

Page 1 of 34 Report No.: EED32O80591201

EST REPORT

N/A

Product LED Work Light

Trade mark Olafus Model/Type reference LEB50E Test Model No. LEB50E

Serial Number

: EED32O80591201 **Report Number FCC ID** 2AT7E-LEB50E

Date of Issue May 27, 2022

Test Standards : 47 CFR Part 15 Subpart C

Test result PASS

Prepared for:

Shen Zhen Shi Zhi Hui Duo Ke Ji You Xian Gong Si Qian Wan yi lu 1 hao A dong 201 shi, qian hai shen gang he zuo qu, shen zhen, guang dong, China 518000

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Firazer. Lo

Reviewed by:

Tom Chen

Frazer Li,

Date of issue:

May 27, 2022

Aaron Ma

Check No.:1853270422

	ent						
1 COVER PA	AGE		•••••		•••••		1
2 CONTENT		•••••	•••••	•••••	•••••	•••••	2
3 VERSION.		•••••		•••••		•••••	3
4 TEST SUN	MARY	•••••		•••••		•••••	4
5 GENERAL	. INFORMATION	•••••		•••••	•••••	•••••	5
5.2 GENER 5.3 TEST (5.4 TEST E 5.5 DESCR 5.6 TEST L	TINFORMATION RAL DESCRIPTION (CONFIGURATION ENVIRONMENT RIPTION OF SUPPOL LOCATION JREMENT UNCERTA	OF EUT					5 7 7
6 EQUIPME	NT LIST	•••••				•••••	9
7 TEST RES	ULTS AND MEA	SUREMENT	DATA	•••••		•••••	11
7.2 CONDU	INA REQUIREMENT JCTED EMISSIONS. TED SPURIOUS EM						12
PHOTOGRA	APHS OF TEST S	ETUP	•••••		••••		22
PHOTOGR#	PHS OF EUT CO	ONSTRUCTIO	NAL DETAILS				24
			_				

Page 3 of 34

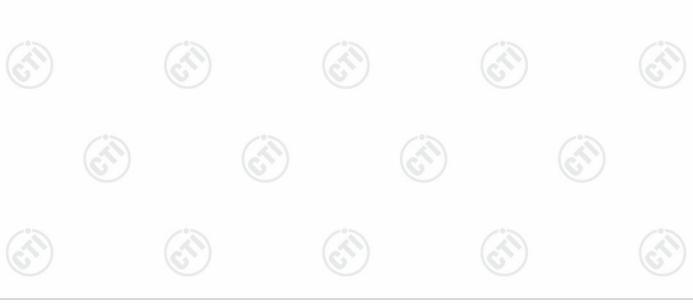
3 Version

Version No.	Date	6	Description)
00	May 27, 2022		Original	
	0	12		100
(6	(2)	(35)	(67)	(0,7)

Page 4 of 34

4 Test Summary

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	Note	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	Note	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	Note	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	Note	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	Note	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	


Remark:

This test report (Ref. No.:EED32O80591201) is only valid with the original test report

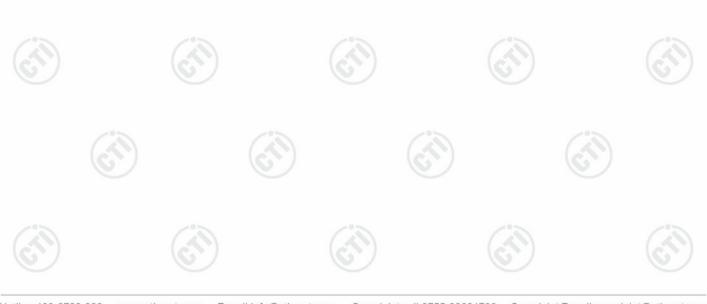
(Ref. No.: 708881974871-00).

Review this report and original report, the module without changes in circuit and product function, therefore in this report the Radiated Spurious Emission were retested and shown the data in this report, other tests data please refer to original report No.708881974871-00.

