

Page 1 of 53

FCC Test Report

Report No.: AGC00803180105FE03

FCC ID	: 2AKHJ-S39
APPLICATION PURPOSE	: Original Equipment
PRODUCT DESIGNATION	: Bluetooth Earphone
BRAND NAME	: N/A
MODEL NAME	: S39, S39A, S59, S22, S22-V, S22-L, S29
CLIENT	: Shenzhen Hangshi Technology Co., Ltd
DATE OF ISSUE	: Feb. 06, 2018
STANDARD(S) TEST PROCEDURE(S)	: FCC Part 15 Subpart C Section 15.249
REPORT VERSION	: V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 2 of 53

Report Revise Record							
Report Version	Revise Time	Issued Date	Valid Version	Notes			
V1.0		Feb. 06, 2018	Valid	Initial release			

D ico D D

The results shows if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

Report No.: AGC00803180105FE03 Page 3 of 53

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	4
2. GENERAL INFORMATION	5
2.1. PRODUCT DESCRIPTION	5
3. MEASUREMENT UNCERTAINTY	
4. DESCRIPTION OF TEST MODES	6
5. SYSTEM TEST CONFIGURATION	8
5.1. CONFIGURATION OF EUT SYSTEM 5.2. EQUIPMENT USED IN EUT SYSTEM 5.3. SUMMARY OF TEST RESULTS	8 9
6. TEST FACILITY	
7. TEST METHOD	
8. TEST EQUIPMENT LIST	11
9. RADIATED EMISSION	12
9.1. TEST LIMIT	12
9.2. MEASUREMENT PROCEDURE	13
9.1. TEST LIMIT 9.2. MEASUREMENT PROCEDURE 9.3. TEST SETUP 9.4. TEST RESULT	17
10. BAND EDGE EMISSION	32
10.1. MEASUREMENT PROCEDURE	32
10.2 TEST SETUP 10.3 RADIATED TEST RESULT	32
10.3 RADIATED TEST RESULT	33
11.1. MEASUREMENT PROCEDURE	
11.2. TEST SET-UP	37
11.3. LIMITS AND MEASUREMENT RESULTS	37
12. FCC LINE CONDUCTED EMISSION TEST	
12.1. LIMITS OF LINE CONDUCTED EMISSION TEST 12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	44
12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST 12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	44
12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	40
12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	45
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	
APPENDIX B: PHOTOGRAPHS OF EUT	48

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 4 of 53

Applicant	Shenzhen Hangshi Technology Co., Ltd					
Address	Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.					
Manufacturer	Shenzhen Hangshi Technology Co., Ltd					
Address	Hangshi Technology Park, Democracy West Industry Area, Shajing Town, Bao'an District, Shenzhen, China.					
Product Designation	Bluetooth Earphone					
Brand Name	N/A					
Test Model	S39					
Series Model	S39A, S59, S22, S22-V, S22-L, S29					
Difference description	All the same except for the model name					
Date of test	Jan. 30, 2018 to Feb. 05, 2018					
Deviation	None					
Condition of Test Sample	Normal					
Report Template	AGCRT-US-BR/RF					
565° x80						

1. VERIFICATION OF CONFORMITY

We hereby certify that:

The above equipment was tested by Attestation of Global Compliance (Shenzhen) Co., Ltd. The test data, the energy emitted by the sample tested as described in this report is in compliance with the requirements of FCC Rules Part 15.249. The test results of this report relate only to the tested sample identified in this report.

Harry Zhano

Tested By

Henry Zhang(Zhang Zhuorui)

Feb. 05, 2018

Reviewed By

owels in

Forrest Lei(Lei Yonggang)

Feb. 06, 2018

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

Report No.: AGC00803180105FE03 Page 5 of 53

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

A major technical description of EUT is described as following

Operation Frequency	2.402 GHz to 2.480GHz
RF Output Power	4.33dBm(Max EIRP Power=Max radiation field-95.2)
Bluetooth Version	V4.1 • Show of the second seco
Modulation	BR \square GFSK, EDR $\square \pi$ /4-DQPSK, \square 8DPSK BLE \square GFSK
Number of channels	79 for BR/EDR
Hardware Version	\$39_V2.0
Software Version	V1.0
Antenna Designation	Ceramic Antenna
Antenna Gain	2.5dBi
Power Supply	DC 3.7V by battery

2.2. TABLE OF CARRIER FREQUENCYS

BR/EDR channel List

Frequency Band	Channel Number	Frequency		
These and a close	0	2402MHz		
		2403MHz		
	All and a start of the start of			
	38	2440 MHz		
2400~2483.5MHz	39	2441 MHz		
	40	2442 MHz		
	C There are a construction of the second sec			
	77	2479 MHz		
	78	2480 MHz		

The results showing the steere only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

- uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.
- Uncertainty of Conducted Emission, Uc = ±3.2 dB
- Uncertainty of Radiated Emission below 1GHz, Uc = ±3.9 dB
- Uncertainty of Radiated Emission above 1GHz, $Uc = \pm 4.8 \text{ dB}$

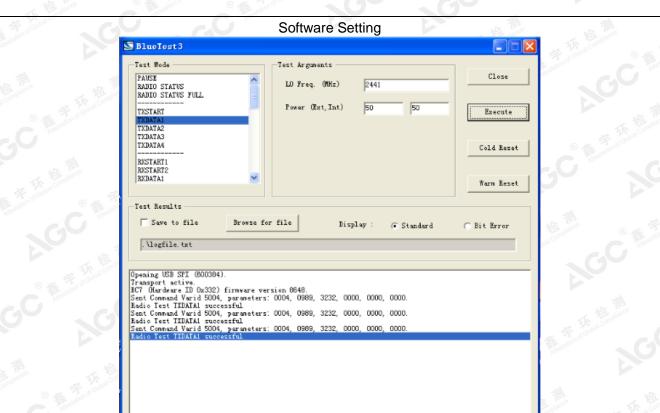
4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION
© # 10000000 00 g	Low channel GFSK
	Middle channel GFSK
3	High channel GFSK
4	Low channel π /4-DQPSK
S 5	Middle channel π /4-DQPSK
6	High channel π /4-DQPSK
7	Low channel 8DPSK
8	Middle channel 8DPSK
90	High channel 8DPSK
10	BT Link
12.	

Note:

1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.


3. The EUT used fully-charged battery when tested.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Report No.: AGC00803180105FE03 Page 7 of 53

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the sample and the sample at th

AGC [®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 8 of 53

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configure 1: (Normal hopping)

EUT

Configure 2: (Control continuous TX)

			南		
EUT	it on o	Control box	oal Con	PC	

5.2. EQUIPMENT USED IN EUT SYSTEM

ltem	Equipment	Equipment Mfr/Brand Model/Type No.		Remark
1 Bluetooth Earphone		Hangshi	S39	EUT
2	Battery	XSH 401230		Accessory
3	PC	APPLE	A1465	A.E
4	Control box	CSR	USB_SPI_TOOLS	A.E
5	USB Cable	N/A	1m unshielded	A.E

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 9 of 53

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT		
§15.249(a) §15.209	Radiated Emission	Compliant		
§15.249(d)	Band Edges	Compliant		
§15.207	Conduction Emission	N/A		
§15.215	Bandwidth	Compliant		

Note: N/A means it's not applicable to this item.

