flat	V	300MHz -6GHz; Er = 4+/- 1, Loss Tangent = ≤ 0.05	600x400x190			

8.3 Description of Simulated Tissue

The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is preheated to aid in dissolving the ingredients. For Diacetin and similar type simulates, sugar and HEC ingredients are not needed. The solution is mixed thoroughly, covered, and allowed to sit overnight prior to use.

The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications.

Simulated Tissue Composition (percent by mass)
Table 10

Ingredients	450MHz
ingredients	Head
Sugar	56.0
De-ionized Water	39.1
Salt	3.8
HEC	1.0
Bact.	0.1

9.0 Additional Test Equipment

The Table below lists additional test equipment used during the SAR assessment.

Table 11

Equipment Type	Model Number	Serial Number	Calibration Date	Calibration Due Date
Speag Probe	EX3DV4	7594	12/10/2020	12/10/2021
Speag DAE	DAE4	684	5/26/2020	5/26/2021
Bi-directional Coupler	3024	61178	11/23/2020	11/23/2021
Power Amplifier	5S1G4	312859	CNR	CNR
Power Meter	E4419B	MY45103725	6/10/2019	6/10/2021
Power Meter	E4418B	MY45107917	7/1/2019	7/1/2021
Power Sensor	E9301B	MY41495594	5/18/2020	5/18/2021
Power Sensor	8481B	MY41091243	11/3/2020	11/3/2021
Thermometer	HH806AU	80307	11/25/2020	11/25/2021
Temperature Probe	80PK-22	6032017	11/25/2020	11/25/2021
Vector Signal Generator	E4438C	MY47272101	10/29/2019	10/29/2021
Data Logger	DSB	16398050	8/3/2020	8/3/2021
Power Meter	E4416A	MY50001037	8/30/2019	8/30/2021
Power Sensor	E4412A	MY60100004	6/24/2020	6/24/2021
Dielectric Assessment Kit	DAK-3.5	1120	8/12/2020	8/12/2021
Network Analyzer	E5071B	MY42403147	12/1/2020	12/1/2021
Speag Dipole	D450V3	1054	3/11/2019	3/11/2022
Speag Dipole	D450V3	1053	10/19/2018	10/19/2021

10.0 SAR Measurement System Validation and Verification

DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively.

10.1 System Validation

The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below.

Table 12

	Dates	Probe Calibration Point		Probe SN	Measured Tissue Parameters		Validation		
		Cambrau	on Point	211	σ $\epsilon_{ m r}$		Sensitivity	Linearity	Isotropy
Γ				CW					
	3/10/2021	Head	450	7594	0.84	41.50	Pass	Pass	Pass

10.2 System Verification

System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots for each day during the SAR assessment. The Table below summarizes the daily system check results used for the SAR assessment.

Table 13

Probe Serial #	Tissue Type	Dipole Kit / Serial #	Ref SAR @ 1W (W/kg)	System Check Results Measured (W/kg)	System Check Test Results when normalized to 1W (W/kg)	Tested Date
	IEEE/	SPEAG D450V3	4.57 +/- 10%	1.09	4.36	4/22/2021
	IEC Head	/ 1053	4.57 +/- 10/0	1.16	4.64	5/7/2021
7594				1.19	4.76	4/13/2021
1394	IEEE/	SPEAG D450V3	4.57 +/- 10%	1.15	4.60	4/14/2021
	IEC Head	/ 1054	4.37 +/- 10%	1.18	4.72	4/16/2021
				1.11	4.44	4/19/2021

10.3 Equivalent Tissue Test Results

Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment.