2.Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

^{1.}Note:Refer to the report of 708881974871-00,

Report No. :EED32O80591201 Page 5 of 34


5 General Information

5.1 Client Information

Applicant:	Shen Zhen Shi Zhi Hui Duo Ke Ji You Xian Gong Si
Address of Applicant:	Qian Wan yi lu 1 hao A dong 201 shi, qian hai shen gang he zuo qu, shen zhen,guang dong, China 518000
Manufacturer:	Shen Zhen Shi Zhi Hui Duo Ke Ji You Xian Gong Si
Address of Manufacturer:	Qian Wan yi lu 1 hao A dong 201 shi, qian hai shen gang he zuo qu, shen zhen,guang dong, China 518000
Factory:	Shen Zhen Shi Zhi Hui Duo Ke Ji You Xian Gong Si
Address of Factory:	Qian Wan yi lu 1 hao A dong 201 shi, qian hai shen gang he zuo qu, shen zhen,guang dong, China 518000

5.2 General Description of EUT

I	. =5 14/ 1 1 1 1			
Product Name:	LED Work Light			
Model No.:	LEB50E			
Test Model No.:	LEB50E	(6,7,)		(6)
Trade mark:	Olafus			
Product Type:	☐ Mobile ☐ Portable			
Operation Frequency:	2402MHz~2480MHz	Cia Cia	(3)	
Modulation Type:	GFSK	(C)	(62)	
Transfer Rate:	⊠ 1Mbps □ 2Mbps			
Number of Channel:	40			
Antenna Type:	PCB antenna			
Antenna Gain:	5.0dBi	(27)		(4)
Power Supply:	AC 100-120V~60Hz			
Test Voltage:	AC 120V			
Sample Received Date:	Apr. 28, 2022		(3)	
Sample tested Date:	May. 18, 2022 to May.25, 2	022	(0,)	

Page 6 of 34

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	EUT Test Software Settings:						
Software:	EMI Tool	(c	(1)	(2,5)			
EUT Power Grade:	Default	-					
Use test software to set the lowest frequency, the middle frequency and the highest frequency transmitting of the EUT.				requency keep			
Test Mode	Modulation	Rate	Channel	Frequency(MHz)			
Mode a	GFSK	1Mbps	CH0	2402			
Mode b	GFSK	1Mbps	CH19	2440			
Mode c	GFSK	1Mbps	CH39	2480			

Report No. :EED32O80591201 Page 7 of 34

5.4 Test Environment

Operating Environment	:				
Radiated Spurious Emis	ssions:				
Temperature:	22~25.0 °C	(1)	(40)		(1)
Humidity:	50~55 % RH		(0)		0
Atmospheric Pressure:	1010mbar				
Conducted Emissions:					
Temperature:	22~25.0 °C			(3)	
Humidity:	50~55 % RH	(0,		(0,)	
Atmospheric Pressure:	1010mbar				

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Manufacturer Model No. Certific		Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ
Phone	XIAOMI	MI 6X	FCC&CE	СТІ

5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty		
1	Radio Frequency	7.9 x 10 ⁻⁸		
2	DC newer conducted	0.46dB (30MHz-1GHz)		
2	RF power, conducted	0.55dB (1GHz-18GHz)		
	6	3.3dB (9kHz-30MHz)		
3	Dedicted Courieus emission tost	4.3dB (30MHz-1GHz)		
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)		
(P)		3.4dB (18GHz-40GHz)		
9/	Conduction emission	3.5dB (9kHz to 150kHz)		
4	Conduction emission	3.1dB (150kHz to 30MHz)		
5	Temperature test	0.64°C		
6	Humidity test	3.8%		
7	DC power voltages	0.026%		

Report No. :EED32O80591201 Page 9 of 34

6 Equipment List

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	05-06-2022	05-05-2023		
Temperature/ Humidity Indicator	Defu	TH128	/	<u></u>			
LISN	R&S	ENV216	100098	03-01-2022	02-28-2023		
Barometer	changchun	DYM3	1188				