The results showed these treport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at bits //www agc welt com

R 环 AGC 测 鑫 宇 环 检 测 Attestation of Global Compliance

6. TEST FACILITY

Test Site	Attestation of Global Compliance (Shenzhen) Co., Ltd
Location	1-2F., Bldg.2, No.1-4, Chaxi Sanwei Technical Industrial Park, Gushu, Xixiang, Bao'an District B112-B113, Bldg.12, Baoan Bldg Materials Center, No.1 of Xixiang Inner Ring Road, Baoan District, Shenzhen 518012
NVLAP Lab Code	600153-0
Designation Number	CN5028
Test Firm Registration Number	682566
Description	Attestation of Global Compliance(Shenzhen) Co., Ltd is accredited by National Voluntary Laboratory Accreditation program, NVLAP Code 600153-0

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

AGC [®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 11 of 53

7. TEST METHOD

All measurements contained in this report were conducted with ANSI C63.10-2013

8. TEST EQUIPMENT LIST

TEST EQUIPMENT OF CONDUCTED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESPI	101206	Jun.20, 2017	Jun.19, 2018
LISN	R&S	ESH2-Z5	100086	Aug.21, 2017	Aug.20, 2018

TEST EQUIPMENT OF RADIATED EMISSION TEST

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Due
TEST RECEIVER	R&S	ESCI	10096	Jun.20, 2017	Jun.19, 2018
EXA Signal Analyzer	Aglient	N9010A	MY53470504	Dec.08, 2017	Dec.07, 2018
Horn antenna	SCHWARZBECK	BBHA 9170	#768	Sep.20, 2017	Sep.19, 2018
preamplifier	ChengYi	EMC184045SE	980508	Sep.15, 2017	Sep.14, 2018
Double-Ridged Waveguide Horn	ETS LINDGREN	3117	00034609	May 18, 2017	May 17, 2019
Broadband Preamplifier	SCHWARZBECK	BBV 9718	9718-205	Jun.20, 2017	Jun.19, 2018
ANTENNA	SCHWARZBECK	VULB9168	D69250	Sep.28, 2017	Sep.27, 2018
Loop Antenna	A.H.Systems,Inc	SAS-562B	C Press	Mar. 01, 2016	Feb. 28, 2018

The results show the master report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC [®] 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 12 of 53

9. RADIATED EMISSION

9.1. TEST LIMIT

Standard FCC15.249		
Fundamental	Field Strength of Fundamental	Field Strength of Harmonics
Frequency	(millivolts/meter)	(microvolts/meter)
900-928MHz	50 50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

Frequency	Distance	Field Strengths Limit						
(MHz)	Meters	μ V/m	dB(µV)/m					
0.009 ~ 0.490	300	2400/F(kHz)						
0.490 ~ 1.705	30	24000/F(kHz)	4 4					
1.705 ~ 30	30	30	E Stopper Company Construction					
30 ~ 88	3	100	40.0					
88 ~ 216	3	150	43.5					
216 ~ 960	3	200	46.0					
960 ~ 1000	3	500	54.0					
Above 1000	3 The second sec	Other:74.0 dB(µV)/m (Average)	(Peak) 54.0 dB(µV)/m					

Remark:

(1) Emission level dB μ V = 20 log Emission level μ V/m

(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

The results show the may be treport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

ACC [®] 鑫 宇 环 检 测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 13 of 53

9.2. MEASUREMENT PROCEDURE

- The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak & AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

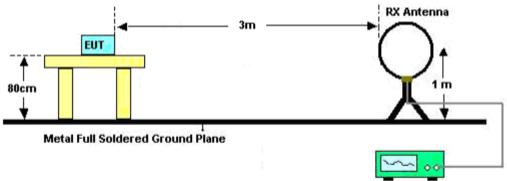
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 14 of 53

	Spectrum Parameter	Setting
bal Compliance	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
- 6	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
0	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Austation of Golden	Start ~Stop Frequency	1GHz~26.5GHz RBW 2MHz/ VBW 6MHz for Peak, RBW 1.5MHz/ VBW 10Hz for Average
	Receiver Parameter	Setting
	Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
-6	Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
0	Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

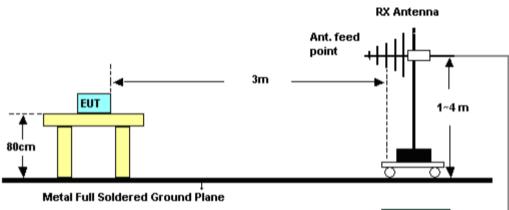
The following table is the setting of spectrum analyzer and receiver.

The results show of the set report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc-gatt.com.



ACCC[®]鑫 宇 环 检 测 Attestation of Global Compliance

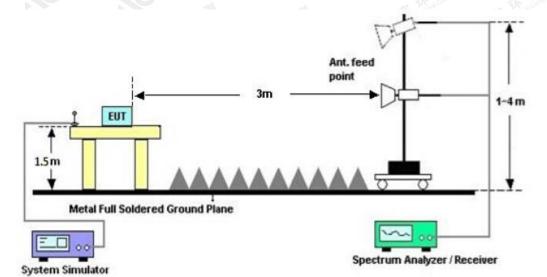
Report No.: AGC00803180105FE03 Page 15 of 53


9.3. TEST SETUP

RADIATED EMISSION TEST-SETUP FREQUENCY BELOW 30MHz

Spectrum Analyzer / Receiver

RADIATED EMISSION TEST SETUP 30MHz-1000MHz



The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 16 of 53

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

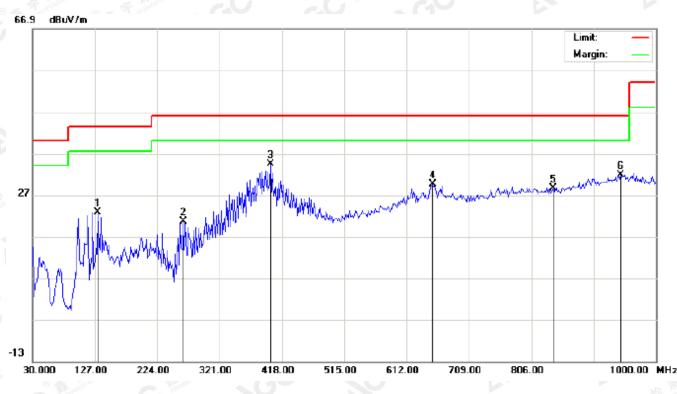
The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.ago-gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 17 of 53

9.4. TEST RESULT

(Worst modulation: GFSK)