Table 14

Frequency (MHz)	Tissue Type	Conductivity Target (S/m)	Dielectric Constant Target	Conductivity Meas. (S/m)	Dielectric Constant Meas.	Tested Date
				0.84	42.10	4/13/2021
				0.85	42.20	4/14/2021
450		0.87	43.50	0.84	41.67	4/16/2021
430		(0.83-0.91)	(41.30-45.70)	0.85	42.01	4/19/2021
				0.87	41.76	4/22/2021
			0.85	41.81	5/7/2021	
	TEEE/JEC	0.87 (0.83-0.91)	43.40 (41.30-45.60)	0.86	41.80	4/13/2021
463	IEEE/IEC Head			0.85	41.40	4/16/2021
403	Head			0.86	41.55	4/19/2021
				0.86	41.74	4/19/2021
				0.87	41.80	4/14/2021
		0.07	42.40	0.85	41.30	4/16/2021
468		0.87 (0.83-0.91)	43.40 (41.20-45.60)	0.86	41.64	4/19/2021
		(0.83-0.91)	(41.20-45.00)	0.88	41.40	4/22/2021
				0.87	41.45	5/7/2021

11.0 Environmental Test Conditions

The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within \pm 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions

are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein:

Table 15

	Target	Measured
Ambient Temperature	18 – 25 °C	Range: 20.60 – 23.10°C Avg. 22.00°C
Tissue Temperature	18 – 25 °C	Range: 20.00 – 20.90°C Avg. 20.45°C

Relative humidity target range is a recommended target

The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF disturbances that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated.

12.0 DUT Test Setup and Methodology

12.1 Measurements

SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing.

The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements.

Table 16

Descr	iption	≤3 GHz	> 3 GHz		
Maximum distance from clos (geometric center of probe se	-	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$		
Maximum probe angle from surface normal at the measur		30° ± 1°	20° ± 1°		
		≤ 2 GHz: ≤ 15 mm	$3-4$ GHz: ≤ 12 mm		
		$2-3$ GHz: ≤ 12 mm	$4-6 \text{ GHz:} \leq 10 \text{ mm}$		
		When the x or y dimension of the test device, in			
Maximum area scan spatial	resolution: ΔxArea, ΔyArea	the measurement plane orientation, is smaller			
Waximum area scan spatiar	resolution. Axarea, Ayarea	than the above, the measurement resolution must			
		be \leq the corresponding	x or y dimension of the		
		test device with at least	one measurement point		
		on the test device.			
Maximum zoom scan spatial	resolution: $\Delta xZoom$,	\leq 2 GHz: \leq 8 mm	$3-4 \text{ GHz:} \leq 5 \text{ mm*}$		
ΔyZoom		$2-3 \text{ GHz: } \leq 5 \text{ mm*}$	$4-6 \text{ GHz: } \leq 4 \text{ mm*}$		
Maximum zoom scan	uniform grid: ΔzZoom(n)		$3-4$ GHz: ≤ 4 mm		
spatial resolution, normal		$30^{\circ} \pm 1^{\circ}$ $\geq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$ $4 - 6 \text{ GHz:} \leq 10 \text{ mm}$ When the x or y dimension of the test device, ir the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device. $\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \leq 4 \text{ mm}^*$			
to phantom surface			$5-6$ GHz: ≤ 2 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

12.2 **DUT Configuration(s)**

The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered.

12.3 **DUT Positioning Procedures**

The positioning of the device for each body location is described below and illustrated in Appendix G.

12.3.1 Body

The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with the offered audio accessories as applicable.

12.3.2 Head

Not applicable.

12.3.3 Face

The DUT was positioned with its' front side separated 2.5cm from the phantom.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

12.4 DUT Test Channels

The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula.

$$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$

Where

 N_c = Number of channels

 $F_{high} = Upper channel$

 $F_{low} = Lower channel$

 F_c = Center channel

12.5 SAR Result Scaling Methodology

The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" are scaled using the following formula:

e scaled using the following formula:
$$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$

 $P_{max} = Maximum Power (W)$

P_int = Initial Power (W)

Drift = DASY drift results (dB)

SAR_meas = Measured 1-g or 10-g Avg. SAR (W/kg)

DC = Transmission mode duty cycle in % where applicable

50% duty cycle is applied for PTT operation

Note: for conservative results, the following are applied:

If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$.