	3M Semi-an	echoic Chamber (2)	- Radiated distu	ırbance Test		
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date	
3M Chamber & Accessory Equipment	TDK SAC-3			05/24/2019 05/22/2022	05/23/2022 05/21/2025	
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022	
TRILOG Broadband Antenna	schwarzbeck	schwarzbeck VULB 9163		05/23/2019 05/22/2022	05/22/2022 05/21/2023	
Multi device Controller	maturo	NCD/070/10711112	(A)	(3		
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024	
Spectrum Analyzer	R&S	FSP40	100416	04/01/2022	03/31/2023	
Microwave Preamplifier	Agilent 8449B		3008A02425	06/23/2021	06/22/2022	

		3M full-anechoi	c Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-01-2022	02-28-2023
Spectrum Analyzer	Keysight	N9020B	MY57111112	02-23-2022	02-22-2023
Spectrum Analyzer	Keysight	N9030B	MY57140871	02-23-2022	02-22-2023
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024
Preamplifier	EMCI	EMC184055SE	980597	04-20-2022	04-19-2023
Preamplifier	EMCI	EMC001330	980563	04-01-2022	03-31-2023
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	102898	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-11-2022	04-10-2023
Fully Anechoic Chamber	TDK	FAC-3		01-09-2021	01-08-2024
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		/ <u></u>
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(i)	-(1)
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	<u> </u>	
Cable line	Times	EMC104-NMNM-1000	SN160710		
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	- (3	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001		
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		
Cable line	Times	HF160-KMKM-3.00M	393493-0001	<u> </u>	-(cill)

Report No. :EED32O80591201 Page 11 of 34

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

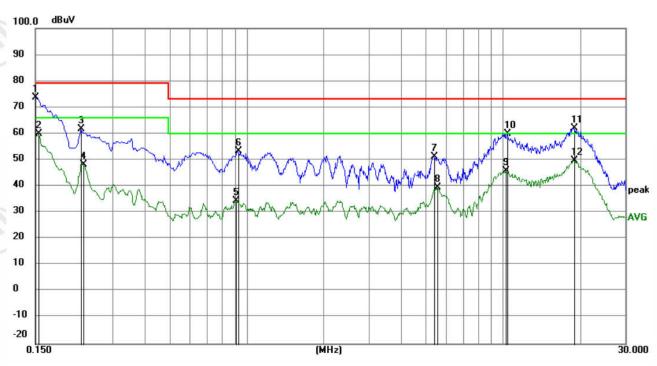
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is 5.0dBi.

Report No. :EED32O80591201 Page 12 of 34

7.2 Conducted Emissions


	e Oonaactea Enns	JOIOTIO		100	
	Test Requirement:	47 CFR Part 15C Section 15.2	07	(67)	
	Test Method:	ANSI C63.10: 2013			
	Test Frequency Range:	150kHz to 30MHz			
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sv	veep time=auto		
Š	Limit:	- (MIL)	Limit (d	BuV)	(1)
		Frequency range (MHz)	Quasi-peak	Average	
		0,15 to 0,50	79	66	
		0,50 to 30	73	60	
		* Decreases with the logarithm	of the frequency.	(20)	
		Shielding Room EUT AC Mains LISN1	AE BS LISN2 → AC Main	Test Receiver	
			Ground Reference Plane		
	Test Procedure:	 The mains terminal disturt room. The EUT was connected Impedance Stabilization N impedance. The power cab a second LISN 2, which we same way as the LISN 1 for strip was used to connect the rating of the LISN was read to a second connect the rating of the LISN was read and reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane we plane. The LISN 1 was placed and bonded to a ground reference plane. The LISN 1 and the EUT. All of was at least 0.8 m from the second second reference cab ANSI C63.10: 2013 on conditions. 	to AC power source etwork) which provide les of all other units of vas bonded to the grown the unit being measured upon a non-meand for floor-standing bund reference plane. In a vertical ground reference plane of the vertical ground reference plane for Libia distance was between the units of the EUT LISN 2.	e through a LISN es a 50Ω/50μH + 9 the EUT were concurred. A multiple soc is to a single LISN tallic table 0.8m a arrangement, the I erence plane. The reference plane. The reference plane is a single LISN throughout the concept of the unit of the concept of the unit of the concept of the c	1 (Line 5Ω linear nected to ne in the ket outlet provided bove the EUT was ear of the e vertical reference inder test op of the quipment
	Test Mode:	All modes were tested, only the		vas recorded in the	report.
	Test Results:	Pass			10%
	1 oot 1 toodito.	1	(6,7)		