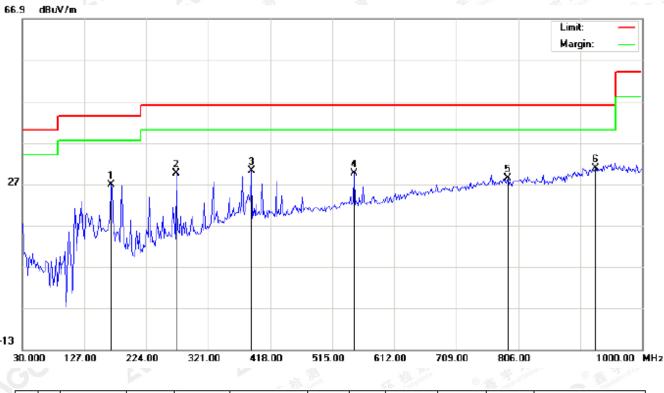

FOR BR/EDR

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHz

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL


	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		-	MHz	dBu∨	dB/m	dBu\//m	dBuV/m	dB		cm	degree	
ų.	1		131.8500	11.35	11.39	22.74	43.50	-20.76	peak			
M.C	2		264.4166	11.27	9.35	20.62	46.00	-25.38	peak			
	3	*	400.2167	15.36	19.08	34.44	46.00	-11.56	peak			
	4		652.4167	5.62	23.92	29.54	46.00	-16.46	peak			
	5		839.9500	1.31	27.31	28.62	46.00	-17.38	peak			
	6		945.0333	1.88	29.86	31.74	46.00	-14.26	peak			

RESULT: PASS

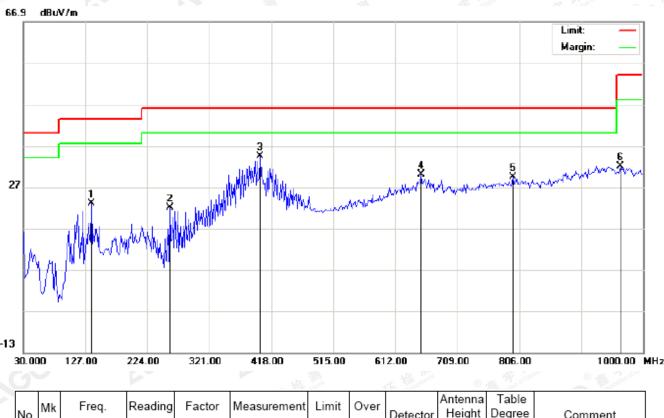
The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 18 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
÷,		-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
ŝ	1		169.0333	12.13	14.76	26.89	43.50	-16.61	peak			
	2		270.8833	15.05	14.53	29.58	46.00	-16.42	peak			
	3		388.9000	11.24	19.00	30.24	46.00	-15.76	peak			
	4		548.9500	7.14	22.45	29.59	46.00	-16.41	peak			
	5		789.8333	1.13	27.18	28.31	46.00	-17.69	peak			
	6	*	927.2500	1.43	29.37	30.80	46.00	-15.20	peak			

RESULT: PASS

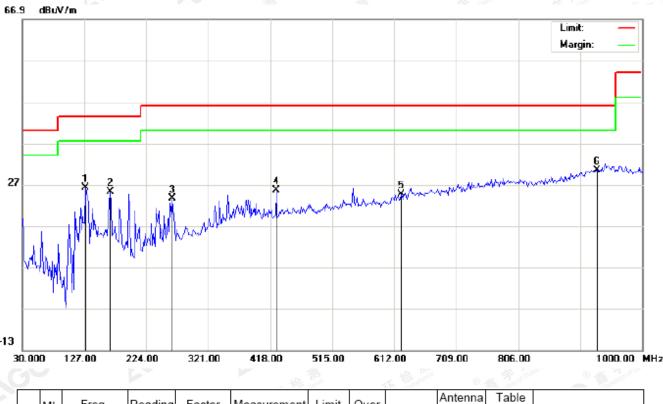

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

The results show the may be treport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment	
14		-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree		
0.5	1		136.7000	9.33	13.66	22.99	43.50	-20.51	peak				
	2		259.5667	13.53	8.53	22.06	46.00	-23.94	peak				177
	3	*	400.2167	15.24	19.08	34.32	46.00	-11.68	peak				
	4		652.4167	6.02	23.92	29.94	46.00	-16.06	peak				
	5		796.3000	2.19	27.27	29.46	46.00	-16.54	peak				3
1	6		964.4333	2.12	29.86	31.98	54.00	-22.02	peak				20


RESULT: PASS

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

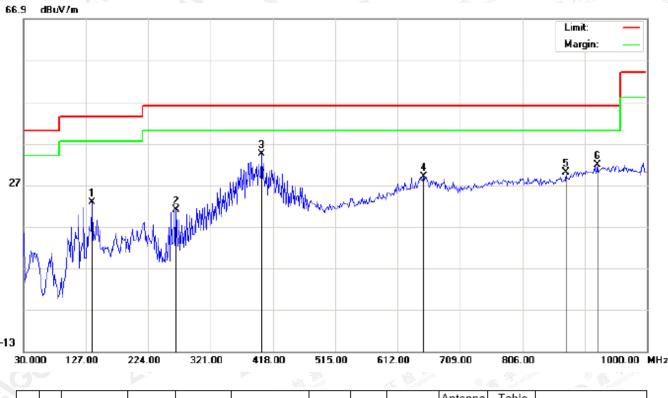
Report No.: AGC00803180105FE03 Page 20 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
ę	-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
1		128.6167	15.82	10.45	26.27	43.50	-17.23	peak			
2		167.4167	10.32	14.86	25.18	43.50	-18.32	peak			
3		264.4166	9.21	14.34	23.55	46.00	-22.45	peak			
4		427.7000	5.61	19.91	25.52	46.00	-20.48	peak			
5		623.3167	1.32	23.25	24.57	46.00	-21.43	peak			
6	*	928.8667	1.03	29.41	30.44	46.00	-15.56	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

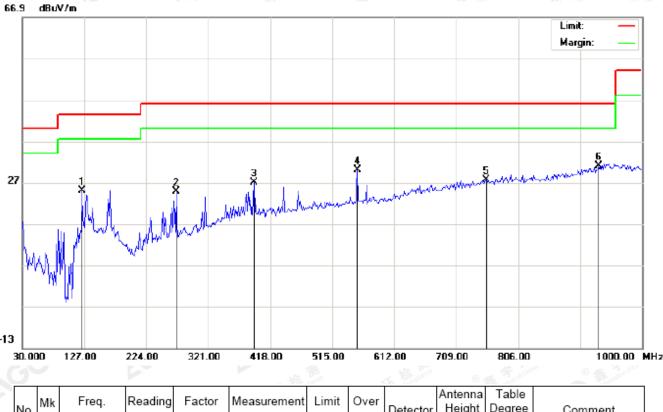

2. The "Factor" value can be calculated automatically by software of measurement system.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 21 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL

No	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
e,	-	MHz	dBu∨	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		136.7000	9.05	13.66	22.71	43.50	-20.79	peak			
2		267.6500	11.05	9.90	20.95	46.00	-25.05	peak			
3	*	400.2167	15.30	19.08	34.38	46.00	-11.62	peak			
4		652.4167	5.07	23.92	28.99	46.00	-17.01	peak			
5		873.9000	2.06	27.93	29.99	46.00	-16.01	peak			
6		922.4000	2.54	29.23	31.77	46.00	-14.23	peak			