Drift = 1 for positive drift

Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted.

12.6 DUT Test Plan

The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results.

13.0 DUT Test Data

13.1 Assessments at the Body for 462.5500-462.7250 MHz

Conducted power measurements for channel within frequency range 462.5500 – 462.7250 MHz was measured and listed in Table 17.

Table 17

Test frequency: 462.6375 MHz						
Battery	Power (W)					
HKNN4014B	1.18					

Assessments at the Body with belt clip 1564028V01

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 18 (bolded) are presented in Appendix E.

Table 18

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Ig- SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	1564028V01	NTN8867A	462.6375	1.18	-0.34	0.60	0.38	AM-AB-210413-08

Assessments at the Body with carry lanyard 42015005001

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 19 (bolded) are presented in Appendix E.

Table 19

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	(JD)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	42015005001	NTN8867A	462.6375	1.18	-0.26	1.22	0.77	AM-AB-210419-02

Assessments at the Body with carry pouch PMLN7706AR

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 20 (bolded) are presented in Appendix E.

Table 20

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	PMLN7706AR	NTN8867A	462.6375	1.18	-0.19	0.57	0.36	AM-AB-210413-10

Assessments at the Body with carabineer and short lanyard AY000753A02 with AY000755A01

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 21 (bolded) are presented in Appendix E.

Table 21

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)		SAR Drift (dB)	Ig- SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	NTN8867A	462.6375	1.18	-0.26	1.40	0.88	AM-AB-210416-04

Assessment at the Body with other audio accessories

Assessment of additional audio accessories with the highest SAR results from Table 18, 19, 20 and 21. SAR plots of the highest results per Table 22 (bolded) are presented in Appendix E.

Table 22

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	lg- SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	IXTN4011A	462.6375	1.18	-0.02	1.21	0.72	AM-AB-210419-08
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	53725C (NTN8868C)	462.6375	1.18	-0.05	0.99	0.59	MA-AB-210507-05
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	56320B (NTN9396B)	462.6375	1.18	-0.06	1.00	0.60	AM-AB-210419-09
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	1518 (GU6443A)	462.6375	1.18	-0.11	1.42	0.86	AM-AB-210419-10
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	PMLN7705AR	462.6375	1.18	-0.31	1.40	0.89	AM-AB-210419-07

13.2 Assessments at the Face for 462.5500-462.7250 MHz

Conducted power measurements for channel within frequency range 462.5500 – 462.7250 MHz was measured and listed in Table 23.

Table 23

Test frequency: 462.6375 MHz							
Battery	Power (W)						
HKNN4014B	1.18						

Assessment of fixed antenna with offered batteries with front of DUT positioned 2.5cm facing phantom was performed. SAR plots of the highest results per Table 24 (bolded) are presented in Appendix E.

Table 24

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	(AD)	SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	DUT @ Front	None	462.6375	1.18	-0.13	0.68	0.42	AM-FACE-210416-05

13.3 Assessments at the Body for 467.5625-467.7125 MHz

Conducted power measurements for channel within frequency range 467.5625 – 467.7125 MHz was measured and listed in Table 25.

Table 25

Test frequency: 4	67.6375 MHz
Battery	Power (W)
HKNN4014B	0.49

Assessments at the Body with belt clip 1564028V01

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 26 (bolded) are presented in

Appendix E.

Table 26

Antenna	a Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	(ID)	Ig- SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	1564028V01	NTN8867A	467.6375	0.49	-0.16	0.53	0.39	AM-AB-210414- 05

Assessments at the Body with carry lanyard 42015005001

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 27 (bolded) are presented in

Appendix E.

Table 27

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Init Pwr (W)	SAR Drift (dB)	Meas. 1g- SAR (W/kg)	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	42015005001	NTN8867A	467.6375	0.49	-0.11	1.15	0.85	MA-AB-210422-12

Assessments at the Body with carry pouch PMLN7706AR

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 28 (bolded) are presented in

Appendix E.