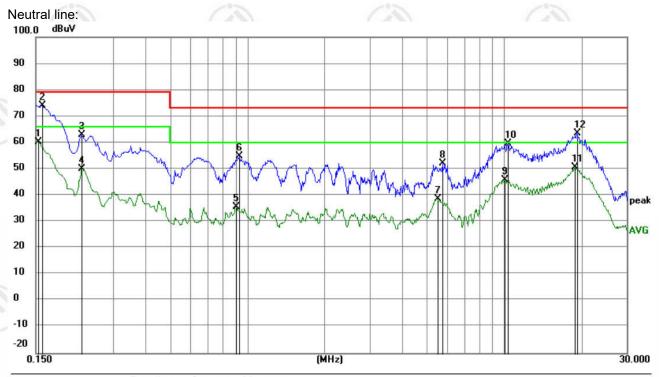
Page 13 of 34

Measurement Data

Live line:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
8		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	63.76	9.87	73.63	79.00	-5.37	QP	
2		0.1545	50.22	9.87	60.09	66.00	-5.91	AVG	
3		0.2265	51.69	9.92	61.61	79.00	-17.39	QP	
4		0.2310	38.46	9.93	48.39	66.00	-17.61	AVG	
5		0.9104	24.47	9.85	34.32	60.00	-25.68	AVG	
6		0.9239	43.53	9.85	53.38	73.00	-19.62	QP	
7		5.3880	41.50	9.78	51.28	73.00	-21.72	QP	
8		5.5590	29.77	9.78	39.55	60.00	-20.45	AVG	
9		10.2705	36.04	9.79	45.83	60.00	-14.17	AVG	
10		10.4010	50.28	9.79	60.07	73.00	-12.93	QP	
11		18.9375	52.20	9.96	62.16	73.00	-10.84	QP	
12		18.9375	39.92	9.96	49.88	60.00	-10.12	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
Co.			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1		0.1539	50.34	9.87	60.21	66.00	-5.79	AVG	
	2	*	0.1590	64.32	9.87	74.19	79.00	-4.81	QP	
_	3		0.2256	53.15	9.92	63.07	79.00	-15.93	QP	
_	4		0.2256	40.25	9.92	50.17	66.00	-15.83	AVG	
	5		0.8992	25.89	9.85	35.74	60.00	-24.26	AVG	
	6		0.9331	45.07	9.84	54.91	73.00	-18.09	QP	
	7		5.5054	28.87	9.78	38.65	60.00	-21.35	AVG	
	8		5.7437	42.50	9.78	52.28	73.00	-20.72	QP	
	9		10.0718	35.94	9.78	45.72	60.00	-14.28	AVG	
	10		10.3422	49.74	9.79	59.53	73.00	-13.47	QP	
	11		18.8205	40.63	9.96	50.59	60.00	-9.41	AVG	
_	12		19.1535	53.74	9.96	63.70	73.00	-9.30	QP	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

7.3 Radiated Spurious Emission & Restricted bands

Trace Co.	16.3.1		10.0		100	1
Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	100	/
Test Method:	ANSI C63.10 2013					
Test Site:	Measurement Distance	: 3n	n (Semi-Anech	noic Cham	ber)	
Receiver Setup:	Frequency	10	Detector	RBW	VBW	Remark
	0.009MHz-0.090MH	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MH	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MH	z	Quasi-peak	10kHz	30kHz	Quasi-peak
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak
	0.110MHz-0.490MH	z	Average	10kHz	30kHz	Average
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak
	Above 4CH	Peak	1MHz	3MHz	Peak	
	Above IGHZ	Above 1GHz			10kHz	Average
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30
	1.705MHz-30MHz		30	-	10	30
	30MHz-88MHz		100	40.0	Quasi-peak	3
	88MHz-216MHz		150	43.5	Quasi-peak	3
	216MHz-960MHz	10	200	46.0	Quasi-peak	3
	960MHz-1GHz		500	54.0	Quasi-peak	3
	Above 1GHz		500	54.0	Average	3
	Note: 15.35(b), frequency emissions is limit applicable to the epeak emission level race	20c quip	dB above the oment under t	maximum est. This p	permitted ave	erage emission