RESULT: PASS

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00803180105FE03 Page 22 of 53

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
×,		-	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
65	1		123.7667	16.56	8.43	24.99	43.50	-18.51	peak			
	2		270.8833	10.18	14.53	24.71	46.00	-21.29	peak			
	3		392.1333	8.05	19.02	27.07	46.00	-18.93	peak			
	4		553.8000	7.41	22.50	29.91	46.00	-16.09	peak			
	5		755.8832	0.89	26.71	27.60	46.00	-18.40	peak			
	6	*	932.1000	1.49	29.50	30.99	46.00	-15.01	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 23 of 53

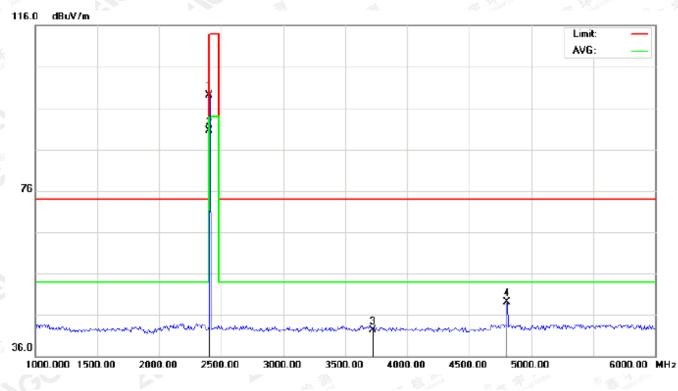
RADIATED EMISSION ABOVE 1GHz

(Worst modulation: GFSK)

FOR BR/EDR

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL-HORIZONTAL

N	١o.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Height		Comment
		-	MHz	dBu∨	dB/m	dBu\//m	dBuV/m	dB		cm	degree	
	1		2402.000	89.21	10.32	99.53	114.00	-14.47	peak			
6	2	*	2402.000	80.50	10.32	90.82	94.00	-3.18	AVG	100	105	
	3		3608.333	29.83	12.78	42.61	74.00	-31.39	peak			
	4		4804.000	41.74	7.69	49.43	74.00	-24.57	peak			


RESULT: PASS

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00803180105FE03 Page 24 of 53

RADIATED EMISSION TEST- (ABOVE 1GHz)-LOW CHANNEL- VERTICAL

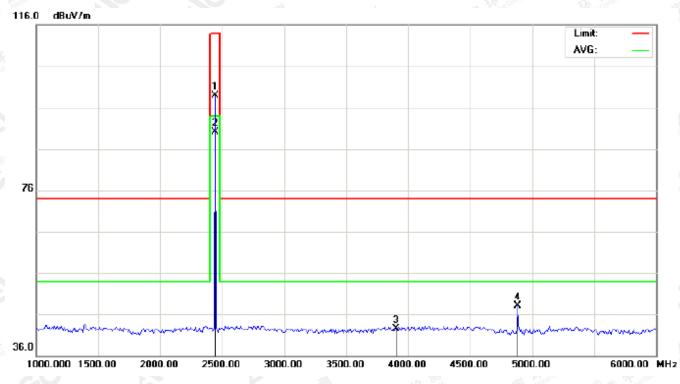
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
8	-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2402.000	88.82	10.32	99.14	114.00	-14.86	peak			
2	*	2402.000	80.14	10.32	90.46	94.00	-3.54	AVG	100	302	
3		3725.000	28.86	13.50	42.36	74.00	-31.64	peak			
4		4804.000	41.38	7.69	49.07	74.00	-24.93	peak			

RESULT: PASS

The results shows in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

dBuV/m 116.0 Limit: AVG: 76 \$ 36.0 1000.000 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00 5000.00 6000.00 MHz

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL-HORIZONTAL


												(2) 100
	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
2	1		2441.000	88.74	10.36	99.10	114.00	-14.90	peak			
	2	*	2441.000	80.05	10.36	90.41	94.00	-3.59	AVG	100	113	
	3		3700.000	29.21	13.34	42.55	74.00	-31.45	peak			
	4		4882.000	40.38	7.89	48.27	74.00	-25.73	peak			

RESULT: PASS

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

RADIATED EMISSION TEST- (ABOVE 1GHz)-MIDDLE CHANNEL- VERTICAL

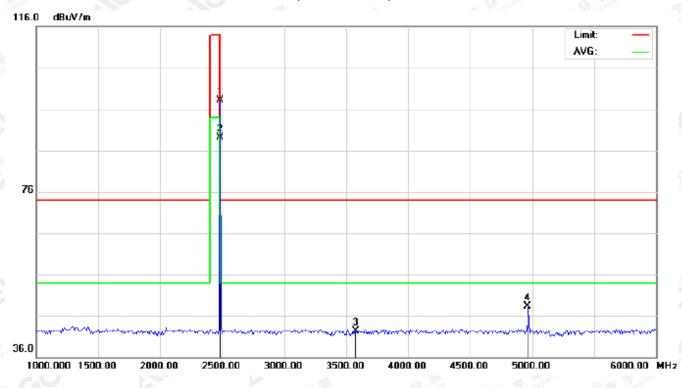
						8		2 10.7.20 11.711	7 = 1		Junio de la composición de la composicinde la composición de la composición de la composición de la co
0.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over				Comment
	-	MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1		2441.000	88.49	10.36	98.85	114.00	-15.15	peak			
2	*	2441.000	79.66	10.36	90.02	94.00	-3.98	AVG	100	299	
3		3900.000	27.94	14.57	42.51	74.00	-31.49	peak			
1		4882.000	40.31	7.89	48.20	74.00	-25.80	peak			
	0. <u>2</u> }	· · · · · · · · · · · · · · · · · · ·	MHz MHz 2441.000 2 * 2441.000 3 3900.000	MHz dBuV I 2441.000 88.49 2 * 2441.000 79.66 3 3900.000 27.94	MHz dBuV dB/m I 2441.000 88.49 10.36 2 * 2441.000 79.66 10.36 3 3900.000 27.94 14.57	o. III IIII IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	o. Image: marked back of the term of the term of term	MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB I 2441.000 88.49 10.36 98.85 114.00 -15.15 2 * 2441.000 79.66 10.36 90.02 94.00 -3.98 3 3900.000 27.94 14.57 42.51 74.00 -31.49	Mk Freq. Reading Factor Measurement Limit Over Detector MHz dBu√ dB/m dBu√/m dBu√/m dB dBu√/m dB I 2441.000 88.49 10.36 98.85 114.00 -15.15 peak 2 * 2441.000 79.66 10.36 90.02 94.00 -3.98 AVG 3 3900.000 27.94 14.57 42.51 74.00 -31.49 peak	Mk Freq. Reading Factor Measurement Limit Over Detector Height MHz dBuV dB/m dBuV/m dBuV/m dB dB/m dBuV/m dB mm cm mm cm mm cm mm cm mm mm mm mm dBuV/m dB mm mm <td>Mk Freq. Reading Factor Measurement Limit Over Detector Height Degree MHz dBuV dB/m dBuV/m dBuV/m dB cm degree I 2441.000 88.49 10.36 98.85 114.00 -15.15 peak 2 2 * 2441.000 79.66 10.36 90.02 94.00 -3.98 AVG 100 299 3 3900.000 27.94 14.57 42.51 74.00 -31.49 peak </td>	Mk Freq. Reading Factor Measurement Limit Over Detector Height Degree MHz dBuV dB/m dBuV/m dBuV/m dB cm degree I 2441.000 88.49 10.36 98.85 114.00 -15.15 peak 2 2 * 2441.000 79.66 10.36 90.02 94.00 -3.98 AVG 100 299 3 3900.000 27.94 14.57 42.51 74.00 -31.49 peak