Table 28

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	(III)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	PMLN7706AR	NTN8867A	467.6375	0.49	-0.19	0.47	0.35	AM-AB-210414-07

Assessments at the Body with carabineer and short lanyard AY000753A02 with AY000755A01

DUT assessment with the fixed antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results per Table 29 (bolded) are presented in

Appendix E.

Table 29

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	AY000753A02 w/ AY000755A01	NTN8867A	467.6375	0.49	0.01	1.01	0.72	AM-AB-210419-03

Assessment at the Body with other audio accessories

Assessment of additional audio accessories with the highest SAR results from table 26, 27, 28 and 29. SAR plots of the highest results per Table 30 (bolded) are presented in Appendix E.

Table 30

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)		Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	42015005001	IXTN4011A	467.6375	0.49	-0.11	0.94	0.69	AM-AB-210419-11
Fixed antenna	HKNN4014B	42015005001	53725C (NTN8868C)	467.6375	0.49	-0.19	1.24	0.93	AM-AB-210414-10
Fixed antenna	HKNN4014B	42015005001	56320B (NTN9396B)	467.6375	0.49	-0.20	1.10	0.83	AM-AB-210414-11
Fixed antenna	HKNN4014B	42015005001	1518 (GU6443A)	467.6375	0.49	-0.01	0.93	0.67	AM-AB-210414-12
Fixed antenna	HKNN4014B	42015005001	PMLN7705AR	467.6375	0.49	0.27	1.28	0.92	AM-AB-210419-12

13.4 Assessments at the Face for 467.5625-467.7125 MHz

Conducted power measurements for channel within frequency range 467.5625 – 467.7125 MHz was measured and listed in Table 31.

Table 31

Test frequency: 4	67.6375 MHz
Battery	Power (W)
HKNN4014B	0.49

Assessment of fix antenna with offered batteries with front of DUT positioned 2.5cm facing phantom was performed. SAR plots of the highest results per Table 32 (bolded) are presented in Appendix E.

Table 32

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	Ig-	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	DUT @ Front	None	467.6375	0.49	-0.10	0.62	0.45	AM-FACE-210416-06

13.5 Assessments for ISED Canada

Based on the assessment results for body and face per KDB643646, additional tests were not required for ISED Canada frequency range (462.5500-462.7250 MHz) and (467.5625-467.7125 MHz) as testing performed is in compliance with ISED Canada frequency range.

As per ISED Notice 2016-DRS001, additional tests were required for the low, mid and high frequency channels for the configuration with the highest SAR value. This is narrow band product and the frequency range is only within 1 MHz, additional test is not required.

13.6 Shortened Scan Assessment

A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F.

Table 33

Antenna	Battery	Carry Accessory	Cable Accessory	Test Freq (MHz)	Pwr	SAR Drift (dB)	1g- SAR	Max Calc. 1g- SAR (W/kg)	Run#
Fixed antenna	HKNN4014B	42015005001	53725C (NTN8868C)	467.6375	0.49	-0.07	1.02	0.74	AM-AB-210507-11

14.0 Results Summary

Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum Calculated 1-gram average SAR values found for this filing:

Table 34

Technologies	Frequency band (MHz)	Max Calc. at Body (W/kg) 1g-SAR	Max Calc. at Face (W/kg) 1g-SAR		
FM	462.5500 - 462.7250	0.89	0.42		
FM	467.5625 - 467.7125	0.93	0.45		

All results are scaled to the maximum output power.

The test results clearly demonstrate compliance with FCC General Population/ Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5).

15.0 Variability Assessment

Per the guidelines in KDB 865664 SAR variability assessment is not required because SAR results below 0.8W/kg (General population).

16.0 System Uncertainty

A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for General Population exposure is less than 1.5W/kg.

Per the guidelines of ISO 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A.