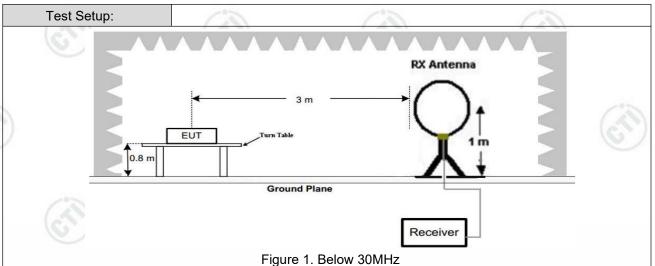
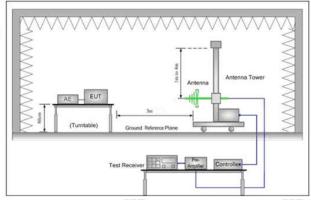



Figure 1. Below 30MH2

Hom Antenna Tower

AE EUT

Ground Reference Plane

Test Receiver

Ampties Controller

Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

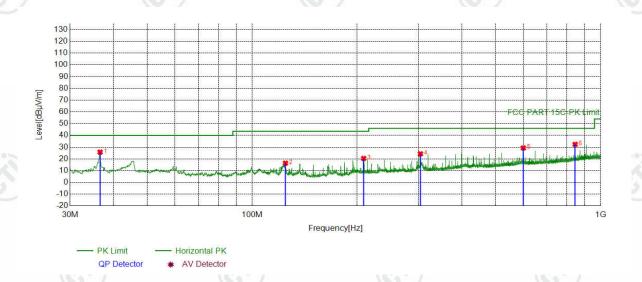
- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Test Results:	Pass
Test Mode:	Refer to clause 5.3
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.



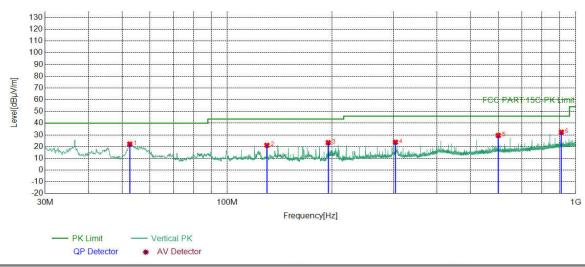
Page 18 of 34


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case Mode a was recorded in the report.

Test Graph

Sus	pect	ed List								
NO		Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
		[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	rtesuit	1 Glarity	Remark
1		36.5967	-19.50	45.31	25.81	40.00	14.19	PASS	Horizontal	PK
2		124.5845	-22.22	38.61	16.39	43.50	27.11	PASS	Horizontal	PK
3		208.8859	-19.10	39.54	20.44	43.50	23.06	PASS	Horizontal	PK
4		303.9554	-16.24	40.58	24.34	46.00	21.66	PASS	Horizontal	PK
5		600.0290	-9.54	38.85	29.31	46.00	16.69	PASS	Horizontal	PK
6		844.9785	-6.88	39.31	32.43	46.00	13.57	PASS	Horizontal	PK