RESULT: PASS

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

dBuV/m 116.0 Limit: AVG: 76 \$ 36.0 2500.00 3000.00 4500.00 1000.000 1500.00 2000.00 3500.00 4000.00 5000.00 6000.00 MHz

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL-HORIZONTAL


					P						(15) JEE2	
1	۷o.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBu\//m	dBuV/m	dB		cm	degree	
2	1		2480.000	87.97	10.41	98.38	114.00	-15.62	peak			
	2	*	2480.000	79.11	10.41	89.52	94.00	-4.48	AVG	100	107	
Γ	3		3300.000	30.33	11.92	42.25	74.00	-31.75	peak			
	4		4960.000	40.51	8.09	48.60	74.00	-25.40	peak			

RESULT: PASS

The results shown the sample (s) tested unless otherwise stated and the sample (s) are retained for 30 days only. The document is issued by AGE, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gent.com.

RADIATED EMISSION TEST- (ABOVE 1GHz)-HIGH CHANNEL- VERTICAL

											2227 CDP - 1 / XX
o.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over			Table Degree	Comment
	•	MHz	dBu∨	dB/m	dBu∀/m	dBu∀/m	dB		cm	degree	
1		2480.000	87.69	10.41	98.10	114.00	-15.90	peak			
2	*	2480.000	78.73	10.41	89.14	94.00	-4.86	AVG	100	301	
3		3575.000	29.74	12.57	42.31	74.00	-31.69	peak			
1		4960.000	40.16	8.09	48.25	74.00	-25.75	peak			
	0. 1 2 3	· · · · · · · · · · · · · · · · · · ·	MHz I 2480.000 2 * 2480.000 3 3575.000	MHz dBuv I 2480.000 87.69 2 * 2480.000 78.73 3 3575.000 29.74	o. Image: MHz dBu√ dB/m I 2480.000 87.69 10.41 2 * 2480.000 78.73 10.41 3 3575.000 29.74 12.57	o. Image: MHz dBuv dB/m dBuv/m I 2480.000 87.69 10.41 98.10 2 * 2480.000 78.73 10.41 89.14 3 3575.000 29.74 12.57 42.31	o. MHz dBuV dB/m dBuV/m dBuV/m I 2480.000 87.69 10.41 98.10 114.00 2 * 2480.000 78.73 10.41 89.14 94.00 3 3575.000 29.74 12.57 42.31 74.00	o. MHz dBuV dB/m dBuV/m dBuV/m dB I 2480.000 87.69 10.41 98.10 114.00 -15.90 2 * 2480.000 78.73 10.41 89.14 94.00 -4.86 3 3575.000 29.74 12.57 42.31 74.00 -31.69	Mk Freq. Reading Factor Measurement Limit Over Detector MHz dBu√ dB/m dBu√/m dBu√/m dB dB dB Perector Detector I 2480.000 87.69 10.41 98.10 114.00 -15.90 peak 2 * 2480.000 78.73 10.41 89.14 94.00 -4.86 AVG 3 3575.000 29.74 12.57 42.31 74.00 -31.69 peak	Mk Freq. Reading Factor Measurement Limit Over Detector Height MHz dBuV dB/m dBuV/m dBuV/m dB dB cm teight I 2480.000 87.69 10.41 98.10 114.00 -15.90 peak 2 * 2480.000 78.73 10.41 89.14 94.00 -4.86 AVG 100 3 3575.000 29.74 12.57 42.31 74.00 -31.69 peak	Mk Freq. Reading Factor Measurement Limit Over Detector Height Degree MHz dBuV dB/m dBuV/m dBuV/m dB dB cm degree I 2480.000 87.69 10.41 98.10 114.00 -15.90 peak 2 * 2480.000 78.73 10.41 89.14 94.00 -4.86 AVG 100 301 3 3575.000 29.74 12.57 42.31 74.00 -31.69 peak

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor + Cable loss - Amplifier gain, Margin=Measurement-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC * 鑫 宇 环 检 测 Attestation of Global Compliance

Field strength of the fundamental signal

1Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	89.21	10.32	99.53	114	-14.47	Horizontal
2402	88.82	10.32	99.14	114	-14.86	Vertical
2441	88.74	10.36	99.10	114	-14.90	🐀 Horizontal
2441	88.49	10.36	98.85	114	-15.15	Vertical
2480	87.97	10.41	98.38	114	-15.62	Horizontal
2480	87.69	10.41	98.10	114	-15.90	Vertical

Average value

Reading Level	Factor	Factor Measurement		Over	Antenna	
(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization	
80.50	10.32	90.82	94	-3.18	Horizontal	
80.14	10.32	90.46	94	-3.54	Vertical	
80.05	10.36	90.41	94	-3.59	Horizontal	
79.66	10.36	90.02	94	-3.98	Vertical	
79.11	10.41	89.52	94	-4.48	Horizontal	
78.73	10.41	89.14	94	-4.86	Vertical	
	Level (dBuv) 80.50 80.14 80.05 79.66 79.11	Level Factor (dBuv) (dB/m) 80.50 10.32 80.14 10.32 80.05 10.36 79.66 10.36 79.11 10.41	LevelFactorMeasurement(dBuv)(dB/m)(dBuv/m)80.5010.3290.8280.1410.3290.4680.0510.3690.4179.6610.3690.0279.1110.4189.52	LevelFactorMeasurementLimit(dBuv)(dB/m)(dBuv/m)(dBuv/m)80.5010.3290.829480.1410.3290.469480.0510.3690.419479.6610.3690.029479.1110.4189.5294	LevelFactorMeasurementLimitOver(dBuv)(dB/m)(dBuv/m)(dBuv/m)(dB)80.5010.3290.8294-3.1880.1410.3290.4694-3.5480.0510.3690.4194-3.5979.6610.3690.0294-3.9879.1110.4189.5294-4.48	

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

测 GC 环 五 检 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 30 of 53

2Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	88.90	10.32	99.22	114	-14.78	Horizontal
2402	88.46	10.32 🐀	98.78	114	-15.22	Vertical
2441	88.40	10.36	98.76	114	-15.24	Horizontal
2441	83.58	10.36	93.94	114	-20.06	Vertical
2480	81.55	10.41	91.96	114	-22.04	Horizontal
2480	81.33	10.41	91.74	114	-22.26	Vertical