Appendix A Measurement Uncertainty Budget

Uncertainty Budget for Device Under Test, for 450 MHz

Checitality Budget for De									
							h =	<i>i</i> =	
	1.		,	$e = \frac{e}{E(J I_{-})}$	f		cxf/	cxg/	1_
<u>a</u>	b	<u> </u>	d	f(d,k)	- /	g	<i>e</i>	e	k
	IEEE	Tol.	Prob		c_i	c_i	1 g	10 g	
Uncertainty Component	1528 section	(± %)	Dist	Div.	(1 g)	(10 g)	u_i	u_i	
	section	(± /0)	Dist		(1 g)	g)	$(\pm \%)$	$(\pm \%)$	17.
Measurement System							(± /0)	(± /0)	v_i
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	8
					0.70				
Axial Isotropy	E.2.2	4.7	R	1.73	7	0.707	1.9	1.9	∞
** * * * * * * * * * * * * * * * * * * *	П 2 2	0.6	D	1.70	0.70	0.707	2.0	2.0	
Hemispherical Isotropy	E.2.2	9.6	R	1.73	7	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E2.4	1.0	R	1.73	1	1	0.6	0.6	8
Modulation Response	E2.5	9.6	R	1.73	1	1	5.5	5.5	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.02	R	1.73	1	1	0.0	0.0	∞
Probe Positioning w.r.t Phantom	E.6.3	0.42	R	1.73	1	1	0.2	0.2	∞
Max. SAR Evaluation	E.5	2.0	R	1.73	1	1	1.2	1.2	∞
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	E.2.9	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				13	12	711
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				25	25	

Notes for uncertainty budget Tables:

- a) Column headings a-k are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty

Uncertainty Budget for System Validation (Dipole & flat phantom) for 450 MHz

							h =	i =	
	b		d	e = f(d,k)	£		cxf/	c x g /	\boldsymbol{k}
<u>a</u>	υ	c		<i>J(a,k)</i>	J	g	e	e	K
	IEEE	Tol.	Prob		c_i	c_i	1 g	10 g	
Uncertainty Component	1528 section	(± %)	Dist	Div.	(1 g)	(10 g)	\boldsymbol{u}_i	\boldsymbol{u}_i	
	section	(± /0)	Dist		(1 g)	S)	(±%)	(±%)	v_i
Measurement System							(= / 0)	(= / 0)	- 1
Probe Calibration	E.2.1	6.7	N	1.00	1	1	6.7	6.7	∞
					0.70				
Axial Isotropy	E.2.2	4.7	R	1.73	7	0.707	1.9	1.9	∞
**	F 2 2	0.6		1.70	0.70	0.707	2.0	2.0	
Hemispherical Isotropy	E.2.2	9.6	R	1.73	7	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E2.4	1.0	R	1.73	1	1	0.6	0.6	∞
Modulation Response	E2.5	0.0	R	1.73	1	1	0.0	0.0	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	R	1.73	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1	1	1.5	1.5	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions - Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech. Tolerance	E.6.2	0.02	R	1.73	1	1	0.0	0.0	∞
Probe Positioning w.r.t Phantom	E.6.3	0.42	R	1.73	1	1	0.2	0.2	∞
Max. SAR Evaluation	E.5	2.0	R	1.73	1	1	1.2	1.2	∞
Dipole									
Dipole Axis to Liquid Distance	8, E.6.6	2.0	R	1.73	1	1	1.2	1.2	∞
Input Power and SAR Drift Measurement	8, 6.6.4	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity (measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	8
Liquid Permittivity (measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				10	10	99999
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				21	20	

Notes for uncertainty budget Tables:

- a) Column headings a-k are given for reference.
- b) Tol. tolerance in influence quantity.
- c) Prob. Dist. Probability distribution
- d) N, R normal, rectangular probability distributions
- e) Div. divisor used to translate tolerance into normally distributed standard uncertainty
- f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR.
- g) ui SAR uncertainty
- h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty