Automation Inc. dba RADAR

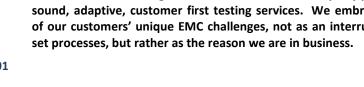
TEST REPORT FOR

RFID sensor operating in the UHF band Model: RS510

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)


Report No.: 108261-6

Date of issue: June 2, 2023

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for **CKC** Laboratories, Inc.

We strive to create long-term, trust-based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to

This report contains a total of 103 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	3
Report Authorization	3
Test Facility Information	4
Software Versions	4
Site Registration & Accreditation Information	4
Summary of Results	5
Modifications During Testing	5
Conditions During Testing	5
Equipment Under Test	6
General Product Information	7
FCC Part 15 Subpart C	12
15.247(a) Transmitter Characteristics	12
15.247(a)(1)(i) Occupied Bandwidth	13
15.247(a)(1) Carrier Separation	15
15.247(a)(1)(i) Number of Hopping Channels	16
15.247(a)(1)(i) Time of Occupancy	17
15.247(b)(2) Output Power	24
15.247(d) RF Conducted Emissions & Band Edge	36
15.247(d) Radiated Emissions & Band Edge	49
15.207 AC Conducted Emissions	84
Appendix A: Manufacturer Provided Conducted Power Measurement	91
Supplemental Information	
Measurement Uncertainty	
Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

Automation Inc. dba RADAR 15150 Avenue of Science, Ste. 200 San Diego, CA 92121

Representative: Mark Easton Customer Reference Number: 1662-SD1-Test

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:**

Viviana Prado CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 108261

April 28, 2023 April 28, 2023 and May 1 and 2, 2023

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Bel

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable, and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 Olinda Place Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.20

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	Pass
15.247(a)(1)	Carrier Separation	NA	Pass
15.247(a)(1)(i)	Number of Hopping Channels	NA	Pass
15.247(a)(1)(i)	Average Time of Occupancy	NA	Pass
15.247(b)(2)	Output Power	NA	Pass
15.247(d)	RF Conducted Emissions & Band Edge	NA	Pass
15.247(d)	Radiated Emissions & Band Edge	NA	Pass
15.207	AC Conducted Emissions	NA	Pass

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

None

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 4

Equipment Tested:			
Device	Manufacturer	Model #	S/N
RFID sensor operating in	Automaton Inc dba RADAR	RS510	513
the UHF band			

Support Equipment:

Device	Manufacturer	Model #	S/N
Gigabit POE	Trendent	TPE-117G1A	E18H7G2000147
Keyboard	Perixx	Perboard 505 Plus	1906000719
Mouse	DPI	TM176G	20220523000709
Minicomputer	Intel	NUC8HN	BTHN009003HV

Configuration 5

Equipment Tested:

Device	Manufacturer	Model #	S/N
RFID sensor operating in	Automaton Inc dba RADAR	RS510	508
the UHF band			

Support Equipment:

Device	Manufacturer	Model #	S/N
Gigabit POE	Trendent	TPE-117G1A	E18H7G2000147
Keyboard	Perixx	Perboard 505 Plus	1906000719
Mouse	DPI	TM176G	20220523000709
Minicomputer	Intel	NUC8HN	BTHN009003HV

Configuration 6

Equipment Tested:			
Device	Manufacturer	Model #	S/N
RFID sensor operating in	Automaton Inc dba RADAR	RS510	507
the UHF band			

Support Equipment:

Device	Manufacturer	Model #	S/N
Gigabit POE	Trendent	TPE-117G1A	E18H7G2000147
Keyboard	Perixx	Perboard 505 Plus	1906000719
Mouse	DPI	TM176G	20220523000709
Minicomputer	Intel	NUC8HN	BTHN009003HV
POE injector	Solis Energy	HPI-2148	PT2144220316

General Product Information:

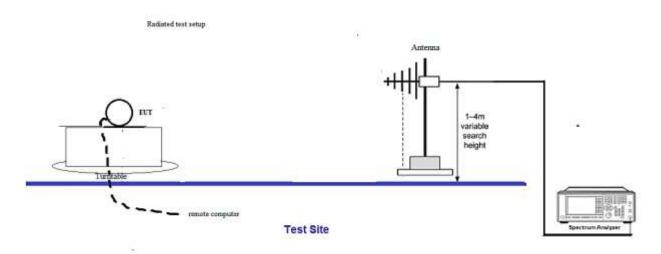
Product Information	Manufacturer-Provided Details	
Equipment Type:	Stand-Alone Equipment	
Type of Wideband System:	FHSS	
Operating Frequency Range:	902.75-927.25MHz	
Number of Hopping Channels:	50	
Receiver Bandwidth and	The manufacturer declares the receiver input bandwidth matches the	
Synchronization:	transmit channel bandwidth and shifts frequencies in synchronization with	
	the transmitter.	
Modulation Type(s):	PR-ASK *	
Maximum Duty Cycle:	98% or better	
Number of TX Chains:	4	
Antonna Type(s) and Cain:	Patch Array 6.12 dBi to 9.28 dBi	
Antenna Type(s) and Gain:	(Measured ant gain + beamforming gain as provided by the manufacturer)	
Beamforming Type:	Digital	
Antenna Connection Type:	Integral (External connector provided to facilitate testing)	
Nominal Input Voltage:	48VDC from POE	
Firmware / Software used for Test:	: Test mode firmware version: 0.85.11	
The validity of results is dependent on the stated product details, the accuracy of which the manufacturer assumes full responsibility.		

*Phase reversal ASK., TARI set at 6.25us

EUT Photo(s)

Page 8 of 103 Report No.: 108261-6

Page 9 of 103 Report No.: 108261-6


Page 10 of 103 Report No.: 108261-6

Support Equipment Photo(s)

Block Diagram of Test Setup(s)

FCC Part 15 Subpart C

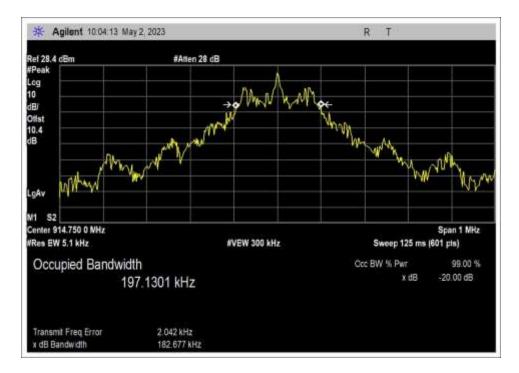
15.247(a) Transmitter Characteristics

Test Setup/Conditions				
Test Location:	Brea Lab A	Test Engineer:	E. Wong	
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/2/2023	
Configuration:	5			
Test Setup:	ANSI C63.10 (2013) Test Date(s): 5/2/2023			

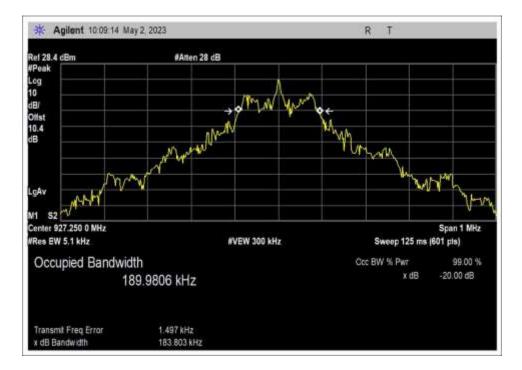
Environmental Conditions				
Temperature (^o C)	22.1	Relative Humidity (%):	46	


	Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024	
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024	

15.247(a)(1)(i) Occupied Bandwidth

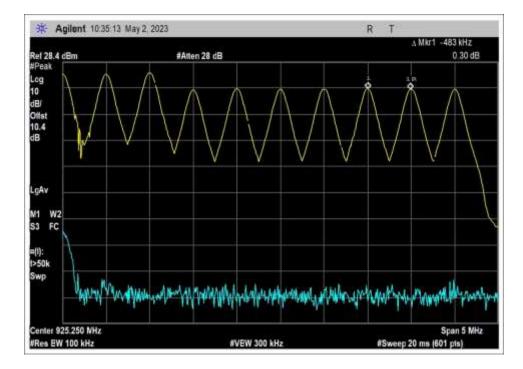

	Test Data Summary				
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results
902.75	1	PR-ASK	182.7	≤500	Pass
914.75	1	PR-ASK	182.7	≤500	Pass
927.25	1	PR-ASK	183.8	≤500	Pass

Plot(s)



Low Channel

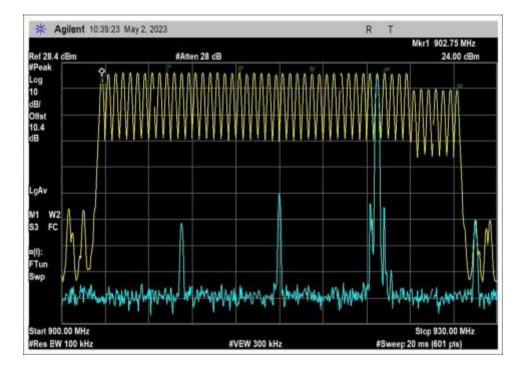
Middle Channel


High Channel

15.247(a)(1) Carrier Separation

Test Data Summary				
Limit applied: 20dB bandwidth of the hopping channel.				
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results
1	Hopping	483	> 183.8	Pass

Plot(s)



15.247(a)(1)(i) Number of Hopping Channels

	Test Data Summary				
$Limit = \begin{cases} 50 Channels 20 dB BW < 250 kHz \\ 250 cHz = 100 dB BW > 250 kHz \end{cases}$					
(25 ($Limit = \begin{cases} 30 \ Channels \ 20 \ dB \ BW \ \geq \ 250 \ kHz \\ 25 \ Channels \ 20 \ dB \ BW \ \geq \ 250 \ kHz \end{cases}$				
Antenna Port	Antenna Port Operational Mode Measured (Channels) Limit (Channels) Results				
1	Hopping	50	≥50	Pass	

Plot(s)

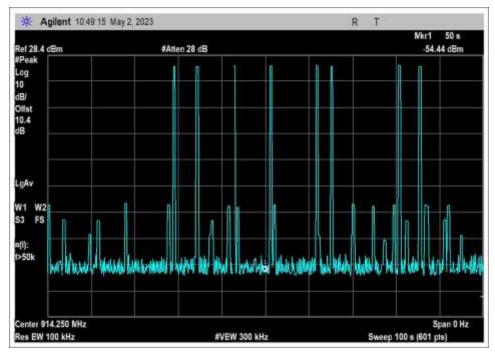
15.247(a)(1)(i) Time of Occupancy

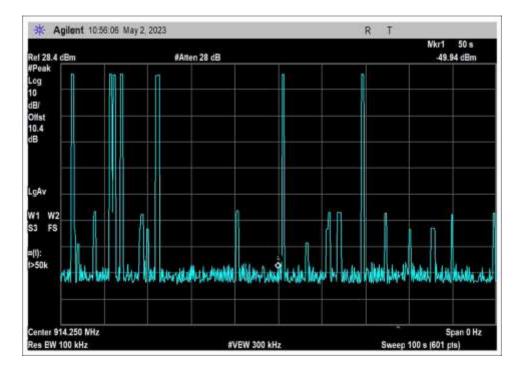
	Test Data Summary				
Observation Period, P _{obs} is derived from the following: $P_{Obs} = \begin{cases} 20 \ Seconds \ 20 \ dB \ BW < 250 kHz \\ 10 \ Seconds \ 20 \ dB \ BW \ge 250 kHz \end{cases}$					
Antenna Port	Operational Mode	Measured (ms)	Limit (ms/P _{obs})	Results	
1	hopping	391.2	≤400	Pass	

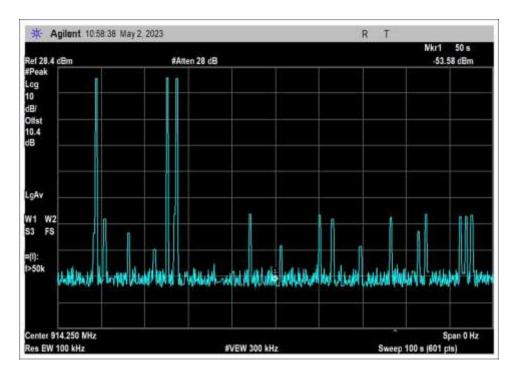
Measured results are calculated as follows:

$$Dwell time = \left(\sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time\right) \bigg|_{P_{obs}}$$

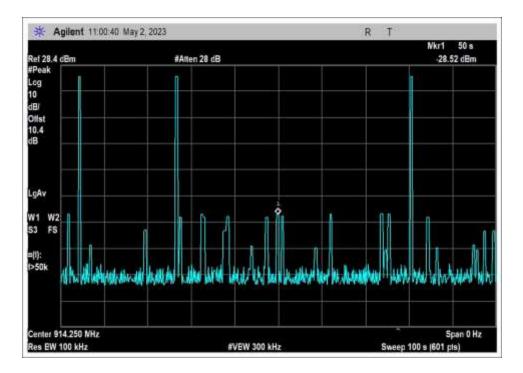
Actual Calculated Values:

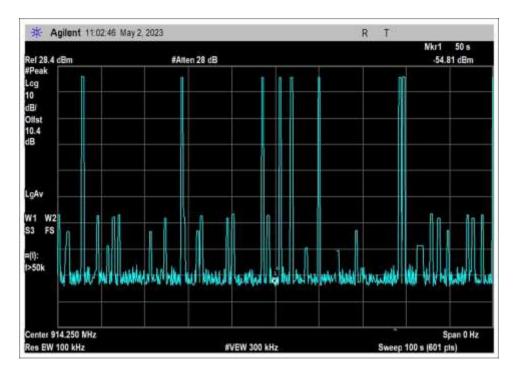

Parameter	Value
Observation Period (Pobs):	100sec
Number of RF Bursts / Pobs::	4.9
On time of RF Burst:	399.2ms
Number of Control or other signals / Pobs:	Na
On time of Control or other Signals:	Na
Total Measured on Time:	391.2ms

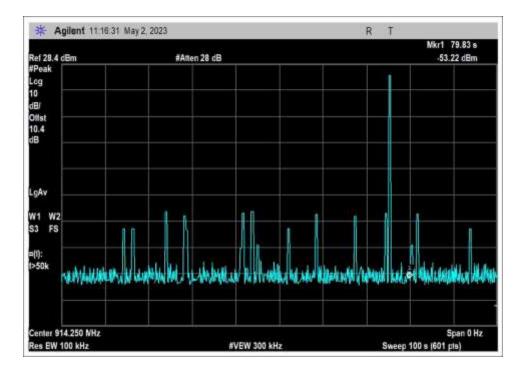

Average of ten 100 second sweep (4.9 event /100) x 20 sec = 0.98 event/ 20 sec On time per 20 sec = 0.98 event/20 sec x 399.2ms = 391.2ms

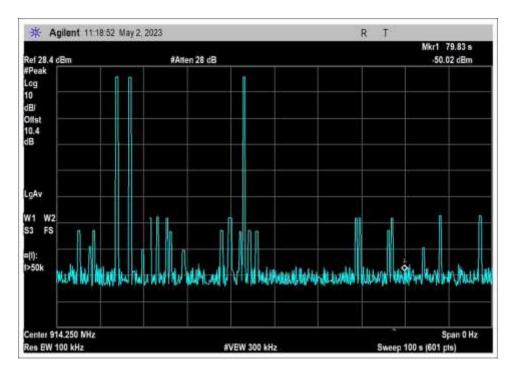

Plot(s)

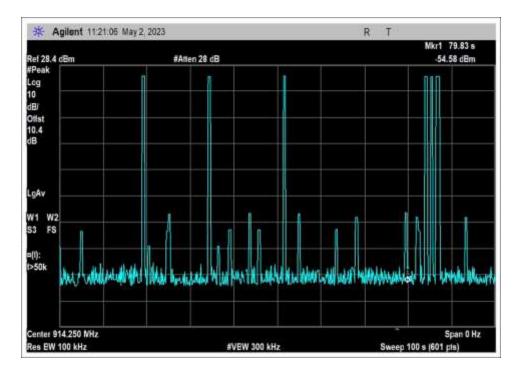
Average Time 100 Second

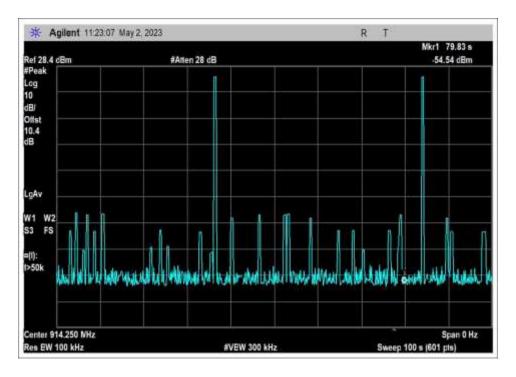


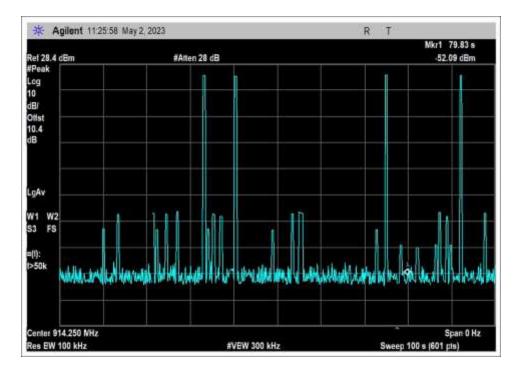



Sweep 3




Sweep 5




Sweep 7



Sweep 9

Occupancy Time Per Event

Test Setup Photo(s)

15.247(b)(2) Output Power

	Test Setup,	/Conditions	
Test Location:	Brea Lab A	Test Engineer:	E. Wong
Test Method:	ANSI C63.10 (2013)	Test Date(s):	5/2/2023
Configuration:	5 and 6 (power variation)*		
Test Setup:	The equipment under test (EUT) is The EUT is powered via a cat 6 net connected to a remotely located F cable is a remotely located compu- frequency hopping, and modulatio Frequency Range of EUT: 902.75M TX 902.75MHz, 914.75MHz, 927.2 TARI = 6.25us as intended. Worst case Antenna Pattern and a Lowest Gain: Sector 135, 0 Power	twork cable (nominal v POE Injector. Connector Iter. The computer is u on of the EUT. 1Hz to 927.25MHz 25MHz	ed to the POE Injector via cat 6 used to set frequency channel, evaluated.