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	80.07	10.32	90.39	94	-3.61	Horizontal
2402	79.78	10.32	90.10	94	-3.90	Vertical
2441	79.62	10.36	89.98	94	-4.02	Horizontal
2441	74.92	10.36	85.28	94	-8.72	Vertical
2480	73.10	10.41	83.51	94	-10.49	Horizontal
2480	72.68	10.41	83.09	94	-10.91	Vertical

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

环 测 GC 五 检 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 31 of 53

3Mbps Result:

Peak value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	88.42	10.32	98.74	114	-15.26	Horizontal
2402	88.06	10.32 🍝	98.38	114	-15.62	Vertical
2441	87.98	10.36	98.34	114	-15.66	Horizontal
2441	83.26	10.36	93.62	114	-20.38	Vertical
2480	81.14	10.41	91.55	114	-22.45	Horizontal
2480	80.86	10.41	91.27	114	-22.73	Vertical

Average value

Frequency	Reading Level	Factor	Measurement	Limit	Over	Antenna
(MHz)	(dBuv)	(dB/m)	(dBuv/m)	(dBuv/m)	(dB)	Polarization
2402	79.66	10.32	89.98	94	-4.02	Horizontal
2402	79.36	10.32	89.68	94	-4.32	Vertical
2441	79.15	10.36	89.51	94	-4.49	Horizontal
2441	74.54	10.36	84.90	94	-9.10	Vertical
2480	72.73	10.41	83.14	94	-10.86	Horizontal
2480	72.20	10.41	82.61	94	-11.39	Vertical

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.cett.com.

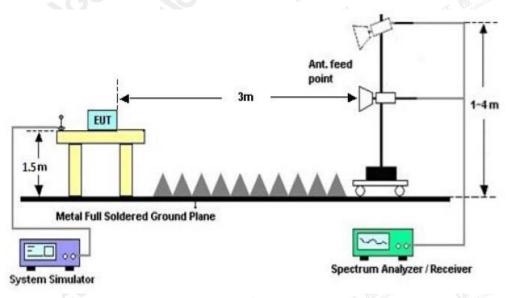
AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 32 of 53

10. BAND EDGE EMISSION

10.1. MEASUREMENT PROCEDURE

1. The EUT operates at hopping-off test mode. The lowest or highest channels are tested to verify the


largest transmission and spurious emissions power at the continuous transmission mode.

2. Max hold the trace of the setup 1, and the EUT operates at hopping-on test mode to verify the largest spurious emissions power.

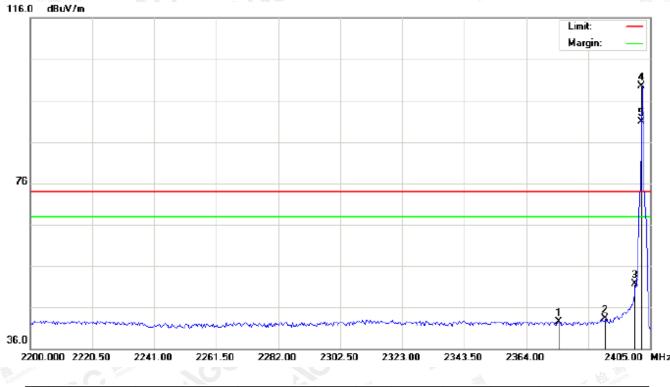
3. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission.

Start frequency(MHz)		Stop frequency(MHz)				
2200	「 「 「 「 」	Note Contraction	2405	CO MAR		
2478	C The station of Global	GO Meet	2500			

10.2 TEST SETUP

RADIATED EMISSION TEST SETUP

The results show the market report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.cent.com.


ACCC[®]鑫宇环检测 Attestation of Global Compliance

10.3 RADIATED TEST RESULT

(Worst modulation: GFSK)

FOR BR/EDR

TEST PLOT OF BAND EDGE FOR LOW CHANNEL-Horizontal

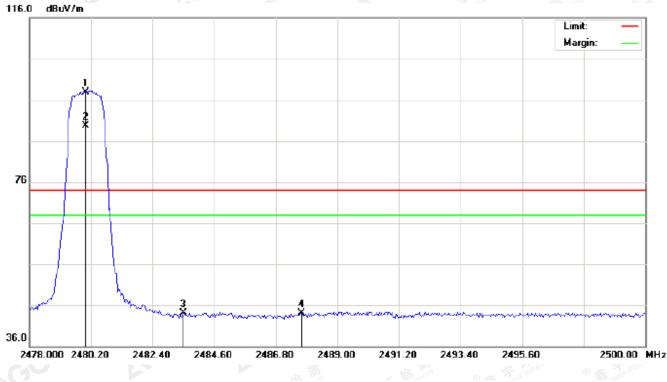
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
	-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2374.933	32.20	10.29	42.49	74.00	-31.51	peak			
2		2390.000	33.00	10.31	43.31	74.00	-30.69	peak			
3		2400.000	41.47	10.32	51.79	74.00	-22.21	peak			
4	*	2402.000	89.22	10.32	99.54	74.00	25.54	peak			
5	Х	2402.000	80.52	10.32	90.84	74.00	16.84	AVG	100	110	

The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 34 of 53

116.0 dBuV/m Imit: I

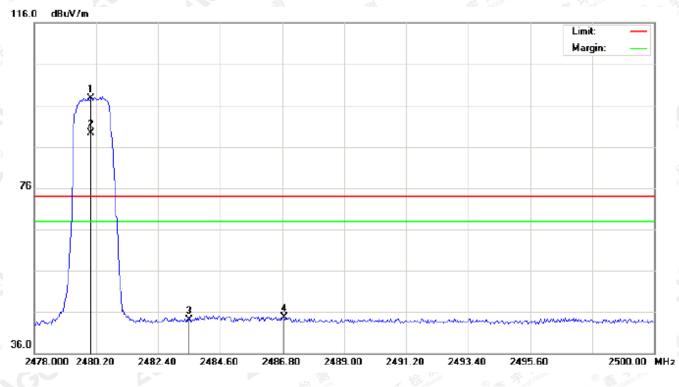
TEST PLOT OF BAND EDGE FOR LOW CHANNEL -Vertical


	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBu∀	dB/m	dBuV/m	dBu∀/m	dB		cm	degree	
510	1		2374.933	32.20	10.29	42.49	74.00	-31.51	peak			
	2		2390.000	33.00	10.31	43.31	74.00	-30.69	peak			
	3		2400.000	41.47	10.32	51.79	74.00	-22.21	peak			
	4	*	2402.000	89.22	10.32	99.54	74.00	25.54	peak			
	5	Х	2402.000	80.52	10.32	90.84	74.00	16.84	AVG	100	110	
		F 1302										757

The results showed this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.met.com

Report No.: AGC00803180105FE03 Page 35 of 53

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL -Horizontal


	No. N	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
a		-	MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
10	1	*	2480.000	87.55	10.41	97.96	74.00	23.96	peak			
	2	Х	2480.000	79.21	10.41	89.62	74.00	15.62	AVG	100	108	
	3		2483.500	33.69	10.41	44.10	74.00	-29.90	peak			
	4		2487.716	33.68	10.42	44.10	74.00	-29.90	peak			

The results shows in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc-gett.com.