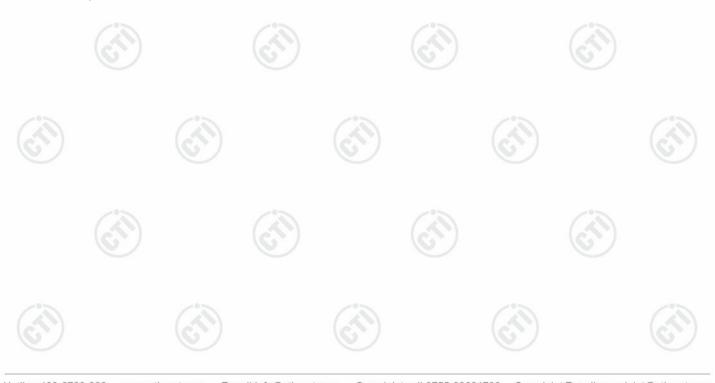
Test Graph

Suspe	Suspected List												
NO	Freq.	Factor	Reading	Level	Limit	Margin	Desuit	Delevity	Damanis				
	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Polarity	Remark				
1	52.5063	-18.42	40.63	22.21	40.00	17.79	PASS	Vertical	PK				
2	130.0170	-22.99	44.16	21.17	43.50	22.33	PASS	Vertical	PK				
3	195.0135	-19.87	43.31	23.44	43.50	20.06	PASS	Vertical	PK				
4	304.0524	-16.24	40.04	23.80	46.00	22.20	PASS	Vertical	PK				
5	600.0290	-9.54	39.05	29.51	46.00	16.49	PASS	Vertical	PK				
6	909.9750	-5.72	38.07	32.35	46.00	13.65	PASS	Vertical	PK				

Radiated Spurious Emission above 1GHz:

Mode:			GF	SK Transmi	tting	Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1419.2419	-11.52	51.40	39.88	74.00	34.12	PASS	Horizon	PK
2	3227.0151	-5.27	50.80	45.53	74.00	28.47	PASS	Horizon tal	PK
3	4804.1203	-3.75	52.54	48.79	74.00	25.21	PASS	Horizon	PK
4	7206.0000	-0.04	46.13	46.09	74.00	27.91	PASS	Horizon	PK
5	9608.0000	2.17	46.39	48.56	74.00	25.44	PASS	Horizon tal	PK
6	12010.0000	5.01	47.01	52.02	74.00	21.98	PASS	Horizon	PK
7	1803.8804	-8.99	50.58	41.59	74.00	32.41	PASS	Vertical	PK
8	3335.0223	-5.23	50.03	44.80	74.00	29.20	PASS	Vertical	PK
9	4804.1203	-3.75	55.54	51.79	74.00	22.21	PASS	Vertical	PK
10	7206.0000	-0.04	47.04	47.00	74.00	27.00	PASS	Vertical	PK
11	9608.0000	2.17	47.70	49.87	74.00	24.13	PASS	Vertical	PK
12	12010.0000	5.01	46.89	51.90	74.00	22.10	PASS	Vertical	PK

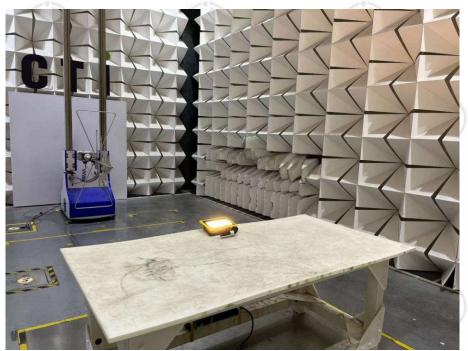
Mode:	Mode:			SK Transmi	tting	Channel:		2440 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1656.2656	-10.19	51.64	41.45	74.00	32.55	PASS	Horizon	PK
2	3094.0063	-5.13	51.18	46.05	74.00	27.95	PASS	Horizon tal	PK
3	4880.1253	-3.50	51.29	47.79	74.00	26.21	PASS	Horizon	PK
4	7320.0000	0.13	46.00	46.13	74.00	27.87	PASS	Horizon	PK
5	9760.0000	2.33	46.92	49.25	74.00	24.75	PASS	Horizon tal	PK
6	12200.0000	5.19	46.23	51.42	74.00	22.58	PASS	Horizon tal	PK
7	1782.0782	-9.15	51.06	41.91	74.00	32.09	PASS	Vertical	PK
8	2963.5964	-5.52	50.38	44.86	74.00	29.14	PASS	Vertical	PK
9	4880.1253	-3.50	54.27	50.77	74.00	23.23	PASS	Vertical	PK
10	7320.0000	0.13	46.94	47.07	74.00	26.93	PASS	Vertical	PK
11	9760.0000	2.33	47.34	49.67	74.00	24.33	PASS	Vertical	PK
12	12200.0000	5.19	44.87	50.06	74.00	23.94	PASS	Vertical	PK