Environmental Conditions			
Temperature (ºC)	22.2	Relative Humidity (%):	24.6

	Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due	
02869	Spectrum Analyzer	Agilent	E4440A	12/13/2022	12/13/2023	
03430	Attenuator	Aeroflex/Weinschel	75A-10-12	1/14/2022	1/14/2024	
07658	Cable	Astrolab, Inc.	32022-29094K- 29094K-24TC	6/22/2022	6/22/2024	
P07164	Multimeter	Fluke	8845A/G	8/13/2021	8/13/2023	
01438	DC Power Supply	Topward	6306D	4/4/2023	4/4/2025	

	Test Data Summary - Voltage Variations					
Frequency (MHz)	Modulation / Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)	
902.75	PR-ASK	35.0	35.0	35.0	0	
914.75	PR-ASK	35.1	35.1	35.1	0	
927.25	PR-ASK	29.8	29.8	29.8	0	

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage Vnominal +15%. - 8%*

Parameter	Value
V _{Nominal} :	55.2
V _{Minimum} :	48
V _{Maximum} :	44**

*Voltage variation based on result of test sample with identical power regulation circuit tested under Report 107785-08

 $\ensuremath{^{\ast\ast}\text{Lowest}}$ attenable voltage to maintain operation of the EUT ,

Test Data Summary - RF Conducted Measurement
$Limit = (30 dBm Conducted/36 dBm EIRP \ge 50 Channels$
$Limit = \begin{cases} 300 \text{ Bm Conducted/S00Bm EIRP} \\ 24 \text{ dBm Conducted/300Bm EIRP} \end{cases} < 50 \text{ Channels (min 25)} \end{cases}$

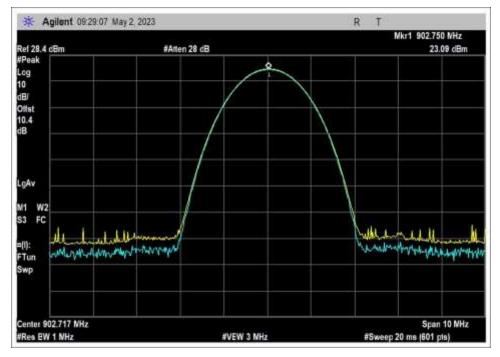
Ant Port		0		1		2		3	Linear sum		Ant gain Beamforming gain	Total EIRP
Freq	dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts	watt	dBm	dBi	dBm
902.75	23.1	0.2037	23.8	0.2393	22.9	0.1959	22.1	0.1629	0.8018	29.0	6.12	35.2
914.75	23.4	0.2203	23.2	0.2099	22.6	0.1824	22.8	0.1914	0.8040	29.1	6.12	35.2
927.25	18.2	0.0661	18.3	0.0671	17.3	0.0541	17.4	0.0551	0.2424	23.8	6.12	30.0

Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured Total EIRP (dBm)	EIRP Limit (dBm)	Results					
	Lowest antenna gain, highest power setting									
902.75	PR-ASK	Patch Array	35.2	≤ 36	Pass					
914.75	PR-ASK	Patch Array	35.2	≤ 36	Pass					
927.25	PR-ASK	Patch Array	30.0	≤ 36	Pass					

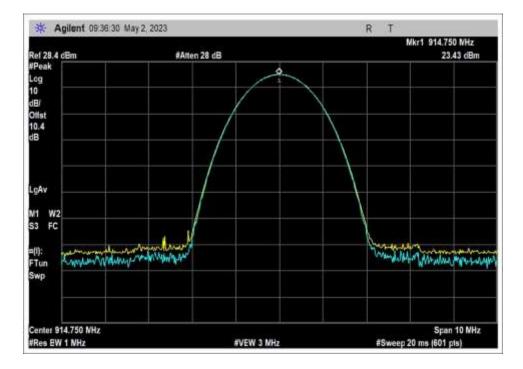
Supplementary Data

The manufacturer provided the following measurement for highest antenna gain and lowest power setting. Highest Gain: Sector 180, 0, Power setting 21.4 dBm

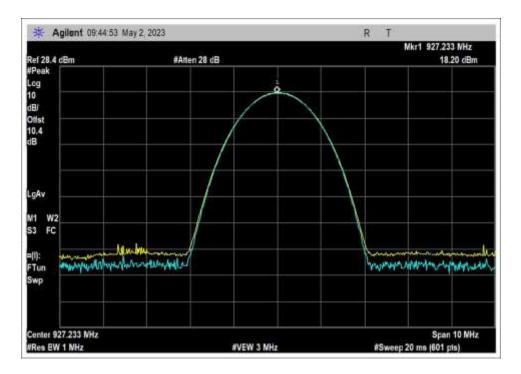
Ant Port	0		1			2		3		3		3		sum	Ant gain Beamforming gain	Total EIRP
Freq	dBm	Watts	dBm	Watts	dBm	Watts	dBm	Watts	watt	dBm	dBi	dBm				
902.75	20.27	0.1064	21.15	0.1303	20.78	0.1197	19.95	0.0989	0.4553	26.6	9.28	35.9				
914.75	20.19	0.1045	20.67	0.1167	21.09	0.1285	20.26	0.1062	0.4559	26.6	9.28	35.9				
927.25	16.83	0.0482	18.23	0.0665	18.61	0.0726	17.56	0.0570	0.2443	23.9	9.28	33.2				


Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Measured Total EIRP (dBm)	EIRP Limit (dBm)	Results					
	Highest antenna gain, lowest power setting									
902.75	PR-ASK	Patch Array	35.9	≤ 36	Pass					
914.75	PR-ASK	Patch Array	35.9	≤ 36	Pass					
927.25	PR-ASK	Patch Array	33.2	≤ 36	Pass					

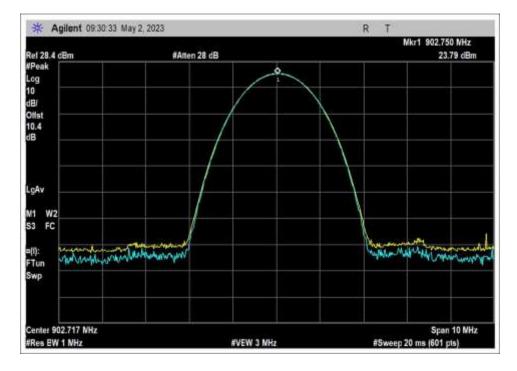
See appendix B for conducted plot data.

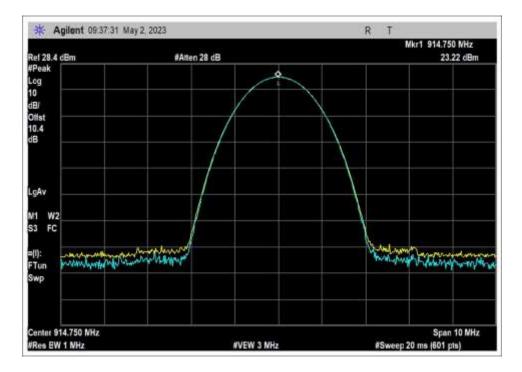


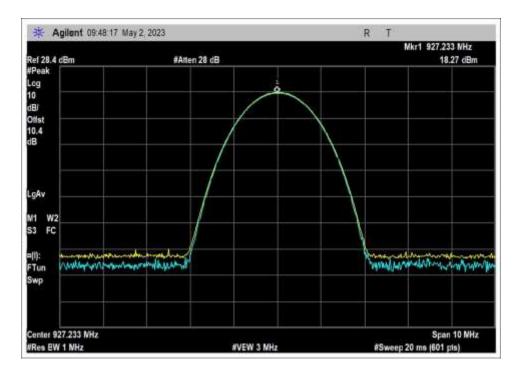
Plots


Antenna 0

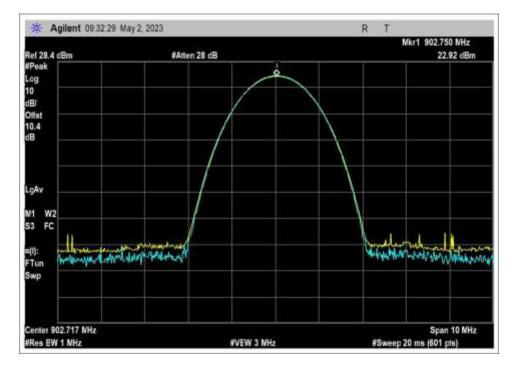
Low Channel

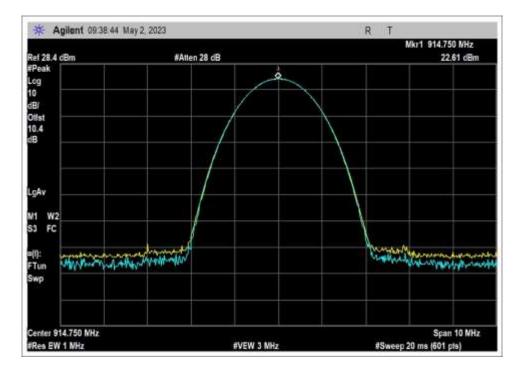


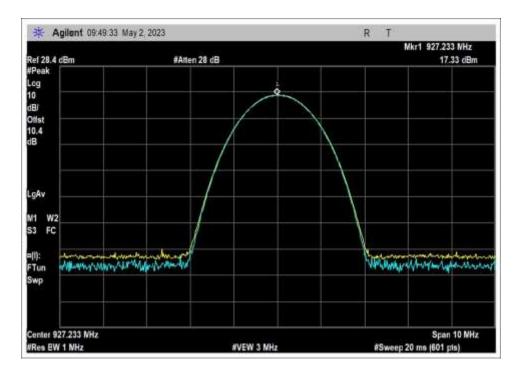

High Channel



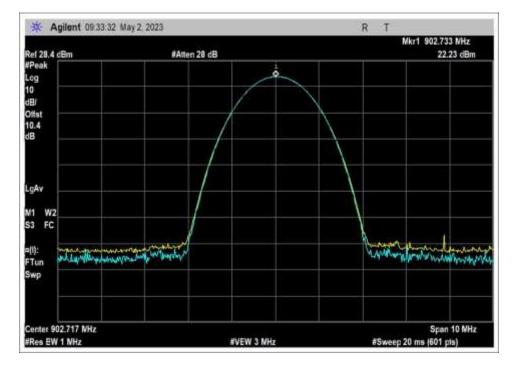
Low Channel

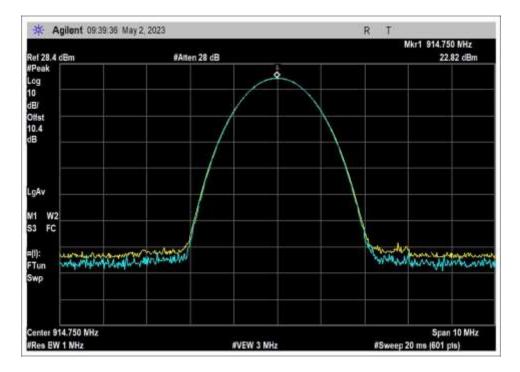


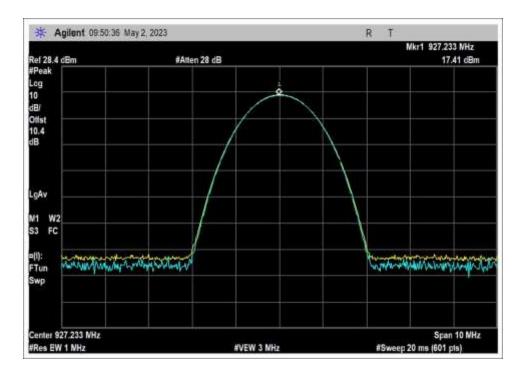

High Channel



Low Channel




High Channel



Low Channel

High Channel

Test Setup Photo(s)

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Place	e • Brea, CA	• (714) 993-6112
Customer:	Automation Inc dba RADAR		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	108261	Date:	5/2/2023
Test Type:	Conducted Emissions	Time:	14:14:35
Tested By:	E. Wong	Sequence#:	23
Software:	EMITest 5.03.20		48VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 5				
Summant Equinments				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

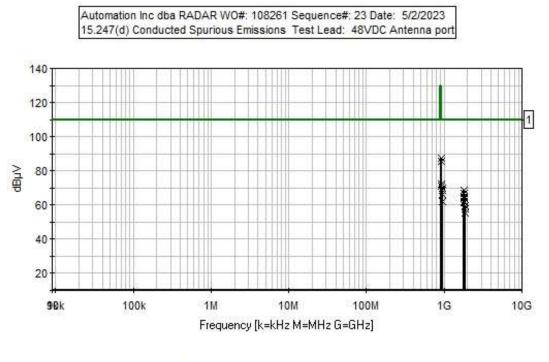
Frequency Range of EUT: 902.75MHz to 927.25MHz

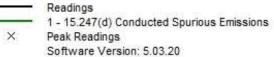
TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency = 915MHz

TARI = 6.25us as intended.

Firmware Version: 0.85.11


Two Antenna Pattern and associated power level evaluated.


Lowest Gain: Sector 135, 0 Power setting 29.1dBm Highest Gain: Sector 180, 0 Power setting 21.4 dBm

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 17°C Relative Humidity: 47% Pressure: 99.8kPa

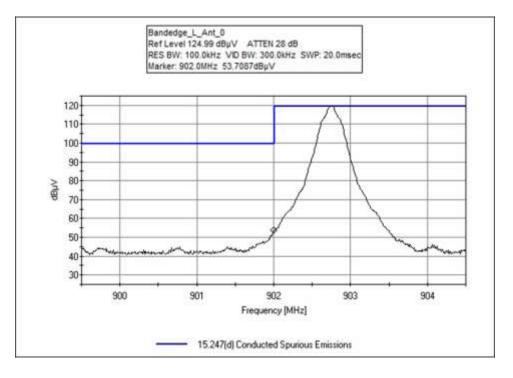
ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

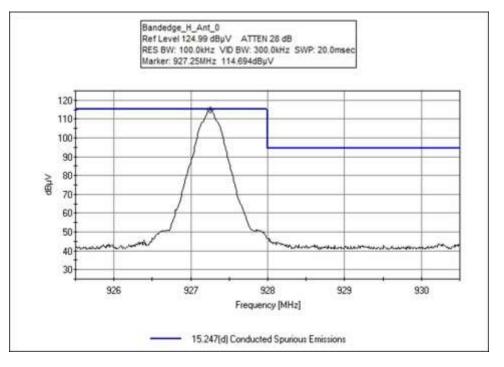
	rement Data:		eading lis		<u> </u>		Dist		ad: Antenna		D. 1.
#	Freq	Rdng	T1	T2	T3	ID	Dist	Corr	Spec	Margin	Polar
1	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	939.508M	59.3	+0.0	+10.1	+0.3		+0.0	69.7	105.0	-35.3	Anten
	000 4503 4			10.1				<i>co =</i>	Ant3_H	26.5	
2	939.470M	58.1	+0.0	+10.1	+0.3		+0.0	68.5	105.0	-36.5	Anten
	000 5001 6		0.0	10.1	0.0		0.0		Ant2_H	20.0	• .
3	939.500M	55.6	+0.0	+10.1	+0.3		+0.0	66.0	105.0	-39.0	Anten
4	1000 00016		0.0	10.1	0.4		0.0	60.4	Ant1_H	41.0	• .
4	1829.200M	57.9	+0.0	+10.1	+0.4		+0.0	68.4	109.4	-41.0	Anten
	0450000			10.1					Ant2_M	44.0	
5	915.000M	77.1	+0.0	+10.1	+0.3		+0.0	87.5	129.4	-41.9	Anten
									Ant3_L		
6	1829.300M	56.2	+0.0	+10.1	+0.4		+0.0	66.7	109.4	-42.7	Anten
									Ant0_M		
7	939.420M	51.5	+0.0	+10.1	+0.3		+0.0	61.9	105.0	-43.1	Anten
									Ant0_H		
8	914.990M	75.3	+0.0	+10.1	+0.3		+0.0	85.7	130.0	-44.3	Anten
									Ant0_L		
9	1829.200M	54.3	+0.0	+10.1	+0.4		+0.0	64.8	109.4	-44.6	Anten
									Ant1_M		
10	915.000M	75.4	+0.0	+10.1	+0.3		+0.0	85.8	130.4	-44.6	Anten
									Ant1_L		
11	915.000M	75.4	+0.0	+10.1	+0.3		+0.0	85.8	130.4	-44.6	Anten
									Ant2_L		
12	1805.800M	54.4	+0.0	+10.1	+0.4		+0.0	64.9	110.4	-45.5	Anten
									Ant2_L		
13	1805.200M	54.2	+0.0	+10.1	+0.4		+0.0	64.7	110.4	-45.7	Anten
									Ant1_L		
14	1854.200M	48.9	+0.0	+10.1	+0.4		+0.0	59.4	105.1	-45.7	Anten
									Ant0_H		
15	1805.900M	53.6	+0.0	+10.1	+0.4		+0.0	64.1	110.0	-45.9	Anten
									Ant0_L		
16	1854.500M	47.5	+0.0	+10.1	+0.4		+0.0	58.0	105.1	-47.1	Anten
									Ant2_H		
17	1829.500M	51.4	+0.0	+10.1	+0.4		+0.0	61.9	109.4	-47.5	Anten
									Ant3_M		
18	1805.600M	50.9	+0.0	+10.1	+0.4		+0.0	61.4	109.4	-48.0	Anten
									Ant3_L		
19	1854.700M	45.0	+0.0	+10.1	+0.4		+0.0	55.5	105.1	-49.6	Anten
	100	1010		11011				0010	Ant3_H	.,,,,,	1 111001
20	915.767M	61.9	+0.0	+10.1	+0.3		+0.0	72.3	129.4	-57.1	Anten
20	210110111	51.7	. 0.0		. 0.0		. 0.0	. 2.0	Ant3_M	27.1	
21	915.730M	61.9	+0.0	+10.1	+0.3		+0.0	72.3	129.4	-57.1	Anten
<i>4</i> 1	210110011	51.7	. 0.0	1 10.1	10.5		10.0	, 2.5	Ant0_M	57.1	1 meen
22	915.783M	60.5	+0.0	+10.1	+0.3		+0.0	70.9	129.4	-58.5	Anten
<i>LL</i>	715.705IVI	00.5	10.0	110.1	10.5		10.0	70.9	Ant1_M	-30.3	Anten
23	915.750M	60.4	+0.0	+10.1	+0.3		+0.0	70.8	129.4	-58.6	Anten
23	713.730IVI	00.4	± 0.0	± 10.1	± 0.5		± 0.0	70.0		-30.0	Anten
									Ant2_M		

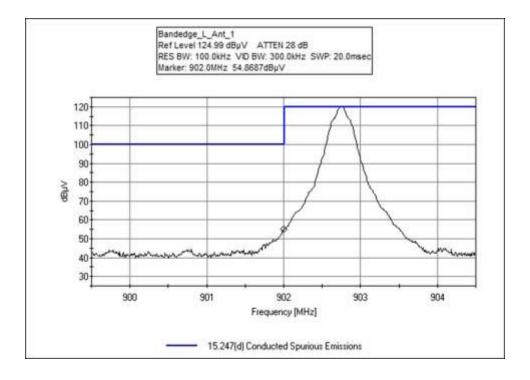
Band Edge

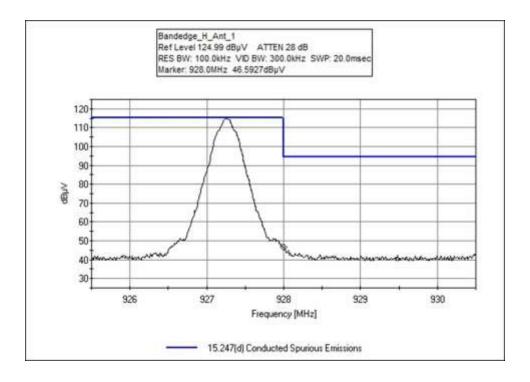
	Band Edge Summary									
Limit applied:	Limit applied: Max Power/100kHz - 20dB.									
Operating Mo	de: Single Channel (Low and High)									
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results						
902	PR-ASK Ant0	-42.9	< 3.0	Pass						
928	PR-ASK Ant0	-51.2	< -2.0	Pass						
902	PR-ASK Ant1	-41.7	< 3.4	Pass						
928	PR-ASK Ant1	-50.0	< -2.0	Pass						
902	PR-ASK Ant2	-43.9	< 3.4	Pass						
928	PR-ASK Ant2	-50.0	< -2.0	Pass						
902	PR-ASK Ant3	-46.4	< 2.4	Pass						
928	PR-ASK Ant3	-52.8	< -2.0	Pass						

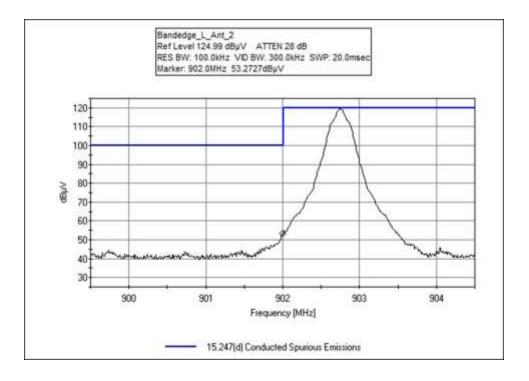
Band Edge Summary Limit applied: Max Power/100kHz - 20dB. Operating Mode: Hopping Frequency Measured

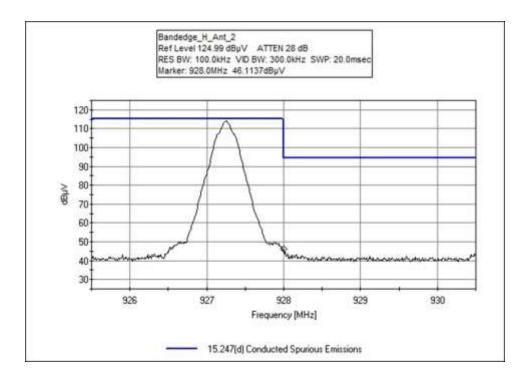

Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results
902	PR-ASK Ant0	-45.8	< 3.0	Pass
928	PR-ASK Ant0	-50.3	< 3.0	Pass
902	PR-ASK Ant1	-45.1	< 3.0	Pass
928	PR-ASK Ant1	-53.1	< 3.0	Pass
902	PR-ASK Ant2	-46.6	< 3.0	Pass
928	PR-ASK Ant2	-51.3	< 3.0	Pass
902	PR-ASK Ant3	-44.6	< 3.0	Pass
928	PR-ASK Ant3	-50.3	< 3.0	Pass


Note: dBm = dBµV- 107

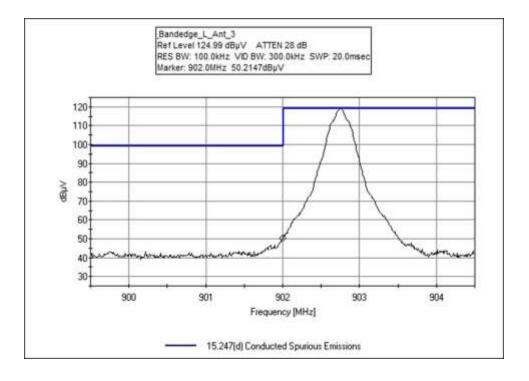

Band Edge Plots

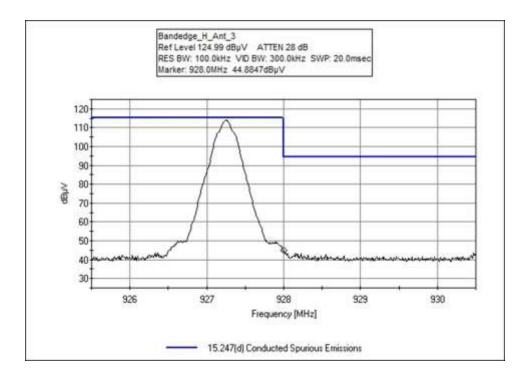

Single Channel



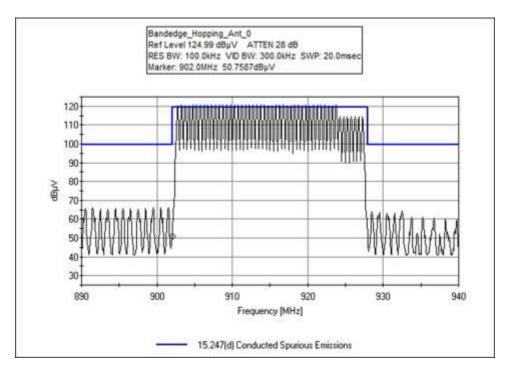


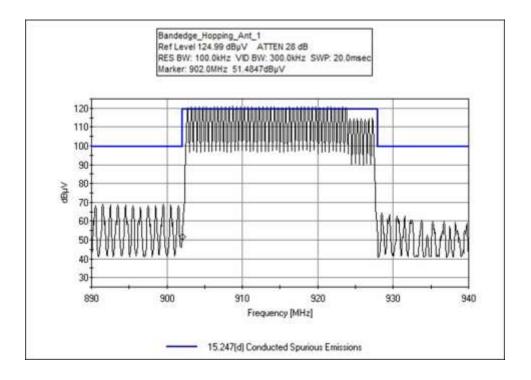
Page 41 of 103 Report No.: 108261-6

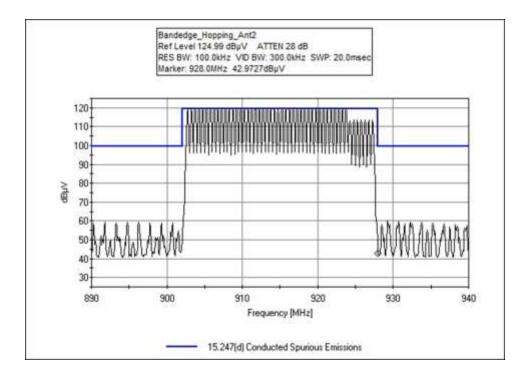


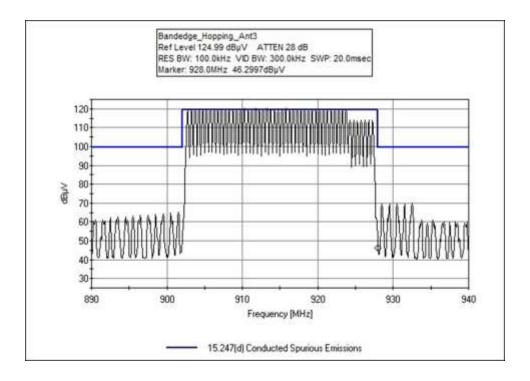


Page 42 of 103 Report No.: 108261-6








Hopping

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N. Olinda Plac	e • Brea, CA	• (714) 993-6112
Customer:	Automation Inc dba RADAR		
Specification:	15.247(d) Conducted Spurious Emissions		
Work Order #:	108261	Date:	5/2/2023
Test Type:	Conducted Emissions	Time:	14:22:08
Tested By:	E. Wong	Sequence#:	23
Software:	EMITest 5.03.20	-	48VDC

Equipment Tested:

Configuration 5	
Configuration 5	

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 5				

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency = 915MHz

TARI = 6.25us as intended.

Firmware Version: 0.85.11

Worst case Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm

Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 17°C Relative Humidity: 47% Pressure: 99.8kPa

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN03430	Attenuator	75A-10-12	1/14/2022	1/14/2024
T3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		

	rement Data:		ading lis	ted by ma	argin.			Test Lea	ad: Antenna	ı port	
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	902.000M	54.9	+0.0	+10.1	+0.3		+0.0	65.3	110.4	-45.1	Anten
									Ant1_Ban	dedge_L	
2	902.000M	53.7	+0.0	+10.1	+0.3		+0.0	64.1	110.0	-45.9	Anten
									Ant0_Ban	dedge_L	
3	902.000M	52.7	+0.0	+10.1	+0.3		+0.0	63.1	110.4	-47.3	Anten
									Ant2_Ban		
4	902.000M	52.0	+0.0	+10.1	+0.3		+0.0	62.4	110.0	-47.6	Anten
									Ant3_Ban	dedge_H	
									opping_L		
5	928.000M	46.6	+0.0	+10.1	+0.3		+0.0	57.0	105.0	-48.0	Anten
									Ant1_Ban		
6	902.000M	51.5	+0.0	+10.1	+0.3		+0.0	61.9	110.0	-48.1	Anten
									Ant1_Ban	dedge_H	
									opping_L		
7	928.000M	46.1	+0.0	+10.1	+0.3		+0.0	56.5	105.0	-48.5	Anten
									Ant2_Ban		
8	902.000M	50.8	+0.0	+10.1	+0.3		+0.0	61.2	110.0	-48.8	Anten
									Ant0_Ban	dedge_H	
				10.1					opping_L	10.0	
9	902.000M	50.2	+0.0	+10.1	+0.3		+0.0	60.6	109.4	-48.8	Anten
10	020.00014	45 4	.0.0	. 10.1	.0.2		.0.0	55.0	Ant3_Ban		A <i>i</i>
10	928.000M	45.4	+0.0	+10.1	+0.3		+0.0	55.8	105.0	-49.2	Anten
11	002 00014	50.0	.0.0	. 10.1	.0.2		.0.0	60.4	Ant0_Ban		A f
11	902.000M	50.0	+0.0	+10.1	+0.3		+0.0	60.4	110.0	-49.6	Anten
									Ant2_Ban	deuge_H	
12	928.000M	43.8	+0.0	+10.1	+0.3		+0.0	54.2	opping_L 105.0	-50.8	Anten
12	928.000M	43.8	+0.0	+10.1	+0.5		+0.0	34.2	An3_Banc		Anten
13	928.000M	46.3	+0.0	+10.1	+0.3		+0.0	56.7	110.0	-53.3	Anten
15	928.000IVI	40.5	± 0.0	+10.1	± 0.5		± 0.0	50.7	Ant3_Ban		Anten
									opping_H		
14	928.000M	46.3	+0.0	+10.1	+0.3		+0.0	56.7	110.0	-53.3	Anten
11	720.000M	10.5	10.0	110.1	10.5		10.0	50.7	Ant0_Ban		7 miten
									opping_H		
15	928.000M	45.3	+0.0	+10.1	+0.3		+0.0	55.7	110.0	-54.3	Anten
									Ant2_Ban		
									opping_H		
16	928.000M	43.5	+0.0	+10.1	+0.3		+0.0	53.9	110.0	-56.1	Anten
									Ant1_Ban		
									opping_H		
•									· · · · ·		

Test Setup Photo(s)

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110	N. Olinda Place • Brea, CA	• (714) 993-6112	
Customer:	Automation Inc dba RADAR	1		
Specification:	15.247(d) / 15.209/ 15.205 Ra	diated Spurious Emissions		
Work Order #:	108261	Date:	4/28/2023	
Test Type:	Maximized Emissions	Time:	16:09:46	
Tested By:	E. Wong	Sequence#:	20	
Software:	EMITest 5.03.20			
	_			

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 4			
Support Equipment:			
Device	Manufacturer	Model #	S/N

Configuration 4

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

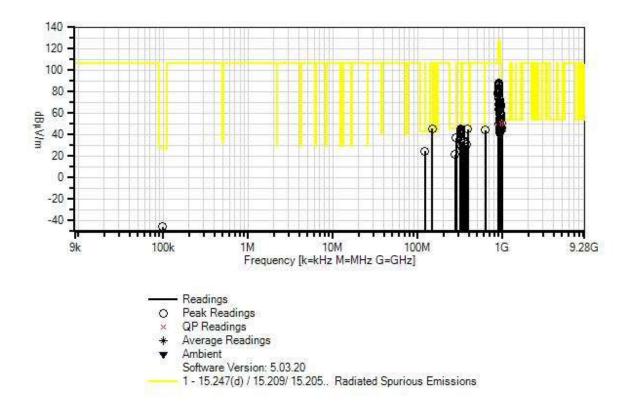
TARI = 6.25us as intended.

Firmware Version: 0.85.11

Frequency Range of Measurement: 9kHz-1GHz. 9 kH -150 kHz; RBW=200 Hz, VBW=600 Hz; 150 kHz-30 MHz; RBW=9 kHz, VBW=27 kHz; 30 MHz-1000 MHz; RBW=120 kHz, VBW=360 kHz,

Two Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm Highest Gain: Sector 180, 0 Power setting 21.4 dBm


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 20°C Relative Humidity: 60% Pressure: 98.9kPa

Additional evaluation performed with the EUT lay flat on the Styrofoam. Worst case emission presented. No emission detected in the frequency range of 9kHz-30MHz.

Automation Inc dba RADAR WO#: 108261 Sequence#: 20 Date: 4/28/2023 15.247(d) / 15.209/ 15.205.. Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т3	ANP05198	Cable-Amplitude	8268	12/31/2022	12/31/2024
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T5	ANP05050	Cable	RG223/U	12/31/2022	12/31/2024
Т6	AN00314	Loop Antenna	6502	3/29/2022	3/29/2024

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec N	largin	Polar
			T5	T6							
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	987.740M	14.1	+0.0	+31.1	+6.2	+0.0	+0.0	51.4	54.0	-2.6	Vert
	QP		+0.0	+0.0					HighGain_L		
2		13.7	+0.0	+31.4	+6.2	+0.0	+0.0	51.3	54.0	-2.7	Horiz
	QP		+0.0	+0.0					LowGain_H		
3		13.3	+0.0	+31.4	+6.2	+0.0	+0.0	50.9	54.0	-3.1	Vert
	QP		+0.0	+0.0					LowGain_H		
4	,	13.2	+0.0	+31.4	+6.2	+0.0	+0.0	50.8	54.0	-3.2	Vert
-	QP		+0.0	+0.0					HighGain_H		
^	976.245M	16.0	+0.0	+31.4	+6.2	+0.0	+0.0	53.6	54.0	-0.4	Vert
			+0.0	+0.0					LowGain_H		
^	976.257M	15.9	+0.0	+31.4	+6.2	+0.0	+0.0	53.5	54.0	-0.5	Vert
			+0.0	+0.0					HighGain_H		
^	976.250M	12.0	+0.0	+31.4	+6.2	+0.0	+0.0	49.6	54.0	-4.4	Vert
			+0.0	+0.0					Lay_Flat_Lov	wGain	
									_H		
۸	976.250M	11.8	+0.0	+31.4	+6.2	+0.0	+0.0	49.4	54.0	-4.6	Vert
			+0.0	+0.0					Lay_Flat_Hig	hGain	
0	007 00014	12.4	.0.0	. 21.0		.0.0	.0.0	50.0	_H	2.0	X 7 /
9	987.000M	13.4	+0.0	+31.2	+6.2	+0.0	+0.0	50.8	54.0	-3.2	Vert
			+0.0	+0.0					Lay_Flat_Hig	nGain	
10	007 74014	12.0		. 21.1	16.2			50.3	_H	-3.7	II.a.e.!-
10	987.740M	13.0	$^{+0.0}_{+0.0}$	+31.1	+6.2	+0.0	+0.0	50.5	54.0	-3.7	Horiz
	<u>QP</u> 987.723M	12.8		+0.0	16.2			50.1	HighGain_L	-3.9	Vert
11	987.725M QP	12.8	$^{+0.0}_{+0.0}$	+31.1 +0.0	+6.2	+0.0	+0.0	50.1	54.0 LowGain_L	-3.9	vert
٨	987.723M	17.1	+0.0 +0.0	+0.0 +31.1	+6.2	+0.0	+0.0	54.4	54.0	+0.4	Vert
	907.725IVI	1/.1	+0.0 +0.0	+31.1 +0.0	+0.2	+0.0	+0.0	54.4	LowGain_L	+0.4	ven
^	987.740M	16.8	+0.0 +0.0	+31.1	+6.2	+0.0	+0.0	54.1	54.0	+0.1	Vert
	907.740IVI	10.0	+0.0 $+0.0$	+0.0	+0.2	+0.0	+0.0	54.1	HighGain_L	± 0.1	VCIT
^	987.740M	13.3	+0.0	+31.1	+6.2	+0.0	+0.0	50.6	54.0	-3.4	Vert
	<i>J01.1</i> +0101	15.5	+0.0	+0.0	10.2	10.0	10.0	50.0	Lay_Flat_Lov		Vert
			10.0	10.0					Luy_1 Iut_Lov	ouiii	
15	987.740M	9.9	+0.0	+31.1	+6.2	+0.0	+0.0	47.2	54.0	-6.8	Horiz
	QP			+0.0	10.2	10.0	10.0		Lay_Flat_Lov		110112
	τ-		. 0.0	. 0.0					Lay_1 lat_Lov	Call	
16	976.242M	8.4	+0.0	+31.4	+6.2	+0.0	+0.0	46.0	54.0	-8.0	Horiz
	Ave	5.1	+0.0	+0.0					HighGain_H	5.5	
^	976.245M	17.1	+0.0	+31.4	+6.2	+0.0	+0.0	54.7	54.0	+0.7	Horiz
			+0.0	+0.0					LowGain_H		
^	976.242M	16.8	+0.0	+31.4	+6.2	+0.0	+0.0	54.4	54.0	+0.4	Horiz
			+0.0	+0.0					HighGain_H		
^	976.250M	13.4	+0.0	+31.4	+6.2	+0.0	+0.0	51.0	54.0	-3.0	Horiz
			+0.0	+0.0					Lay_Flat_Hig		
									_H		
^	976.250M	12.9	+0.0	+31.4	+6.2	+0.0	+0.0	50.5	54.0	-3.5	Horiz
			+0.0	+0.0					Lay_Flat_Lov	wGain	
									_H _		

01	076 42014	25.0	.0.0	. 21.4		27.4	.0.0	45.0	5 4.0 0.1	II.
21	976.420M	35.2	+0.0 +0.5	+31.4	+6.2	-27.4	+0.0	45.9	54.0 -8.1	Horiz
22	281.967M	42.9	+0.3 +0.0	+0.0 +18.9	+3.0	-27.9	+0.0	37.2	LowGain_H 46.0 -8.8	Vert
22	281.907M	42.9	+0.0 +0.3	+18.9 +0.0	+5.0	-27.9	+0.0	57.2	LowGain_L	ven
23	987.753M	6.0	+0.3 +0.0	+0.0 +31.1	+6.2	+0.0	+0.0	43.3	54.0 -10.7	Horiz
	Ave	0.0	+0.0 +0.0	+31.1 +0.0	+0.2	+0.0	+0.0	45.5	LowGain_L	HOUL
^	987.740M	16.8	+0.0 $+0.0$	+31.1	+6.2	+0.0	+0.0	54.1	54.0 +0.1	Horiz
	907.740IVI	10.8	+0.0 $+0.0$	+31.1 +0.0	+0.2	+0.0	+0.0	34.1	HighGain_L	HOUL
^	987.753M	15.9	+0.0	+31.1	+6.2	+0.0	+0.0	53.2	54.0 -0.8	Horiz
	<i>J</i> 07.755101	15.7	+0.0	+0.0	10.2	10.0	10.0	55.2	LowGain_L	HOHZ
^	987.740M	14.7	+0.0	+31.1	+6.2	+0.0	+0.0	52.0	<u>54.0</u> -2.0	Horiz
	<i>y</i> 0 <i>1</i> .1 101.1	11.7	+0.0	+0.0	10.2	10.0	10.0	52.0	Lay_Flat_LowGain	HOHE
			10.0	10.0					L	
۸	987.740M	12.7	+0.0	+31.1	+6.2	+0.0	+0.0	50.0	54.0 -4.0	Horiz
			+0.0	+0.0					Lay_Flat_HighGain	
									H B	
28	334.100M	33.5	+0.0	+20.0	+3.3	-27.9	+0.0	29.2	46.0 -16.8	Vert
			+0.3	+0.0					LowGain_L	
29	275.020M	27.4	+0.0	+18.7	+3.0	-27.9	+0.0	21.5	46.0 -24.5	Vert
			+0.3	+0.0					LowGain_L	
30	890.500M	70.9	+0.0	+29.4	+5.8	-27.3	+0.0	79.3	106.8 -27.5	Horiz
			+0.5	+0.0					HighGain_L	
31	890.480M	69.7	+0.0	+29.4	+5.8	-27.3	+0.0	78.1	106.8 -28.7	Vert
			+0.5	+0.0					HighGain_L	
32	939.420M	61.1	+0.0	+30.8	+6.0	-27.3	+0.0	71.1	106.8 -35.7	Horiz
			+0.5	+0.0					LowGain_H	
33	939.300M	59.9	+0.0	+30.8	+6.0	-27.3	+0.0	69.9	106.8 -36.9	Horiz
			+0.5	+0.0					LayFlat_LowGain_	
									Н	
34	952.000M	58.2	+0.0	+31.1	+6.0	-27.3	+0.0	68.5	106.8 -38.3	Horiz
			+0.5	+0.0					HighGain_H	
35	915.000M	79.4	+0.0	+29.9	+5.9	-27.3	+0.0	88.4	126.8 -38.4	Horiz
			+0.5	+0.0					LowGain_L	
36	914.980M	79.0	+0.0	+29.9	+5.9	-27.3	+0.0	88.0	126.8 -38.8	Vert
			+0.5	+0.0					HighGain_L	
37	915.000M	78.8	+0.0	+29.9	+5.9	-27.3	+0.0	87.8	126.8 -39.0	Horiz
	04 # 0000 5		+0.5	+0.0				07.1	HighGain_L	
38	915.000M	78.6	+0.0	+29.9	+5.9	-27.3	+0.0	87.6	126.8 -39.2	Vert
	000 5000 5		+0.5	+0.0			0.0		LowGain_L	** :
39	939.500M	57.1	+0.0	+30.9	+6.0	-27.3	+0.0	67.2	106.8 -39.6	Horiz
40	015 00015	70.1	+0.5	+0.0	. 5.0	07.0		07.1	HighGain_H	
40	915.000M	78.1	+0.0	+29.9	+5.9	-27.3	+0.0	87.1	126.8 -39.7	Horiz
			+0.5	+0.0					LayFlat_LowGain_	
4.1	020 50014	507		120.0		27.2		66.0	L 106.9 40.0	Haria
41	939.500M	56.7	+0.0	+30.9	+6.0	-27.3	+0.0	66.8	106.8 -40.0	Horiz
			+0.5	+0.0					LayFlat_HighGain_ H	
42	939.510M	56.5	+0.0	+30.9	+6.0	-27.3	+0.0	66.6	H 106.8 -40.2	Vert
42	737.310W	50.5	+0.0 +0.5	+30.9	+0.0	-21.3	+0.0	00.0	HighGain_H	vert
43	951.670M	56.3	+0.3 +0.0	+0.0 +31.1	+6.0	-27.3	+0.0	66.6	106.8 -40.2	Vert
43	751.070IVI	50.5	+0.0 +0.5	+51.1 +0.0	± 0.0	-21.3	± 0.0	00.0	LowGain_L	veit
			τ υ. J	+0.0						

44	915.000M	77.5	$^{+0.0}_{+0.5}$	+29.9 +0.0	+5.9	-27.3	+0.0	86.5	126.8 -40.3 HighGain_H	Horiz
45	939.500M	56.0	+0.3 +0.0	+30.9	+6.0	-27.3	+0.0	66.1	106.8 -40.7	Vert
43	939.300M	50.0	+0.0 +0.5	+30.9 +0.0	+0.0	-21.5	+0.0	00.1	LayFlat_HighGain_	ven
			+0.3	± 0.0					H	
46	915.000M	76.2	+0.0	+29.9	+5.9	-27.3	+0.0	85.2	126.8 -41.6	Horiz
40	915.000M	70.2	+0.0 $+0.5$	+29.9 +0.0	+3.9	-21.5	+0.0	03.2	LayFlat_HighGain_	HOUL
			± 0.5	± 0.0					LayMat_HighOam_ L	
47	915.080M	74.8	+0.0	+29.9	+5.9	-27.3	+0.0	83.8	126.8 -43.0	Horiz
.,	, 101000111	, 110	+0.5	+0.0		2710		0010	LowGain_H	110112
48	939.380M	53.2	+0.0	+30.8	+6.0	-27.3	+0.0	63.2	106.8 -43.6	Vert
			+0.5	+0.0					LayFlat_LowGain_	
									H – –	
49	915.000M	73.9	+0.0	+29.9	+5.9	-27.3	+0.0	82.9	126.8 -43.9	Horiz
			+0.5	+0.0					LayFlat_HighGain_	
									Н	
50	915.010M	73.9	+0.0	+29.9	+5.9	-27.3	+0.0	82.9	126.8 -43.9	Vert
			+0.5	+0.0					HighGain_H	
51	915.000M	72.9	+0.0	+29.9	+5.9	-27.3	+0.0	81.9	126.8 -44.9	Vert
			+0.5	+0.0					LowGain_H	
52	915.000M	72.4	+0.0	+29.9	+5.9	-27.3	+0.0	81.4	126.8 -45.4	Vert
			+0.5	+0.0					LayFlat_LowGain_	
									L	
53	951.750M	49.6	+0.0	+31.1	+6.0	-27.3	+0.0	59.9	106.8 -46.9	Horiz
		10.1	+0.5	+0.0					LowGain_H	
54	939.500M	49.6	+0.0	+30.9	+6.0	-27.3	+0.0	59.7	106.8 -47.1	Vert
	051 7003 6	40.1	+0.5	+0.0	6.0	07.0	0.0	50.4	LowGain_L	
55	951.700M	49.1	+0.0	+31.1	+6.0	-27.3	+0.0	59.4	106.8 -47.4	Horiz
			+0.5	+0.0					LayFlat_HighGain_ L	
56	939.500M	48.6	+0.0	+30.9	+6.0	-27.3	+0.0	58.7	106.8 -48.1	Horiz
50	939.300W	40.0	+0.0 $+0.5$	+30.9 +0.0	± 0.0	-21.5	± 0.0	56.7	LowGain_H	HOHZ
57	915.000M	69.1	+0.0	+29.9	+5.9	-27.3	+0.0	78.1	126.8 -48.7	Vert
57	715.000WI	07.1	+0.5	+0.0	13.7	-21.5	10.0	70.1	LayFlat_HighGain_	ven
			10.5	10.0					Layr nat_ringnouni_ L	
58	951.670M	46.2	+0.0	+31.1	+6.0	-27.3	+0.0	56.5	106.8 -50.3	Vert
			+0.5	+0.0					LayFlat_LowGain_	
									L	
59	951.650M	46.2	+0.0	+31.1	+6.0	-27.3	+0.0	56.5	106.8 -50.3	Vert
			+0.5	+0.0					HighGain_L	
60	951.670M	46.0	+0.0	+31.1	+6.0	-27.3	+0.0	56.3	106.8 -50.5	Vert
			+0.5	+0.0					LayFlat_HighGain_	
									L	
61	939.500M	45.5	+0.0	+30.9	+6.0	-27.3	+0.0	55.6	106.8 -51.2	Horiz
			+0.5	+0.0					HighGain_L	
62	915.000M	66.4	+0.0	+29.9	+5.9	-27.3	+0.0	75.4	126.8 -51.4	Horiz
			+0.5	+0.0					LayFlat_LowGain_	
									H	
63	915.000M	66.4	+0.0	+29.9	+5.9	-27.3	+0.0	75.4	126.8 -51.4	Vert
			+0.5	+0.0					LayFlat_HighGain_	
									Н	

64	951.850M	44.6	+0.0 +0.5	+31.1 +0.0	+6.0	-27.3	+0.0	54.9	106.8 -51.9 HighGain_H	Vert
65	902.830M	65.7	+0.0 +0.5	+0.0 +29.5 +0.0	+5.8	-27.3	+0.0	74.2	126.8 -52.6 HighGain_H	Horiz
66	915.050M	64.7	+0.0 +0.5	+29.9 +0.0	+5.9	-27.3	+0.0	73.7	126.8 -53.1 LayFlat_LowGain_ H	Vert
67	951.670M	43.4	+0.0 +0.5	+31.1 +0.0	+6.0	-27.3	+0.0	53.7	н 106.8 -53.1 HighGain_L	Horiz
68	902.830M	65.2	+0.0 +0.5	+29.5 +0.0	+5.8	-27.3	+0.0	73.7	126.8 -53.1 LayFlat_HighGain_ H	Horiz
69	927.330M	63.5	+0.0 +0.5	+30.4 +0.0	+5.9	-27.3	+0.0	73.0	126.8 -53.8 LowGain_L	Vert
70	939.420M	42.6	+0.0 +0.5	+30.8 +0.0	+6.0	-27.3	+0.0	52.6	106.8 -54.2 LowGain_L	Horiz
71	929.300M	42.4	+0.0 +0.5	+30.6 +0.0	+5.9	-27.3	+0.0	52.1	106.8 -54.7 LayFlat_HighGain_ M	Horiz
72	927.300M	61.7	+0.0 +0.5	+30.4 +0.0	+5.9	-27.3	+0.0	71.2	126.8 -55.6 LayFlat_LowGain_ L	Horiz
73	927.300M	60.3	+0.0 +0.5	+30.4 +0.0	+5.9	-27.3	+0.0	69.8	126.8 -57.0 LayFlat_HighGain_ L	Horiz
74	902.680M	59.9	+0.0 +0.5	+29.5 +0.0	+5.8	-27.3	+0.0	68.4	126.8 -58.4 HighGain_H	Vert
75	927.170M	58.5	+0.0 +0.5	+30.4 +0.0	+5.9	-27.3	+0.0	68.0	126.8 -58.8 LayFlat_LowGain_ L	Vert
76	941.000M	36.9	+0.0 +0.5	+30.9 +0.0	+6.0	-27.3	+0.0	47.0	106.8 -59.8 LayFlat_LowGain_ M	Vert
77	927.250M	57.1	+0.0 +0.5	+30.4 +0.0	+5.9	-27.3	+0.0	66.6	126.8 -60.2 LowGain_L	Horiz
78	147.820M	54.2	+0.0 +0.2	+17.3 +0.0	+2.1	-28.0	+0.0	45.8	106.8 -61.0 LowGain_L	Vert
79	931.300M	35.8	+0.0 +0.5	+30.6 +0.0	+5.9	-27.3	+0.0	45.5	106.8 -61.3 LayFlat_HighGain_ M	Vert
80	320.000M	50.1	+0.0 +0.3	+19.7 +0.0	+3.2	-27.9	+0.0	45.4	106.8 -61.4 LayFlat_LowGain_ H	Horiz
81	389.870M	47.6	+0.0 +0.3	+21.4 +0.0	+3.6	-27.9	+0.0	45.0	106.8 -61.8 LowGain_M	Vert
82	320.000M	49.7	+0.0 +0.3	+19.7 +0.0	+3.2	-27.9	+0.0	45.0	106.8 -61.8 LayFlat_HighGain_ M	Horiz
83	320.017M	49.6	+0.0 +0.3	+19.7 +0.0	+3.2	-27.9	+0.0	44.9	106.8 -61.9 LayFlat_HighGain_ H	Horiz