Report No.: AGC00803180105FE03 Page 36 of 53

TEST PLOT OF BAND EDGE FOR HIGH CHANNEL-Vertical

			<i>P</i>		20111111	2017					100- 1.C-
No.	. Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height		Comment
		MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB		cm	degree	
1	*	2480.000	87.32	10.41	97.73	74.00	23.73	peak			
2	Х	2480.000	78.86	10.41	89.27	74.00	15.27	AVG	100	293	
3		2483.500	33.76	10.41	44.17	74.00	-29.83	peak			
4		2486.873	34.36	10.42	44.78	74.00	-29.22	peak			
-			http://www.comment.com				-				

RESULT: PASS

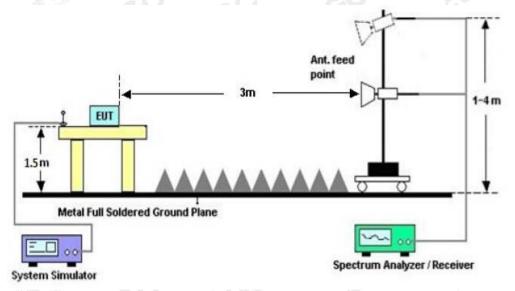
Note: Factor=Antenna Factor + Cable loss - Amplifier gain, Over=Measure-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Hopping on mode and Hopping off mode have been tested, but only worst case reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.com.

AGC a 字 环 检 测 Attestation of Global Compliance


Report No.: AGC00803180105FE03 Page 37 of 53

11. 20DB BANDWIDTH

11.1. MEASUREMENT PROCEDURE

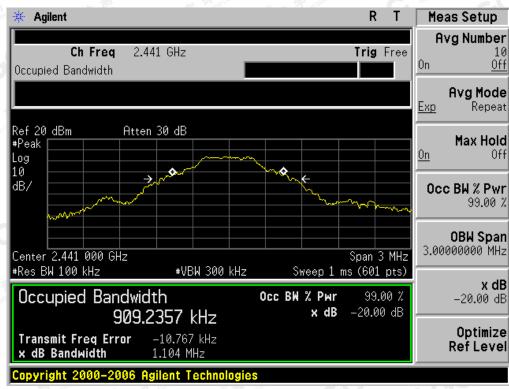
- 1. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 2. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel
- $RBW \ge 1\%$ of the 20 dB bandwidth, $VBW \ge 3RBW$; Sweep = auto; Detector function = peak 3 Set SPA Trace 1 Max hold, then View
- 3. Set SPA Trace 1 Max hold, then View.

11.2. TEST SET-UP

11.3. LIMITS AND MEASUREMENT RESULTS

FOR BR/EDR

BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT					
	Measurement Result				
Applicable Limits	Test Data (MHz)			Decult	
		99%OBW (MHz)	-20dB BW(MHz)	Result	
Salat Comparison 6	Low Channel	0.956	1.166	PASS	
N/A	Middle Channel	0.909	1.104	PASS	
	High Channel	0.914	1.088	PASS	


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

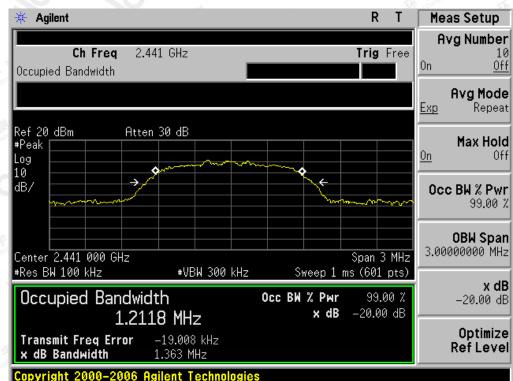
GC[®]鑫宇环检测 Attestation of Global Compliance

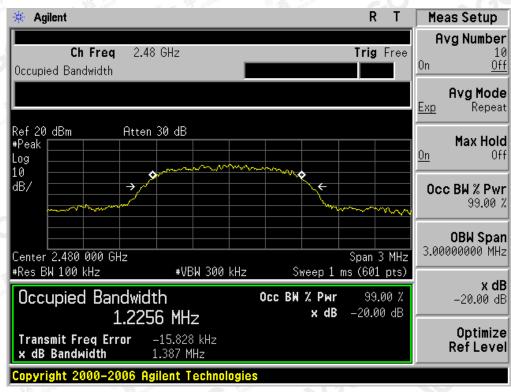
The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attr://www.agc.gett.com.



BLUET	OOTH 2MBPS LIN	MITS AND MEASU	REMENT RESULT		
	Measurement Result				
Applicable Limits	Test Data (MHz)			Decult	
		99%OBW (MHz)	-20dB BW(MHz)	Result	
	Low Channel	1.205	1.334	PASS	
N/A	Middle Channel	1.212	1.363	PASS	
CO Martin	High Channel	1.226	1.387	PASS	
		117-	The company of Y	al Cu	

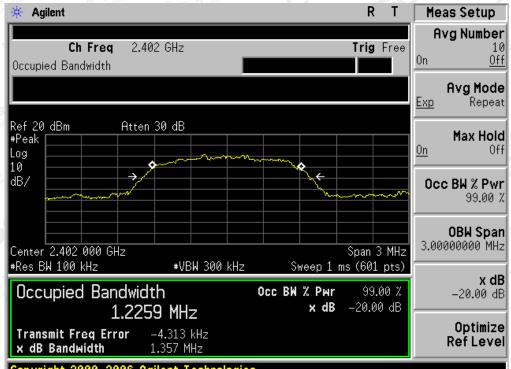
鑫 宇 环 检 测 Attestation of Global Compliance


GC


The results show of this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

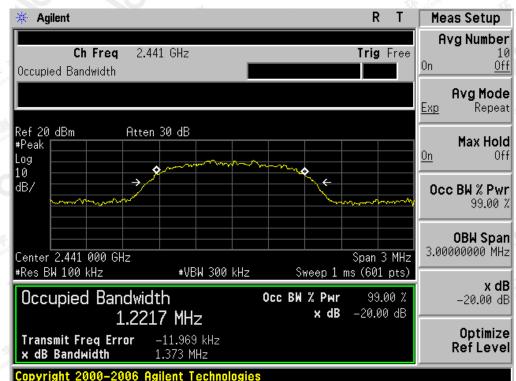
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL


The results shown if this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

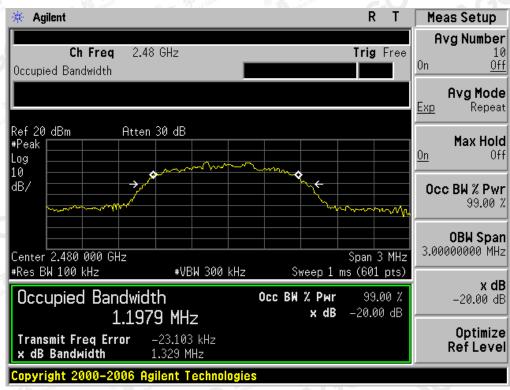
TH 3MBPS LIN	/ITS AND MEASU				
	Measure	mont Booult			
	Measurement Result				
Test Data (MHz)			Decult		
	99%OBW (MHz)	-20dB BW(MHz)	Result		
_ow Channel	1.226	1.357	PASS		
iddle Channel	1.222	1.373	PASS		
High Channel	1.198	1.329	PASS		
	iddle Channel	99%OBW (MHz)Low Channel1.226iddle Channel1.222	99%OBW (MHz) -20dB BW(MHz) Low Channel 1.226 1.357 iddle Channel 1.222 1.373		

鑫 宇 环 检 测 Attestation of Global Compliance

GC



The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (ACC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.