Mode:			GFSK Transmitting			Channel:		2800 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dB µV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1692.0692	-9.82	51.59	41.77	74.00	32.23	PASS	Horizon	PK
2	3182.0121	-5.21	50.02	44.81	74.00	29.19	PASS	Horizon tal	PK
3	4960.0000	-3.48	48.10	44.62	74.00	29.38	PASS	Horizon	PK
4	7440.0000	0.28	47.30	47.58	74.00	26.42	PASS	Horizon	PK
5	9920.0000	2.46	46.30	48.76	74.00	25.24	PASS	Horizon tal	PK
6	12400.0000	5.50	46.43	51.93	74.00	22.07	PASS	Horizon tal	PK
7	1280.6281	-11.90	51.60	39.70	74.00	34.30	PASS	Vertical	PK
8	2899.9900	-5.68	50.80	45.12	74.00	28.88	PASS	Vertical	PK
9	4960.0000	-3.48	49.18	45.70	74.00	28.30	PASS	Vertical	PK
10	7440.0000	0.28	46.83	47.11	74.00	26.89	PASS	Vertical	PK
11	9920.0000	2.46	45.58	48.04	74.00	25.96	PASS	Vertical	PK
12	12400.0000	5.50	46.73	52.23	74.00	21.77	PASS	Vertical	PK

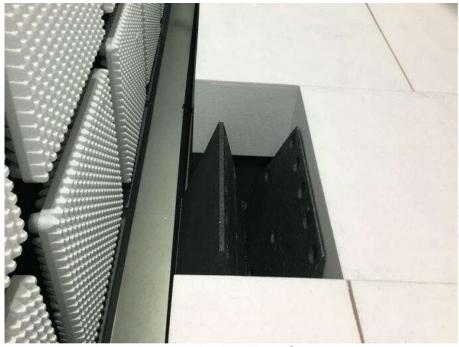
Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