84	927.330M	55.4	+0.0	+30.4	+5.9	-27.3	+0.0	64.9	126.8 -61.9	Horiz
-			+0.5	+0.0					HighGain_L	
85	625.000M	39.8	+0.0	+26.9	+4.7	-27.4	+0.0	44.4	106.8 -62.4	Horiz
			+0.4	+0.0					LowGain_M	
86	949.000M	33.9	+0.0	+31.0	+6.0	-27.3	+0.0	44.1	106.8 -62.7	Horiz
			+0.5	+0.0					LowGain_M	
87	929.730M	34.3	+0.0	+30.6	+5.9	-27.3	+0.0	44.0	106.8 -62.8	Vert
÷.			+0.5	+0.0					LowGain_M	
88	949.970M	33.7	+0.0	+31.1	+6.0	-27.3	+0.0	44.0	106.8 -62.8	Vert
00)+).)/01 01	55.7	+0.5	+0.0	10.0	21.5	10.0	0	LowGain_M	Vert
80	220.0001	40.4			120	-27.9		127		Mant
89	320.000M	48.4	+0.0	+19.7	+3.2	-21.9	+0.0	43.7		Vert
			+0.3	+0.0					LayFlat_HighGain_	
-									Н	
90	320.000M	48.2	+0.0	+19.7	+3.2	-27.9	+0.0	43.5	106.8 -63.3	Vert
			+0.3	+0.0					LayFlat_HighGain_	
									Μ	
91	934.170M	33.5	+0.0	+30.7	+5.9	-27.3	+0.0	43.3	106.8 -63.5	Horiz
-			+0.5	+0.0					LayFlat_LowGain_	
			10.0	10.0					M	
92	904.030M	54.8	+0.0	+29.5	+5.8	-27.3	+0.0	63.3	126.8 -63.5	Vert
92	904.030IVI	54.0			± 3.0	-21.5	± 0.0	05.5		VCIT
	220.0001.6	1	+0.5	+0.0		25.0	0.0	10.1	LowGain_M	* *
93	320.000M	47.8	+0.0	+19.7	+3.2	-27.9	+0.0	43.1	106.8 -63.7	Vert
			+0.3	+0.0					LowGain_M	
94	320.000M	47.6	+0.0	+19.7	+3.2	-27.9	+0.0	42.9	106.8 -63.9	Horiz
			+0.3	+0.0					LayFlat_LowGain_	
									L	
95	320.000M	47.5	+0.0	+19.7	+3.2	-27.9	+0.0	42.8	106.8 -64.0	Vert
			+0.3	+0.0					LayFlat_LowGain_	
			10.5	10.0					L	
96	319.967M	47.3	+0.0	+19.7	+3.2	-27.9	+0.0	42.6	106.8 -64.2	Vert
90	519.907WI	47.5	+0.0 $+0.3$	+19.7 +0.0	75.2	-21.9	± 0.0	42.0	LowGain_L	VCIT
07	210.00214	16.0			2.2	27.0	0.0	12.2		X 7 .
97	319.983M	46.9	+0.0	+19.7	+3.2	-27.9	+0.0	42.2	106.8 -64.6	Vert
			+0.3	+0.0					HighGain_L	
98	320.000M	46.7	+0.0	+19.7	+3.2	-27.9	+0.0	42.0	106.8 -64.8	Vert
			+0.3	+0.0					LayFlat_LowGain_	
									Н	
99	320.000M	46.5	+0.0	+19.7	+3.2	-27.9	+0.0	41.8	106.8 -65.0	Horiz
			+0.3	+0.0		,			LayFlat_LowGain_	
			1010						M	
100	320 000M	46.4	+0.0	+19.7	120	-27.9	+0.0	41.7	106.8 -65.1	Vert
100	320.000M	40.4			+3.2	-21.9	+0.0	41./		vert
			+0.3	+0.0					LayFlat_HighGain_	
									L	
101	929.670M	32.0	+0.0	+30.6	+5.9	-27.3	+0.0	41.7	106.8 -65.1	Horiz
			+0.5	+0.0					LowGain_M	
102	320.000M	45.8	+0.0	+19.7	+3.2	-27.9	+0.0	41.1	106.8 -65.7	Vert
			+0.3	+0.0					LayFlat_LowGain_	
									M	
103	320.100M	45.6	+0.0	+19.7	+3.2	-27.9	+0.0	40.9	106.8 -65.9	Vert
105	520.100101	13.0	+0.3	+0.0	10.4	21.7	10.0	10.7	HighGain_H	, 011
104	220 000M	45.6	+0.3 +0.0		120	27.0		40.0		Ucria
104	320.000M	43.0		+19.7	+3.2	-27.9	+0.0	40.9		Horiz
			+0.3	+0.0					HighGain_H	

105	320.000M	44.6	+0.0	+19.7	+3.2	-27.9	+0.0	39.9	106.8	-66.9	Horiz
			+0.3	+0.0					HighGain_	L	
106	319.920M	42.9	+0.0	+19.7	+3.2	-27.9	+0.0	38.2	106.8	-68.6	Horiz
			+0.3	+0.0					LowGain_	Н	
107	320.000M	42.6	+0.0	+19.7	+3.2	-27.9	+0.0	37.9	106.8	-68.9	Horiz
			+0.3	+0.0					LayFlat_H	ighGain_	
									L		
108	319.920M	39.7	+0.0	+19.7	+3.2	-27.9	+0.0	35.0	106.8	-71.8	Horiz
			+0.3	+0.0					HighGain_	M	
109	346.500M	38.1	+0.0	+20.6	+3.4	-27.9	+0.0	34.5	106.8	-72.3	Vert
			+0.3	+0.0					LowGain_	L	
110	927.170M	44.5	+0.0	+30.4	+5.9	-27.3	+0.0	54.0	126.8	-72.8	Vert
			+0.5	+0.0					HighGain_	M	
111	98.300k	25.0	+0.0	+0.0	+0.1	+0.0	-80.0	-45.5	27.8	-73.3	Paral
			+0.0	+9.4					LowGain_	М	
112	354.470M	36.3	+0.0	+20.7	+3.4	-27.9	+0.0	32.8	106.8	-74.0	Vert
			+0.3	+0.0					LowGain_	М	
113	320.170M	36.0	+0.0	+19.7	+3.2	-27.9	+0.0	31.3	106.8	-75.5	Vert
			+0.3	+0.0					LowGain_	Н	
114	375.070M	33.5	+0.0	+21.2	+3.6	-27.9	+0.0	30.7	106.8	-76.1	Vert
			+0.3	+0.0					LowGain_	L	
115	904.080M	41.6	+0.0	+29.5	+5.8	-27.3	+0.0	50.1	126.8	-76.7	Horiz
			+0.5	+0.0					HighGain_	M	
116	122.183M	33.0	+0.0	+17.8	+1.9	-28.0	+0.0	24.8	106.8	-82.0	Vert
			+0.1	+0.0					LowGain_	L	
117	129.790k	17.3	+0.0	+0.0	+0.1	+0.0	-80.0	-53.3	106.8	-160.1	Horiz
			+0.0	+9.3					HighGain_	M	

Test Location: Customer:	CKC Laboratories, Inc • 110 N. Olinda Automation Inc dba RADAR	Place • Brea, CA	• (714) 993-6112
Specification:	15.247(d) / 15.209/ 15.205. Radiated S	purious Emissions	
Work Order #:	108261	Date:	5/1/2023
Test Type:	Maximized Emissions	Time:	13:50:43
Tested By:	E. Wong	Sequence#:	22
Software:	EMITest 5.03.20		

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				
Support Equipment:				

Device	Manufacturer	Model #	S/N
Configuration 4			

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

TX 902.75MHz, 914.75MHz, 927.25MHz

LO Frequency = 915MHz

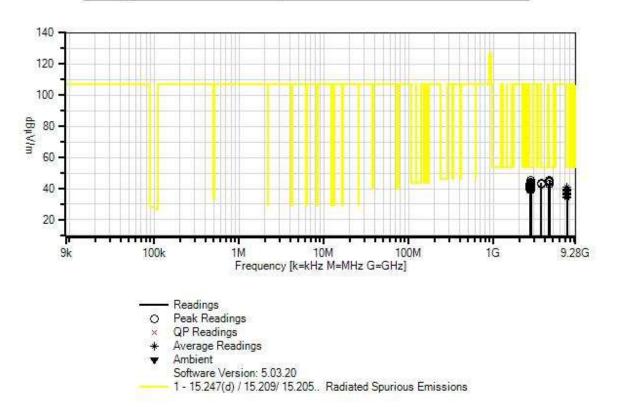
TARI = 6.25us as intended.

Firmware Version: 0.85.11

Frequency Range of Measurement: 1-10GHz. 1000 MHz-10000 MHz; RBW=1MHz,VBW=3 MHz

Two Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm Highest Gain: Sector 180, 0 Power setting 21.4dBm


Site A Test Method: ANSI C63.10 (2013)

Test Environment Conditions: Temperature: 20°C Relative Humidity: 60% Pressure: 98.9kPa

Additional evaluation performed with the EUT lay flat on the Styrofoam. Worst case emission presented.

Automation Inc dba RADAR WO#: 108261 Sequence#: 22 Date: 5/1/2023 15.247(d) / 15.209/ 15.205. Radiated Spurious Emissions Test Distance: 3 Meters Horiz

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00849	Horn Antenna	3115	3/21/2022	3/21/2024
Т3	ANP07658	Cable	32022-29094K-	6/22/2022	6/22/2024
			29094K-24TC		
T4	AN00786	Preamp	83017A	5/23/2022	5/23/2024
T5	ANP06360	Cable	L1-PNMNM-48	9/30/2021	9/30/2023
Т6	AN03169	High Pass Filter	HM1155-11SS	5/10/2021	5/10/2023

Measu	rement Data:	R	eading lis	ted by ma	argin.		Τe	est Distanc	e: 3 Meters	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec Margin	Polar
			T5	T6						
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV/m	dBµV/m dB	Ant
1	4575.000M	45.1	+0.0	+32.3	+0.7	-37.4	+0.0	45.6	54.0 -8.4	Horiz
			+4.6	+0.3					HiGain_L_Harmon	i
									cs of LO	
2	4574.950M	44.9	+0.0	+32.3	+0.7	-37.4	+0.0	45.4	54.0 -8.6	Vert
			+4.6	+0.3					LayFlat_HiGain_M	
									_Harmonics of LO	
3	2745.000M	50.0	+0.0	+29.3	+0.5	-38.4	+0.0	45.1	54.0 -8.9	Vert
			+3.4	+0.3					LayFlat_HiGain_M	
									_Harmonics of LO	
4	4575.000M	44.4	+0.0	+32.3	+0.7	-37.4	+0.0	44.9	54.0 -9.1	Vert
			+4.6	+0.3					LowGain_L_Harmo)
									nics of LO	
5	4575.000M	44.3	+0.0	+32.3	+0.7	-37.4	+0.0	44.8	54.0 -9.2	Vert
			+4.6	+0.3					LayFlat_LowGain_	
									L_Harmonics of LC	
6	4575.000M	44.2	+0.0	+32.3	+0.7	-37.4	+0.0	44.7	54.0 -9.3	Horiz
			+4.6	+0.3					LowGain_L_Harmo)
									nics of LO	
7	4575.000M	44.1	+0.0	+32.3	+0.7	-37.4	+0.0	44.6	54.0 -9.4	Horiz
			+4.6	+0.3					HiGain_M_Harmor	l
									ics of LO	
8	4575.000M	43.9	+0.0	+32.3	+0.7	-37.4	+0.0	44.4	54.0 -9.6	Vert
			+4.6	+0.3					LayFlat_HiGain_L_	-
									Harmonics of LO	
9	2745.000M	48.8	+0.0	+29.3	+0.5	-38.4	+0.0	43.9	54.0 -10.1	Vert
			+3.4	+0.3					LayFlat_LowGain_	
									M_Harmonics of	
									LO	
10	2745.000M	48.8	+0.0	+29.3	+0.5	-38.4	+0.0	43.9	54.0 -10.1	Vert
			+3.4	+0.3					LayFlat_LowGain_	
									M_Harmonics of	
									LO	
11	3660.000M	45.1	+0.0	+31.5	+0.6	-37.9	+0.0	43.7	54.0 -10.3	Horiz
			+4.0	+0.4					HiGain_M_Harmor	l
									ics of LO	
12	2744.250M	48.5	+0.0	+29.3	+0.5	-38.4	+0.0	43.6	54.0 -10.4	Vert
			+3.4	+0.3					LayFlat_LowGain_	
									M	
13	2745.000M	48.4	+0.0	+29.3	+0.5	-38.4	+0.0	43.5	54.0 -10.5	Vert
			+3.4	+0.3					LayFlat_LowGain_	
	0.000 0.000 0	4.4.0		<u> </u>	0.5				L_Harmonics of LC	
14	3660.000M	44.8	+0.0	+31.5	+0.6	-37.9	+0.0	43.4	54.0 -10.6	Horiz
			+4.0	+0.4					HiGain_H_Harmon	
	0 < <0 < <0 = 1			<u> </u>		a= :			ics of LO	
15	3660.000M	44.6	+0.0	+31.5	+0.6	-37.9	+0.0	43.2	54.0 -10.8	Horiz
			+4.0	+0.4					LowGain_H_Harm	
									onics of LO	

16	2745.000M	48.0	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	43.1	54.0 -10.9 LowGain_L_Harmo nics of LO	Vert
17	3660.000M	44.5	+0.0 +4.0	+31.5 +0.4	+0.6	-37.9	+0.0	43.1	54.0 -10.9 LayFlat_HiGain_H _Harmonics of LO	Vert
18	2745.000M	47.9	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	43.0	54.0 -11.0 LayFlat_HiGain_H _Harmonics of LO	Vert
19	3659.950M	44.3	+0.0 +4.0	+31.5 +0.4	+0.6	-37.9	+0.0	42.9	54.0 -11.1 LayFlat_HiGain_M _Harmonics of LO	Vert
20	2708.250M	47.9	+0.0 +3.4	+29.2 +0.3	+0.5	-38.4	+0.0	42.9	54.0 -11.1 LowGain_L	Horiz
21	3660.000M	44.3	+0.0 +4.0	+31.5 +0.4	+0.6	-37.9	+0.0	42.9	54.0 -11.1 LowGain_M_Harm onics of LO	Horiz
22	3660.000M	44.0	+0.0 +4.0	+31.5 +0.4	+0.6	-37.9	+0.0	42.6	54.0 -11.4 LowGain_M_Harm onics of LO	Vert
23	4513.583M	42.3	+0.0 +4.5	+32.2 +0.3	+0.7	-37.4	+0.0	42.6	54.0 -11.4 LayFlat_LowGain_ L	Vert
24	2745.000M	47.4	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	42.5	54.0 -11.5 LayFlat_HiGain_L_ Harmonics of LO	Vert
25	2745.000M	47.4	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	42.5	54.0 -11.5 LowGain_M_Harm onics of LO	Vert
26	2745.000M	47.2	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	42.3	54.0 -11.7 HiGain_M_Harmon ics of LO	Vert
27	2744.600M	47.2	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	42.3	54.0 -11.7 LowGain_M	Vert
28	2744.300M	47.1	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	42.2	54.0 -11.8 LayFlat_HiGain_M	Vert
29	2745.000M	46.8	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	41.9	54.0 -12.1 LowGain_H_Harm onics of LO	Vert
30	2745.000M	46.7	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	41.8	54.0 -12.2 HiGain_L_Harmoni cs of LO	Vert
31	2708.250M	46.7	+0.0 +3.4	+29.2 +0.3	+0.5	-38.4	+0.0	41.7	54.0 -12.3 HiGain_L	Horiz
32	2781.850M	46.0	+0.0 +3.5	+29.5 +0.3	+0.5	-38.4	+0.0	41.4	54.0 -12.6 HiGain_H	Vert
33	2744.100M	46.2	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	41.3	54.0 -12.7 HiGain_M	Horiz
34	2781.650M	45.8	+0.0 +3.5	+29.5 +0.3	+0.5	-38.4	+0.0	41.2	54.0 -12.8 LayFlat_HiGain_H	Horiz
35	2708.500M	46.1	+0.0 +3.4	+29.2 +0.3	+0.5	-38.4	+0.0	41.1	54.0 -12.9 LowGain_L	Vert