Report No.: AGC00803180105FE03 Page 43 of 53

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

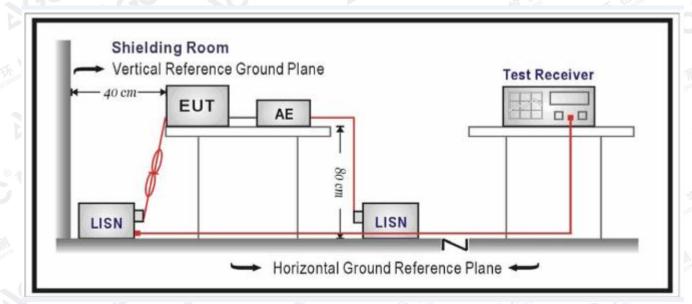
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

The results showing this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

12. FCC LINE CONDUCTED EMISSION TEST

12.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage			
	Q.P.(dBuV)	Average(dBuV)		
150kHz~500kHz	66-56	56-46		
500kHz~5MHz	56	46		
5MHz~30MHz	60	50		

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

The results show the may be treport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

AGC[®]鑫宇环检测 Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 45 of 53

12.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter or PC which received 120V/60Hz power by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

12.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

12.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

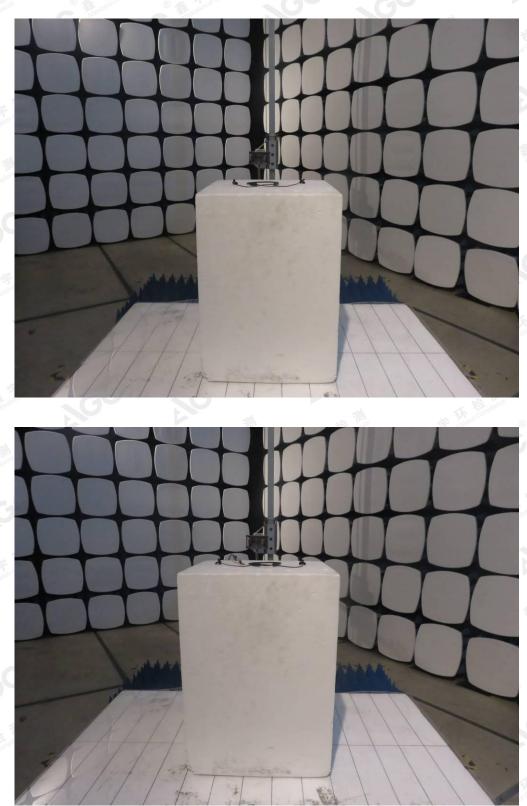
N/A

Note: The BT function of EUT is not work when charging.


The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.ceit.com.

Report No.: AGC00803180105FE03 Page 46 of 53

APPENDIX A: PHOTOGRAPHS OF TEST SETUP FCC RADIATED EMISSION TEST SETUP



The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.gett.com.

Report No.: AGC00803180105FE03 Page 47 of 53

The results showing these treport refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.ent.com.

Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 48 of 53

APPENDIX B: PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

The results shows if this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by (AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attp://www.agc.geit.com.

Report No.: AGC00803180105FE03 Page 49 of 53

FRONT VIEW OF EUT

BACK VIEW OF EUT

The results shown in this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at the sample and the sample at th

Attestation of Global Compliance

Report No.: AGC00803180105FE03 Page 50 of 53

LEFT VIEW OF EUT

RIGHT VIEW OF EUT

The results showing the steet report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.agc.gett.com.

Attestation of Global Compliance

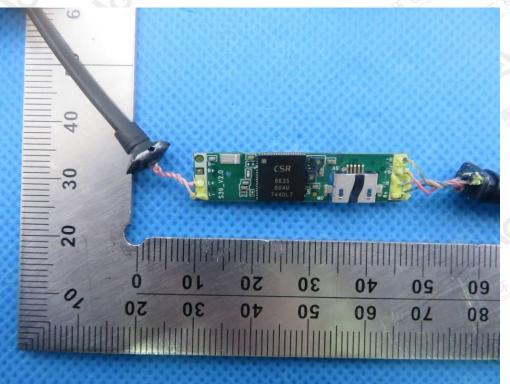
Report No.: AGC00803180105FE03 Page 51 of 53

VIEW OF EUT (PORT)

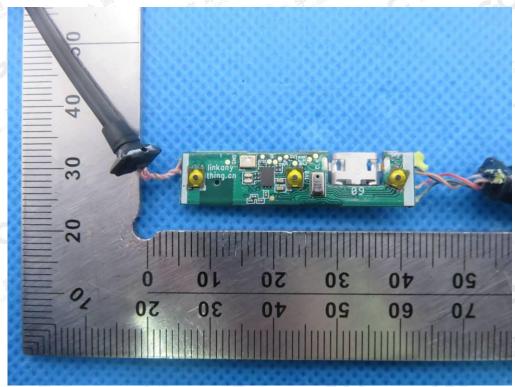
The results showed this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed of the transformed of the

 20
 40
 30
 50
 60
 80
 20
 80
 20
 80
 80
 20
 80
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20
 20<

Attestation of Global Compliance


80 90 100

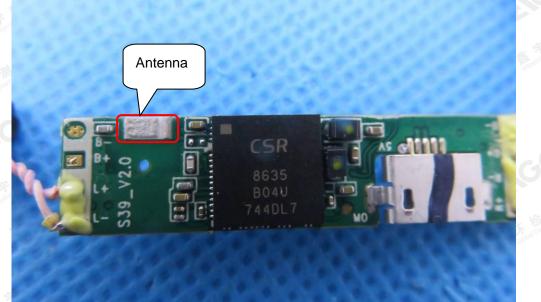
> 50 10 t0 30



Report No.: AGC00803180105FE03 Page 52 of 53

INTERNAL VIEW OF EUT-1

INTERNAL VIEW OF EUT-2


The results showing this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at attraction.

Report No.: AGC00803180105FE03 Page 53 of 53

INTERNAL VIEW OF EUT-3

----END OF REPORT----

The results show of this jest report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by AGC, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at bits //www.acc.met.