PHOTOGRAPHS OF TEST SETUP

Test model No.:LEB50E


Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

AC Power Line Conducted Emission Test Setup

Report No. :EED32O80591201 Page 24 of 34

PHOTOGRAPHS OF EUT Constructional Details

Test model No.:LEB50E

View of Product-1

View of Product-2

View of Product-3

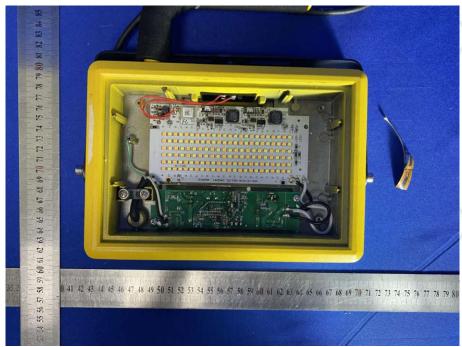
View of Product-5

View of Product-6

View of Product-7

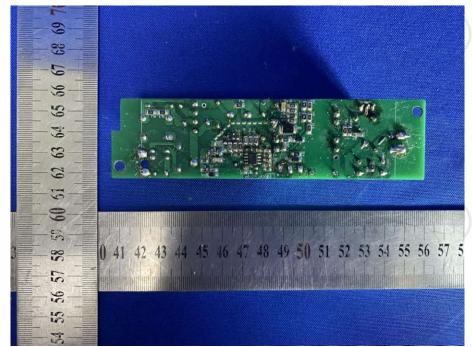
View of Product-8





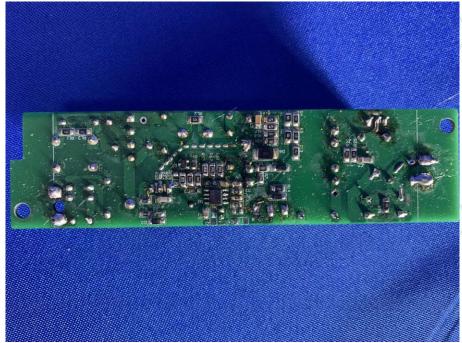
View of Product-9

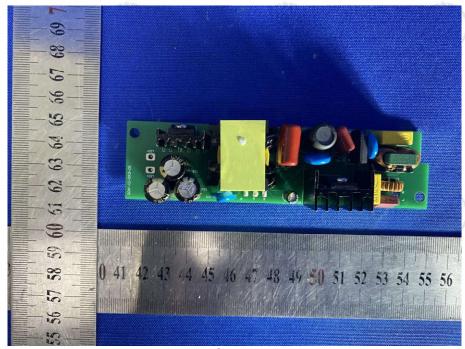
View of Product-10



View of Product-11

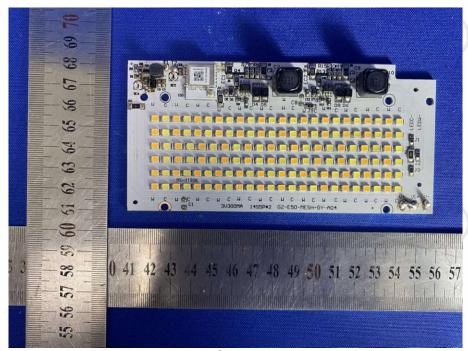
View of Product-12





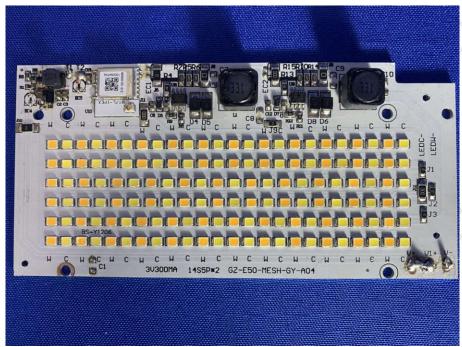
View of Product-13

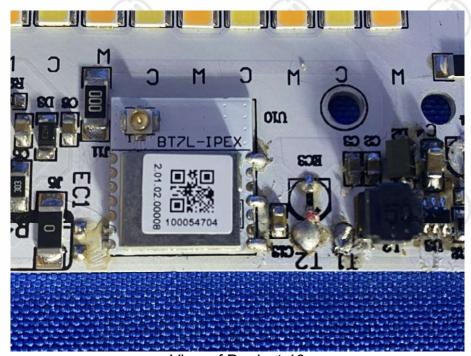
View of Product-14



View of Product-15

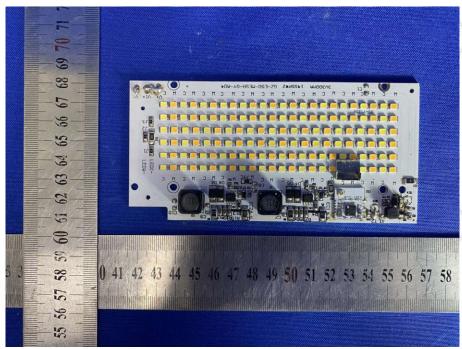
View of Product-16





View of Product-17

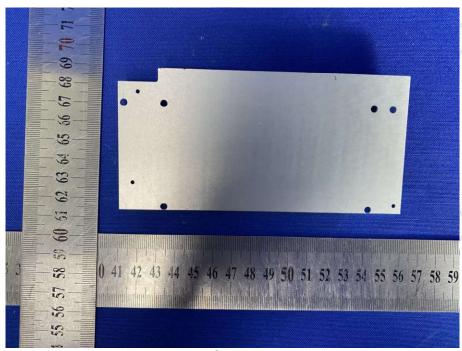
View of Product-18





View of Product-19

View of Product-20



Report No. :EED32O80591201 Page 34 of 34

View of Product-21

View of Product-22

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***