36	2708.150M	46.0	+0.0 +3.4	+29.2 +0.3	+0.5	-38.4	+0.0	41.0	54.0 -13 LayFlat_LowGai	
			+3.4	+0.5					Layriat_LowGar	11_
37	7320.000M	34.2	+0.0	+36.3	+0.9	-36.9	+0.0	40.8	54.0 -13	.2 Vert
	Ave		+6.1	+0.2					LayFlat_HiGain_	
									_Harmonics of L	
38	2744.300M	45.6	+0.0	+29.3	+0.5	-38.4	+0.0	40.7	54.0 -13	.3 Horiz
			+3.4	+0.3					LowGain_M	
39	2708.150M	45.7	+0.0	+29.2	+0.5	-38.4	+0.0	40.7	54.0 -13	.3 Vert
			+3.4	+0.3					HiGain_L	
40	2781.750M	45.2	+0.0	+29.5	+0.5	-38.4	+0.0	40.6	54.0 -13	.4 Horiz
			+3.5	+0.3					LowGain_H	
41	2781.700M	45.2	+0.0	+29.5	+0.5	-38.4	+0.0	40.6	54.0 -13	.4 Vert
			+3.5	+0.3					LowGain_H	
42	2745.000M	45.5	+0.0	+29.3	+0.5	-38.4	+0.0	40.6	54.0 -13	
			+3.4	+0.3					HiGain_H_Harm	on
									ics of LO	
43	2708.250M	45.5	+0.0	+29.2	+0.5	-38.4	+0.0	40.5	54.0 -13	
			+3.4	+0.3					LayFlat_HiGain_	
44	2781.700M	45.1	+0.0	+29.5	+0.5	-38.4	+0.0	40.5	54.0 -13	
			+3.5	+0.3					LayFlat_LowGai	n_
									Н	
45	2781.850M	45.0	+0.0	+29.5	+0.5	-38.4	+0.0	40.4	54.0 -13	
			+3.5	+0.3					LayFlat_LowGai	n_
									H	
46	2781.800M	45.0	+0.0	+29.5	+0.5	-38.4	+0.0	40.4	54.0 -13	.6 Horiz
			+3.5	+0.3					HiGain_H	
47	2708.250M	45.4	+0.0	+29.2	+0.5	-38.4	+0.0	40.4	54.0 -13	
			+3.4	+0.3					LayFlat_LowGai	n_
									L	
48	2781.800M	45.0	+0.0	+29.5	+0.5	-38.4	+0.0	40.4	54.0 -13	
			+3.5	+0.3					LayFlat_HiGain_	H

4.0	2545 0003 6	45.0	0.0	20.2	0.7	20.4	0.0	40.4	7 4 0 10 0	
	2745.000M	45.0	+0.0	+29.3	+0.5	-38.4	+0.0	40.1	54.0 -13.9	Horiz
	Ave		+3.4	+0.3					LowGain_H_Harm	
									onics of LO	
^	2745.000M	50.9	+0.0	+29.3	+0.5	-38.4	+0.0	46.0	54.0 -8.0	Horiz
			+3.4	+0.3					LowGain_L_Harmo	
									nics of LO	
^	2745.000M	50.7	+0.0	+29.3	+0.5	-38.4	+0.0	45.8	54.0 -8.2	Horiz
			+3.4	+0.3					LowGain_H_Harm	
									onics of LO	
^	2745.000M	50.1	+0.0	+29.3	+0.5	-38.4	+0.0	45.2	54.0 -8.8	Horiz
			+3.4	+0.3					HiGain_H_Harmon	
									ics of LO	
^	2745.000M	48.9	+0.0	+29.3	+0.5	-38.4	+0.0	44.0	54.0 -10.0	Horiz
	2745.000101	-0.7	+3.4	+0.3	10.5	-50.4	10.0	0	HiGain_L_Harmoni	HOLL
			13.4	10.5					cs of LO	
	2745 00014	10.2	10.0	120.2	0.5	20.4	.0.0	12.4		Harin
~	2745.000M	48.3	+0.0	+29.3	+0.5	-38.4	+0.0	43.4		Horiz
			+3.4	+0.3					LowGain_M_Harm	
	0745 00016	47 1	0.0	20.2	0.5	20.4	0.0	10.0	onics of LO	
~	2745.000M	47.1	+0.0	+29.3	+0.5	-38.4	+0.0	42.2	54.0 -11.8	Horiz
			+3.4	+0.3					HiGain_M_Harmon	
									ics of LO	
^	2745.000M	46.4	+0.0	+29.3	+0.5	-38.4	+0.0	41.5	54.0 -12.5	Horiz
			+3.4	+0.3					LayFlat_LowGain_	
									M_Harmonics of	
									LO	
^	2745.000M	46.2	+0.0	+29.3	+0.5	-38.4	+0.0	41.3	54.0 -12.7	Horiz
			+3.4	+0.3					LayFlat_LowGain_	
									H_Harmonics of	
									LŌ	
^	2745.000M	46.0	+0.0	+29.3	+0.5	-38.4	+0.0	41.1	54.0 -12.9	Horiz
			+3.4	+0.3					LayFlat_LowGain_	
			13.1	10.5					L_Harmonics of LO	
^	2745.067M	45.9	+0.0	+29.3	+0.5	-38.4	+0.0	41.0	54.0 -13.0	Horiz
	2745.007101	чу.у	+3.4	+0.3	10.5	-50.4	10.0	71.0	LayFlat_HiGain_M	TIOTIZ
			⊤J.+	± 0.5					_Harmonics of LO	
^	2745.000M	45.7		+29.3	+0.5	-38.4	+0.0	40.8	<u>54.0</u> -13.2	Horiz
	2745.000IVI	43.7	+0.0		+0.3	-30.4	+0.0	40.8		HOUL
			+3.4	+0.3					LayFlat_HiGain_L_	
	0745 00016	45.0	0.0	20.2	0.5	20.4	0.0	10.1	Harmonics of LO	
~	2745.000M	45.0	+0.0	+29.3	+0.5	-38.4	+0.0	40.1	54.0 -13.9	Horiz
			+3.4	+0.3					LayFlat_HiGain_H	
ļ									_Harmonics of LO	
62	2708.300M	45.0	+0.0	+29.2	+0.5	-38.4	+0.0	40.0	54.0 -14.0	Horiz
			+3.4	+0.3					LayFlat_HiGain_L	
63	2744.250M	44.7	+0.0	+29.3	+0.5	-38.4	+0.0	39.8	54.0 -14.2	Horiz
			+3.4	+0.3					LayFlat_LowGain_	
									M	
64	2744.250M	44.6	+0.0	+29.3	+0.5	-38.4	+0.0	39.7	54.0 -14.3	Horiz
			+3.4	+0.3					LayFlat_HiGain_M	
65	7320.000M	33.0	+0.0	+36.3	+0.9	-36.9	+0.0	39.6	54.0 -14.4	Vert
	Ave	22.0	+6.1	+0.2	10.7	50.7	10.0	27.0	LayFlat_HiGain_L_	, 011
			10.1	10.2					Harmonics of LO	
1									manifolites of LO	

66	2744.250M	44.1	+0.0 +3.4	+29.3 +0.3	+0.5	-38.4	+0.0	39.2	54.0 -14 HiGain_M	I.8 Vert
67	7320.000M Ave	32.5	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	39.1	54.0 -14 LowGain_L_Hau nics of LO	
68	7320.000M Ave	32.5	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	39.1	54.0 -14 LayFlat_LowGai M_Harmonics of LO	in_
69	7320.000M Ave	32.3	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	38.9	54.0 -15 LowGain_H_Hat onics of LO	
70	7320.000M Ave	32.2	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	38.8	54.0 -15 LowGain_M_Ha onics of LO	
71	7320.000M Ave	31.9	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	38.5	54.0 -15 HiGain_M_Harn ics of LO	
72	7320.000M Ave	30.8	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	37.4	54.0 -16 LayFlat_HiGain_ _Harmonics of L	H
73	7320.000M Ave	30.7	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	37.3	54.0 -16 HiGain_H_Harm ics of LO	
74	7320.000M Ave	30.4	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	37.0	54.0 -17 HiGain_L_Harm cs of LO	
75	7319.850M Ave	29.8	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	36.4	54.0 -17 LayFlat_LowGai M_Harmonics of LO	in
^	7319.850M	42.6	+0.0 +6.1	+36.3 +0.2	+0.9	-36.9	+0.0	49.2	54.0 -4 LayFlat_LowGai M_Harmonics of LO	

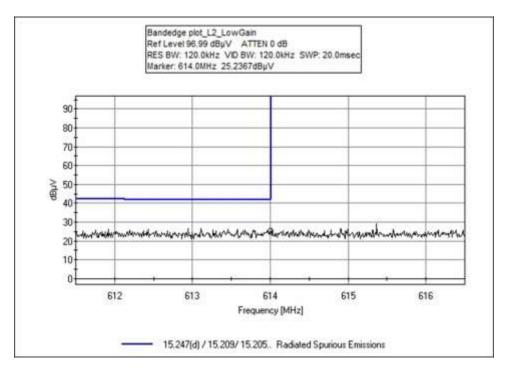
r									
77 7320.000M	29.3	+0.0	+36.3	+0.9	-36.9	+0.0	35.9	54.0 -18.	
Ave		+6.1	+0.2					LayFlat_LowGain	
								L_Harmonics of I	20
^ 7320.000M	44.1	+0.0	+36.3	+0.9	-36.9	+0.0	50.7	54.0 -3.	3 Vert
		+6.1	+0.2					LayFlat_LowGain	1_
								M_Harmonics of	
								LO	
^ 7320.000M	43.6	+0.0	+36.3	+0.9	-36.9	+0.0	50.2	54.0 -3.	8 Vert
		+6.1	+0.2					LayFlat_HiGain_	М
								Harmonics of LO)
^ 7320.000M	42.6	+0.0	+36.3	+0.9	-36.9	+0.0	49.2	54.0 -4.	8 Vert
		+6.1	+0.2					LayFlat_HiGain_	Н
								Harmonics of LO)
^ 7320.000M	42.0	+0.0	+36.3	+0.9	-36.9	+0.0	48.6	54.0 -5.	4 Vert
		+6.1	+0.2					LayFlat_HiGain_	L_
								Harmonics of LO	
^ 7320.000M	40.7	+0.0	+36.3	+0.9	-36.9	+0.0	47.3	54.0 -6.	7 Vert
		+6.1	+0.2					LayFlat_LowGain	1_
								L_Harmonics of I	20
83 7320.000M	28.4	+0.0	+36.3	+0.9	-36.9	+0.0	35.0	54.0 -19.	
Ave		+6.1	+0.2					LayFlat_LowGain	1_
								M_Harmonics of	
								LO	
84 7320.000M	27.9	+0.0	+36.3	+0.9	-36.9	+0.0	34.5	54.0 -19.	5 Horiz
Ave		+6.1	+0.2					LayFlat_HiGain_	
								_Harmonics of LO	C
85 7320.000M	27.8	+0.0	+36.3	+0.9	-36.9	+0.0	34.4	54.0 -19.	6 Horiz
Ave		+6.1	+0.2					LayFlat_HiGain_	Н
								_Harmonics of LO	C

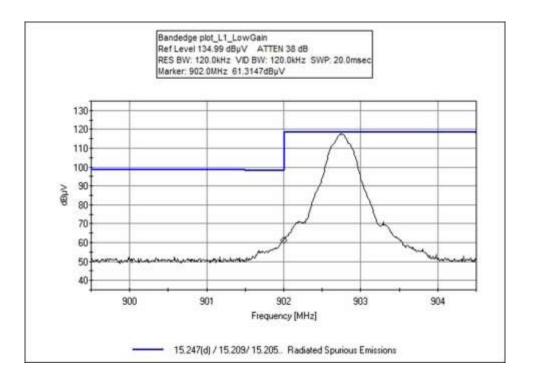
86	7320.000M	27.7	+0.0	+36.3	+0.9	-36.9	+0.0	34.3	54.0 -19.7	Horiz
50	Ave		+6.1	+0.2		2000		0.10	LayFlat_HiGain_L_	
									Harmonics of LO	
^	7320.000M	43.0	+0.0	+36.3	+0.9	-36.9	+0.0	49.6	54.0 -4.4	Horiz
			+6.1	+0.2					LowGain_H_Harm	
									onics of LO	
^	7320.000M	42.9	+0.0	+36.3	+0.9	-36.9	+0.0	49.5	54.0 -4.5	Horiz
			+6.1	+0.2					HiGain_M_Harmon	
									ics of LO	
^	7320.000M	42.9	+0.0	+36.3	+0.9	-36.9	+0.0	49.5	54.0 -4.5	Horiz
			+6.1	+0.2					LowGain_L_Harmo	
									nics of LO	
^	7320.000M	42.8	+0.0	+36.3	+0.9	-36.9	+0.0	49.4	54.0 -4.6	Horiz
			+6.1	+0.2					HiGain_H_Harmon	
									ics of LO	
^	7320.000M	42.8	+0.0	+36.3	+0.9	-36.9	+0.0	49.4	54.0 -4.6	Horiz
			+6.1	+0.2					LowGain_M_Harm	
									onics of LO	
^	7320.000M	42.5	+0.0	+36.3	+0.9	-36.9	+0.0	49.1	54.0 -4.9	Horiz
			+6.1	+0.2					HiGain_L_Harmoni	
									cs of LO	
^	7320.000M	41.6	+0.0	+36.3	+0.9	-36.9	+0.0	48.2	54.0 -5.8	Horiz
			+6.1	+0.2					LayFlat_LowGain_	
									M_Harmonics of	
									LO	
^	7320.000M	41.3	+0.0	+36.3	+0.9	-36.9	+0.0	47.9	54.0 -6.1	Horiz
			+6.1	+0.2					LayFlat_HiGain_L_	
									Harmonics of LO	
^	7320.000M	41.2	+0.0	+36.3	+0.9	-36.9	+0.0	47.8	54.0 -6.2	Horiz
			+6.1	+0.2					LayFlat_HiGain_H	
									_Harmonics of LO	
^	7320.000M	41.1	+0.0	+36.3	+0.9	-36.9	+0.0	47.7	54.0 -6.3	Horiz
			+6.1	+0.2					LayFlat_HiGain_M	
									_Harmonics of LO	
^	7320.000M	41.0	+0.0	+36.3	+0.9	-36.9	+0.0	47.6	54.0 -6.4	Horiz
			+6.1	+0.2					LayFlat_LowGain_	
									H_Harmonics of	
									LO	
^	7320.000M	40.2	+0.0	+36.3	+0.9	-36.9	+0.0	46.8	54.0 -7.2	Horiz
			+6.1	+0.2					LayFlat_LowGain_	
									L_Harmonics of LO	

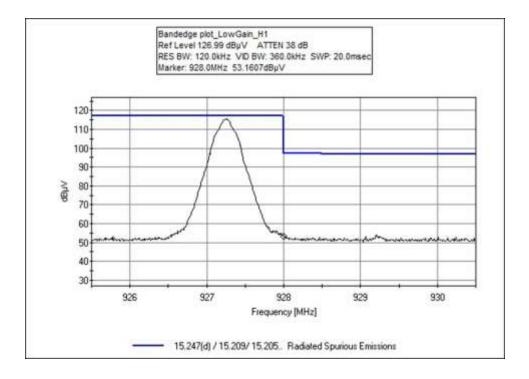
Band Edge

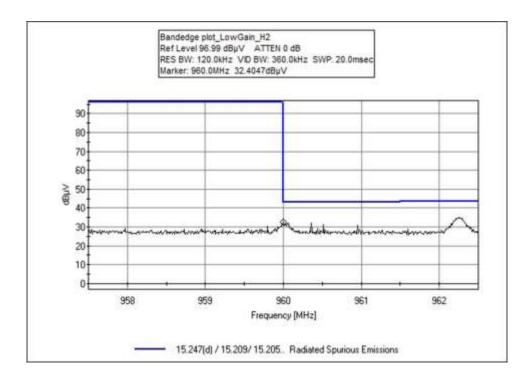
	Band Edge Summary: Low Gain Sector 135								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) Limit (dBuV/m @3m) Results									
614	PR-ASK	Integral	29.2	<46	Pass				
902	PR-ASK	Integral	69.8	<106.8	Pass				
928	PR-ASK	Integral	62.8	< 106.8	Pass				
960	PR-ASK	Integral	43.1	<54	Pass				

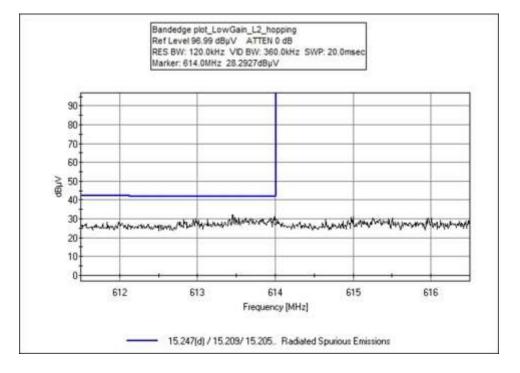
	Band Edge Summary : Low Gain Sector 135								
Operating Mo	Operating Mode: Hopping								
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) Limit (dBuV/m @3m) Results									
614	PR-ASK	Integral	32.3	<46	Pass				
902	PR-ASK	Integral	69.7	< 106.8	Pass				
928	PR-ASK	Integral	62.6	<106.8	Pass				
960	PR-ASK	Integral	42.5	<54	Pass				

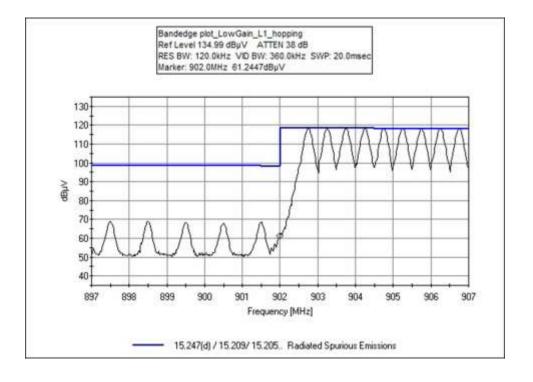

	Band Edge Summary: High Gain Sector 180								
Operating Mo	Operating Mode: Single Channel (Low and High)								
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) Limit (dBuV/m @3m) Results									
614	PR-ASK	Integral	28.2	<46	Pass				
902	PR-ASK	Integral	74.0	<106.8	Pass				
928	PR-ASK	Integral	63.4	< 106.8	Pass				
960	PR-ASK	Integral	38.2	<54	Pass				

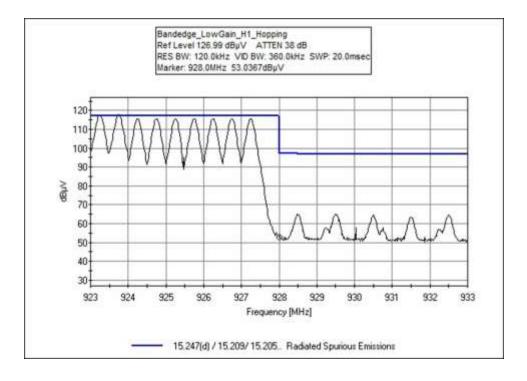

	Band Edge Summary: High Gain Sector 180								
Operating Mo	Operating Mode: Hopping								
Frequency (MHz) Modulation Ant. Type Field Strength (dBuV/m @3m) Limit (dBuV/m @3m) Results									
614	PR-ASK	Integral	30.8	<46	Pass				
902	PR-ASK	Integral	29.8	< 106.8	Pass				
928	PR-ASK	Integral	61.9	<106.8	Pass				
960	PR-ASK	Integral	40.9	<54	Pass				

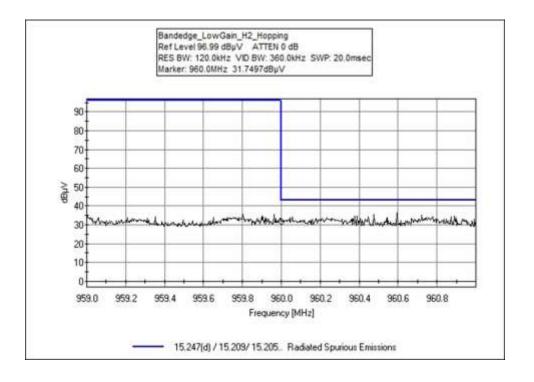

Band Edge Plots

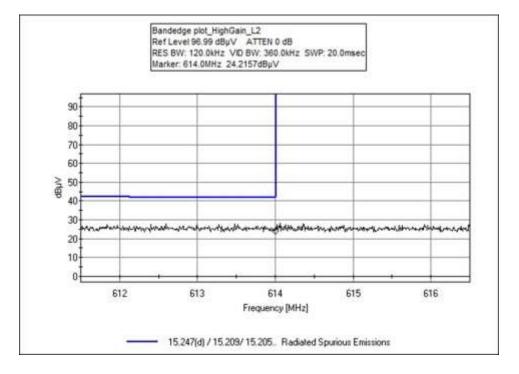

Low Gain; Single Channel

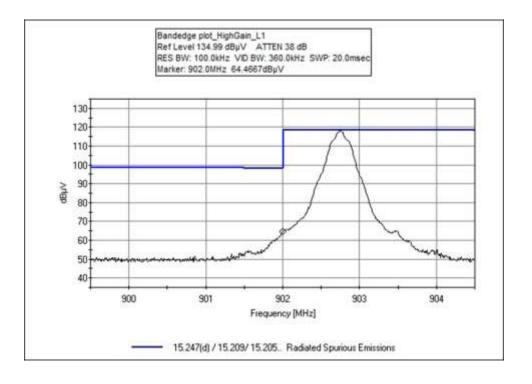


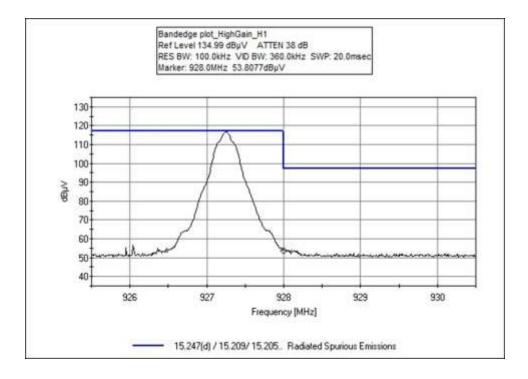


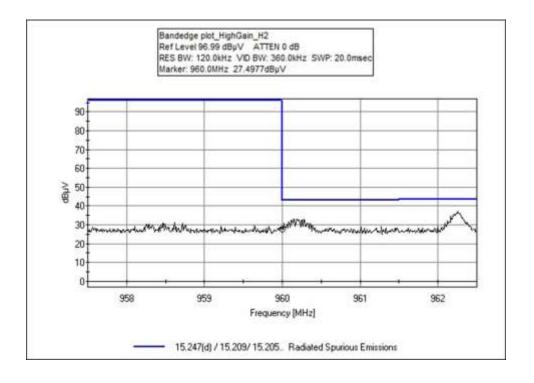


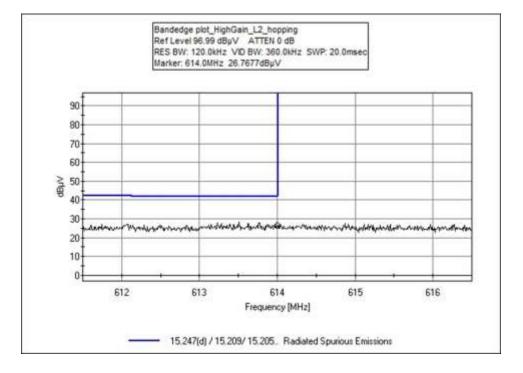

Low Gain; Hopping

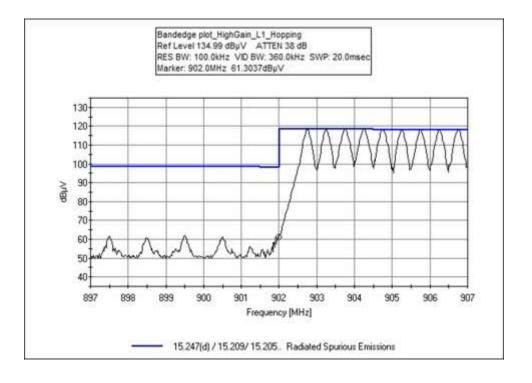


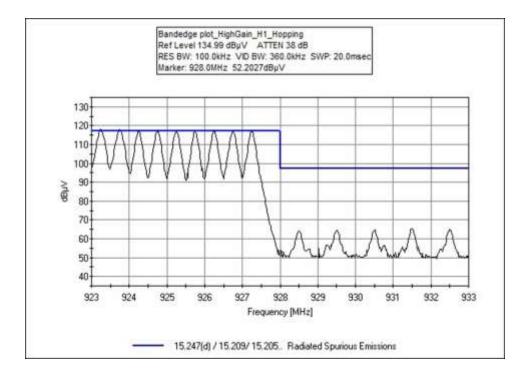


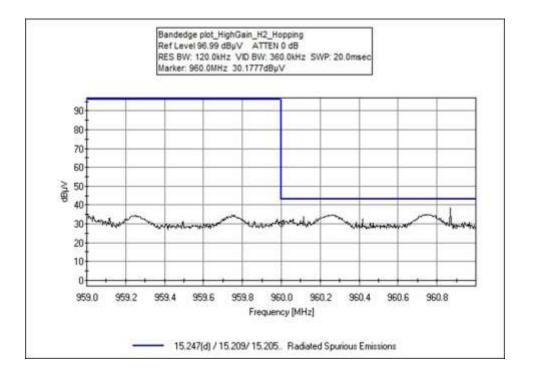



High Gain; Single Channel








High Gain; Hopping

Test Setup / Conditions / Data

Test Location: Customer:	CKC Laboratories, Inc • 110 N. Automation Inc dba RADAR	Olinda Place • Brea, CA	• (714) 993-6112
Specification:	15.247(d) / 15.209/ 15.205 Radia	ated Spurious Emissions	
Work Order #:	108261	Date:	4/28/2023
Test Type:	Maximized Emissions	Time:	12:02:35
Tested By:	E. Wong	Sequence#:	21
Software:	EMITest 5.03.20	_	

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				
Support Fauinment				

Зирроп Едиртен.				
Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

The equipment under test (EUT) is set on a Styrofoam tabletop in the maximized emission orientation.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

TX 902.75MHz, 927.25MHz

TARI = 6.25us as intended.

Firmware Version: 0.85.11

RBW=VBW=100kHz RBW=120kHz, VBW=360kHz restricted band

Two Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm Highest Gain: Sector 180, 0 Power setting 21.4dBm

Site A Test Method: ANSI C63.10 (2013)

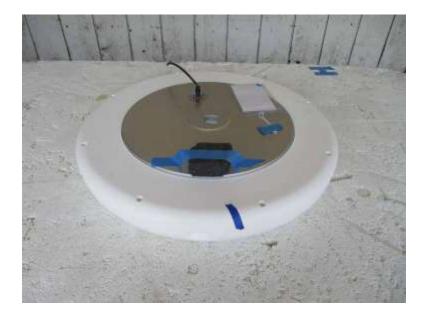
Test Environment Conditions: Temperature: 21°C Relative Humidity: 58% Pressure: 98.9kPa

Additional evaluation performed with the EUT lay flat on the Styrofoam. Worst case emission presented.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T2	AN00851	Biconilog Antenna	CBL6111C	4/21/2022	4/21/2024
Т3	ANP05198	Cable-Amplitude	8268	12/31/2022	12/31/2024
		+15C to +45C (dB)			
T4	AN00309	Preamp	8447D	12/13/2021	12/13/2023
T5	ANP05050	Cable	RG223/U	12/31/2022	12/31/2024

	rement Data:	Re	eading lis	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	T5 dB	dB	dB	dB	Table	dBµV/m	dBµV/m	dB	Ant
1	960.000M	32.4	+0.0	+31.4	+6.1	-27.3	+0.0	43.1	54.0	-10.9	Horiz
			+0.5						Bandedge_	LowGai	
									n_H2		
2	960.000M	31.8	+0.0	+31.4	+6.1	-27.3	+0.0	42.5	54.0	-11.5	Horiz
			+0.5						Bandedge_		
									n_H2_Hop		
3	960.000M	30.2	+0.0	+31.4	+6.1	-27.3	+0.0	40.9	54.0	-13.1	Horiz
			+0.5						Bandedge_		
								10.0	n_H2_Hop		
4	960.000M	29.6	+0.0	+31.4	+6.1	-27.3	+0.0	40.3	54.0	-13.7	Horiz
			+0.5						Bandedge_		
~	(14,000) (20.2	.0.0	. 0 (0	. 4 7	27.4	.0.0	20.2	HighGain_		
5	614.000M	28.3	+0.0	+26.3	+4.7	-27.4	+0.0	32.3	46.0	-13.7	Horiz
			+0.4						Bandedge_		
6	960.000M	29.5	+0.0	+31.4	+6.1	-27.3	+0.0	40.2	n_L2_Hop 54.0	-13.8	Horiz
0	900.000Ivi	29.3	+0.0 +0.5	+31.4	+0.1	-21.5	+0.0	40.2	Bandedge		HOLIZ
			+0.3						LowGain_		
7	614.000M	27.0	+0.0	+26.3	+4.7	-27.4	+0.0	31.0	46.0	-15.0	Horiz
,	011.000101	27.0	+0.4	120.5	11.7	27.1	10.0	51.0	Bandedge_		HOHZ
			10.1						HignGain_	•	
8	614.000M	26.8	+0.0	+26.3	+4.7	-27.4	+0.0	30.8	46.0	-15.2	Horiz
_			+0.4						Bandedge_		
									LowGain_	•	
9	614.000M	26.8	+0.0	+26.3	+4.7	-27.4	+0.0	30.8	46.0	-15.2	Horiz
			+0.4						Bandedge_	HighGai	
									n_L2_Hop	ping	
10	960.000M	27.5	+0.0	+31.4	+6.1	-27.3	+0.0	38.2	54.0	-15.8	Horiz
			+0.5						Bandedge_	_HighGai	
									n_H2		
11	614.000M	25.2	+0.0	+26.3	+4.7	-27.4	+0.0	29.2	46.0	-16.8	Horiz
			+0.4						Bandedge_	_LowGai	
									n_L1		


12	614.000M	24.2	+0.0	+26.3	+4.7	-27.4	+0.0	28.2	46.0 -17.8	8 Horiz
			+0.4						Bandedge_HighG	ai
									n_L2	
13	902.000M	65.5	+0.0	+29.5	+5.8	-27.3	+0.0	74.0	106.8 -32.3	
			+0.5						Bandedge_HighG	ai
									n_L1	
14	902.000M	61.3	+0.0	+29.5	+5.8	-27.3	+0.0	69.8	106.8 -37.0) Horiz
			+0.5						Bandedge_LowGa	i
									n_L2	
15	902.000M	61.3	+0.0	+29.5	+5.8	-27.3	+0.0	69.8	106.8 -37.0	
			+0.5						Bandedge_HighG	ai
									n_L1_Hopping	
16	902.000M	61.2	+0.0	+29.5	+5.8	-27.3	+0.0	69.7	106.8 -37.	
			+0.5						Bandedge_LowGa	ıi
									n_L1_Hopping	
17	928.000M	53.8	+0.0	+30.5	+5.9	-27.3	+0.0	63.4	106.8 -43.4	-
			+0.5						Bandedge_HighG	ai
									n_H1	
18	928.000M	53.2	+0.0	+30.5	+5.9	-27.3	+0.0	62.8	106.8 -44.0) Horiz
			+0.5						Bandedge_LowGa	i
									n_H1	
19	928.000M	53.0	+0.0	+30.5	+5.9	-27.3	+0.0	62.6	106.8 -44.2	2 Horiz
			+0.5						Bandedge_LowGa	ui
									n_H1_Hopping	
20	928.000M	52.3	+0.0	+30.5	+5.9	-27.3	+0.0	61.9	106.8 -44.9	Horiz
			+0.5						Bandedge_HighG	ai
									n_H1_Hopping	

Test Setup Photo(s)

Upright View

Lay Flat View

Above 1GHz; View 1

Above 1GHz; View 2

<u>0.8m</u>

Page 80 of 103 Report No.: 108261-6

Page 81 of 103 Report No.: 108261-6

<u>1.5m</u>

Page 82 of 103 Report No.: 108261-6

Page 83 of 103 Report No.: 108261-6

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location:	CKC Laboratories, Inc • 110 N.	Olinda Place • Brea, CA	• (714) 993-6112
Customer:	Automation Inc dba RADAR		
Specification:	15.207 AC Mains - Average		
Work Order #:	108261	Date:	5/2/2023
Test Type:	Conducted Emissions	Time:	15:17:47
Tested By:	E. Wong	Sequence#:	24
Software:	EMITest 5.03.20		120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment:				
Device	Manufacturer	Model #	S/N	
Configuration 4				

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

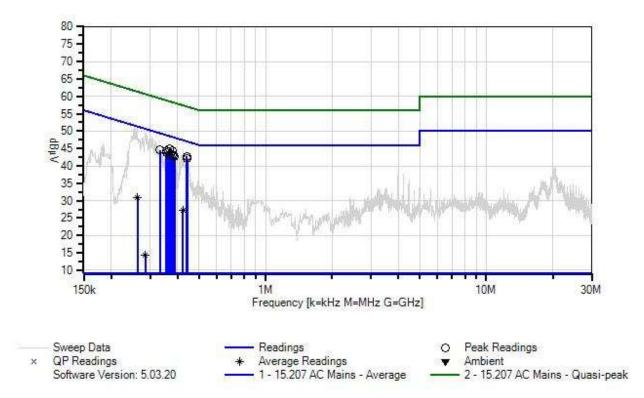
Hopping

TARI = 6.25us as intended.

Worst case Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm

Frequency Range of Measurement: 150kHz- 30MHz. 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz


Test Environment Conditions: Temperature: 26.5°C Relative Humidity: 34% Pressure: 99.8kPa

Site A Test Method: ANSI C63.10 (2013)

AC conducted emission evaluated at the AC mains of the support POE.

Automation Inc dba RADAR WO#: 108261 Sequence#: 24 Date: 5/2/2023 15.207 AC Mains - Average Test Lead: 120/60Hz L1-Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T1	AN02343	High Pass Filter	HE9615-150K-	1/2/2023	1/2/2025
			50-720B		
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	ANP08007	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
T4	AN00969A	50uH LISN-Line	3816/2NM	10/16/2022	10/16/2024
		(dB)			
	AN00969A	50uH LISN-Return	3816/2NM	10/16/2022	10/16/2024
		(dB)			

Measur	rement Data:	: Re	eading lis	ted by ma	urgin.			Test Lead	1: L1-Line		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	367.434k	38.8	+0.1	+0.0	+5.8	+0.1	+0.0	44.8	48.6	-3.8	L1-Li
2	376.888k	38.4	+0.1	+0.0	+5.8	+0.1	+0.0	44.4	48.3	-3.9	L1-Li
3	440.155k	36.7	+0.1	+0.0	+5.8	+0.1	+0.0	42.7	47.1	-4.4	L1-Li
4	357.253k	38.3	+0.1	+0.0	+5.8	+0.1	+0.0	44.3	48.8	-4.5	L1-Li
5	362.344k	38.2	+0.1	+0.0	+5.8	+0.1	+0.0	44.2	48.7	-4.5	L1-Li
6	442.336k	36.1	+0.1	+0.0	+5.8	+0.1	+0.0	42.1	47.0	-4.9	L1-Li
7	331.801k	38.5	+0.1	+0.0	+5.8	+0.1	+0.0	44.5	49.4	-4.9	L1-Li
8	355.799k	37.9	+0.1	+0.0	+5.8	+0.1	+0.0	43.9	48.8	-4.9	L1-Li
9	372.525k	37.3	+0.1	+0.0	+5.8	+0.1	+0.0	43.3	48.4	-5.1	L1-Li
10	378.342k	37.2	+0.1	+0.0	+5.8	+0.1	+0.0	43.2	48.3	-5.1	L1-Li
11	381.978k	37.0	+0.1	+0.0	+5.8	+0.1	+0.0	43.0	48.2	-5.2	L1-Li
12	386.341k	36.6	+0.1	+0.0	+5.8	+0.1	+0.0	42.6	48.1	-5.5	L1-Li
13	422.702k Ave	21.3	+0.1	+0.0	+5.8	+0.1	+0.0	27.3	47.4	-20.1	L1-Li
^	422.702k	38.5	+0.1	+0.0	+5.8	+0.1	+0.0	44.5	47.4	-2.9	L1-Li
15	262.717k Ave	24.7	+0.2	+0.0	+5.8	+0.1	+0.0	30.8	51.3	-20.5	L1-Li
۸	262.716k	44.9	+0.2	+0.0	+5.8	+0.1	+0.0	51.0	51.3	-0.3	L1-Li
17	285.988k Ave	8.4	+0.1	+0.0	+5.8	+0.1	+0.0	14.4	50.6	-36.2	L1-Li
^	285.987k	43.5	+0.1	+0.0	+5.8	+0.1	+0.0	49.5	50.6	-1.1	L1-Li

Test Location: Customer:	CKC Laboratories, Inc • 110 N Automation Inc dba RADAR	. Olinda Place • Brea, CA	• (714) 993-6112
Specification:	15.207 AC Mains - Average		
Work Order #:	108261	Date:	5/2/2023
Test Type:	Conducted Emissions	Time:	15:25:36
Tested By:	E. Wong	Sequence#:	25
Software:	EMITest 5.03.20		120/60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 4				

Support Equipment: Device Manufacturer Model # S/N Configuration 4

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a remotely located computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

Frequency Range of EUT: 902.75MHz to 927.25MHz

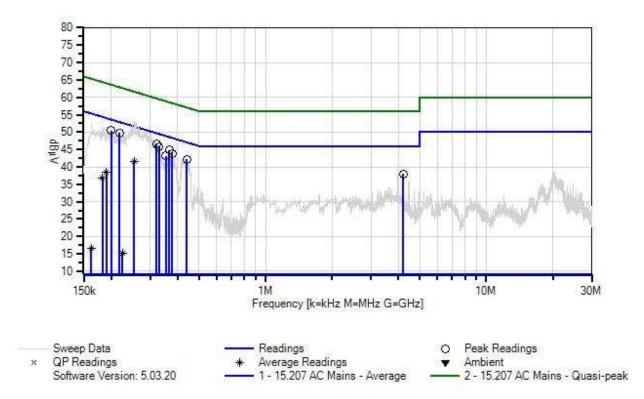
Hopping

TARI = 6.25us as intended.

Worst case Antenna Pattern and associated power level evaluated.

Lowest Gain: Sector 135, 0 Power setting 29.1dBm

Frequency Range of Measurement: 150kHz- 30MHz. 150 kHz-30 MHz;RBW=9 kHz,VBW=30kHz


Test Environment Conditions: Temperature: 26.5°C Relative Humidity: 34% Pressure: 99.8kPa

Site A Test Method: ANSI C63.10 2013

AC conducted emission evaluated at the AC mains of the support POE.

Automation Inc dba RADAR WO#: 108261 Sequence#: 25 Date: 5/2/2023 15.207 AC Mains - Average Test Lead: 120/60Hz L2-Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	12/13/2022	12/13/2023
T1	AN02343	High Pass Filter	HE9615-150K-	1/2/2023	1/2/2025
			50-720B		
T2	ANP07338	Cable	2249-Y-240	1/3/2022	1/3/2024
Т3	ANP08007	Attenuator	SA18N10W-06	10/24/2022	10/24/2024
	AN00969A	50uH LISN-Line	3816/2NM	10/16/2022	10/16/2024
		(dB)			
T4	AN00969A	50uH LISN-Return	3816/2NM	10/16/2022	10/16/2024
		(dB)			

	rement Data:		eading lis	ted by ma	argin.			Test Lead	1: L2-Neut		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dBµV	dB	dB	dB	dB	Table	dBµV	dBµV	dB	Ant
1	320.893k	40.7	+0.1	+0.0	+5.8	+0.1	+0.0	46.7	49.7	-3.0	L2-Ne
2	199.450k	44.5	+0.1	+0.0	+5.8	+0.1	+0.0	50.5	53.6	-3.1	L2-Ne
3	218.357k	43.7	+0.1	+0.0	+5.8	+0.1	+0.0	49.7	52.9	-3.2	L2-Ne
4	328.892k	39.9	+0.1	+0.0	+5.8	+0.1	+0.0	45.9	49.5	-3.6	L2-Ne
5	365.980k	38.9	+0.1	+0.0	+5.8	+0.1	+0.0	44.9	48.6	-3.7	L2-Ne
6	376.888k	37.8	+0.1	+0.0	+5.8	+0.1	+0.0	43.8	48.3	-4.5	L2-Ne
7	438.700k	36.2	+0.1	+0.0	+5.8	+0.1	+0.0	42.2	47.1	-4.9	L2-Ne
8	353.617k	37.2	+0.1	+0.0	+5.8	+0.1	+0.0	43.2	48.9	-5.7	L2-Ne
9	4.211M	31.7	+0.1	+0.2	+5.8	+0.2	+0.0	38.0	46.0	-8.0	L2-Ne
10	253.990k Ave	35.4	+0.2	+0.0	+5.8	+0.1	+0.0	41.5	51.6	-10.1	L2-Ne
۸	253.990k	47.0	+0.2	+0.0	+5.8	+0.1	+0.0	53.1	51.6	+1.5	L2-Ne
۸	258.353k	46.8	+0.2	+0.0	+5.8	+0.1	+0.0	52.9	51.5	+1.4	L2-Ne
13	189.996k Ave	32.4	+0.2	+0.0	+5.8	+0.1	+0.0	38.5	54.0	-15.5	L2-Ne
۸	189.996k	45.5	+0.2	+0.0	+5.8	+0.1	+0.0	51.6	54.0	-2.4	L2-Ne
15	181.997k Ave	30.5	+0.3	+0.0	+5.8	+0.1	+0.0	36.7	54.4	-17.7	L2-Ne
^	181.997k	45.3	+0.3	+0.0	+5.8	+0.1	+0.0	51.5	54.4	-2.9	L2-Ne
17	224.902k Ave	9.2	+0.2	+0.0	+5.8	+0.1	+0.0	15.3	52.6	-37.3	L2-Ne
^	224.902k	43.8	+0.2	+0.0	+5.8	+0.1	+0.0	49.9	52.6	-2.7	L2-Ne
19	162.363k Ave	10.4	+0.4	+0.0	+5.8	+0.1	+0.0	16.7	55.3	-38.6	L2-Ne
۸	162.362k	46.2	+0.4	+0.0	+5.8	+0.1	+0.0	52.5	55.3	-2.8	L2-Ne

Test Setup Photo(s)

Front View

Side View

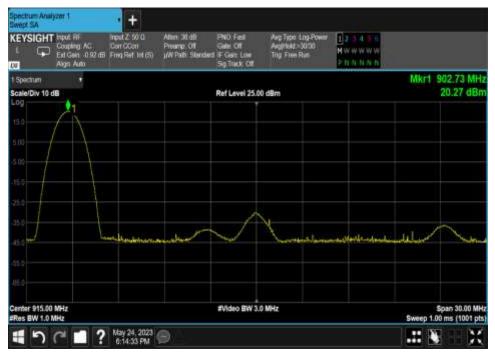
Appendix A: Manufacturer Provided Conducted Power Measurement

	Texas 75261	200 002022			
Calibr	ation (Certifi	cate Traceabi	lity Stateme	nt
Asset Number: MFG/Model Number: Serial Number: Description: Customer: Address:	1277964 AT/E5052B MY47100447 SIGNAL SOU RADAR 15150 AVENU SAN DIEGO (UE OF SCIENC	E, SUITE 200		
Customer P.O. No:	1624-	SD1-RDEQRE	NTAL		
Rental Agreement Numb	ver: 18668	155-0			
Certificate Number:	18668	550127796422	1014		
his certificate applies to the inst	trument identified ab	ove and shall not be	e reproduced, except in full, with	out written approval of	TRS-RenTelco.
This certifies that the above instr neasurement standards.	ument was calibrated	t to manufacturer's	specifications using approved	procedures and traceat	ble
his calibration was performed b	y an approved vendo	м,			
he Quality System of TRS-Ren 001-2015 TRS-RenTelco's Lab 0012-2003.					
Measurement standards are calit institute of Standards and Techni tandards, or by ratio type measu eview by appointment.	ology (NIST) or other	recognized Nation	al Metrology Institute (NMI), na	tural physical constants	s, consensus
his instrument is initially being a roperly stored after being calibration of the store of the					nstrument was
though the calibration laborato Traceability Statement and doe onditions.					
RS-RenTelco's calibration inter	val for this instrumer	t is 12 months			
			Calibration Date:	Oct 14, 2022	
0.000 (0.00) (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.000 (0.00) (0.000 (0.00) (0.000 (0.00) (0.	KNAPPENBE	RGER			
rocessed By: DALE				Feb 15, 2023	
Processed By: DALE				Eph 15 2024	
	And	Jodd		Feb 15, 2024	
	Dun F	Jodd		Feb 15, 2024	
	Dun F	Jodd		Feb 15, 2024	
	Den F	TRS-RenTelco ID: 1277964 AV		Feb 15, 2024	

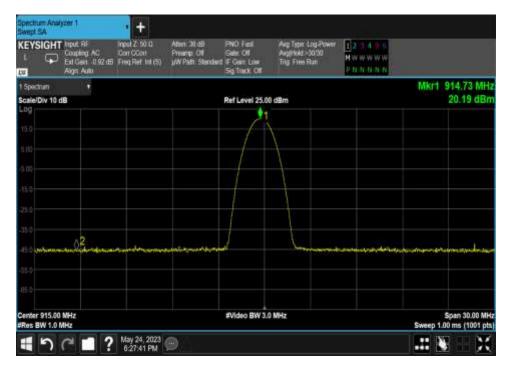
Cable Loss

Test Equipment					
Asset#	Description	Manufacturer	Model	Cal Date	Cal Due
1235088	Spectrum Analyzer	Agilent	E5052B	10/14/2022	2/15/2024
10010	Network Analyzer	Agilent	E5080A	7/14/2022	7/14/2024
None	RF Test Cable	Cinch	415-0536-036	None	None

Test Setup Photo(s)


Network Analyzer

Page 93 of 103 Report No.: 108261-6

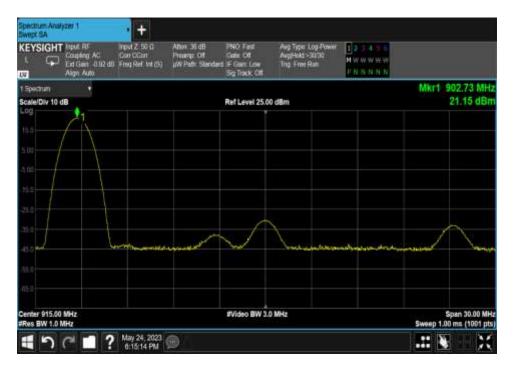


Plots

Antenna 0

Low Channel

Middle Channel



High Channel

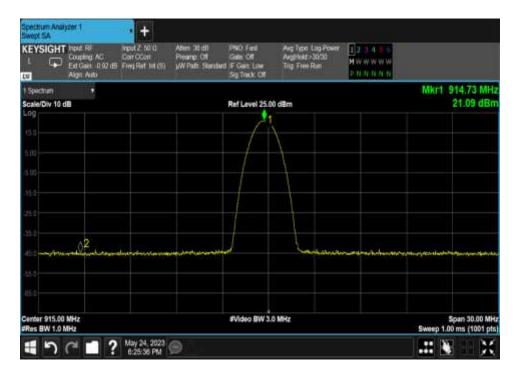
Antenna 1



Low Channel

Middle Channel

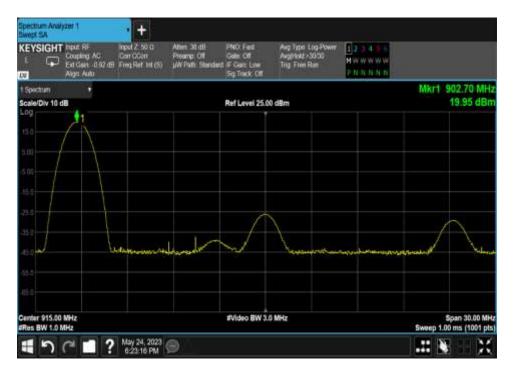


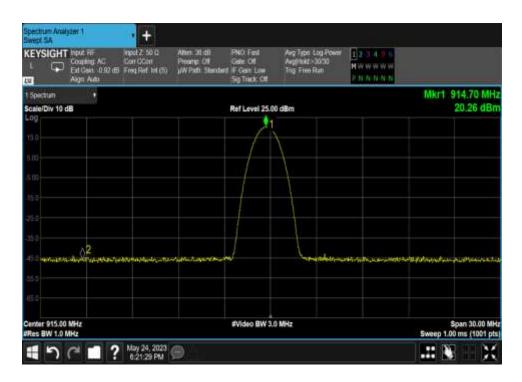

High Channel

Antenna 2

Low Channel

Middle Channel




High Channel

Antenna 3

Low Channel

Middle Channel

High Channel

Page 101 of 103 Report No.: 108261-6

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB μ V/m, the spectrum analyzer reading in dB μ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS				
	Meter reading	(dBµV)		
+	Antenna Factor	(dB/m)		
+	Cable Loss	(dB)		
-	Distance Correction	(dB)		
-	Preamplifier Gain	(dB)		
=	Corrected Reading	(dBµV/m)		

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE						
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING			
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz			
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz			
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz			
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz			

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band. Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.