

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057

Telephone:	+86 (0) 755 2601 2053
Fax:	+86 (0) 755 2671 0594
Email:	ee.shenzhen@sgs.com

Report No.: SZEM160500340605 Page: 1 of 44

TEST REPORT

Applicant:Creative Labs IncAddress of Applicant:1901, McCarthy Boulevard, Milpitas, CA 95035, United StatesManufacturer:CREATIVE LABS PTE. LTD.Address of Manufacturer:31, International Business Park, #03-01 Creative Resource, Singapore 609921Equipment Under Test (EUT):Creative MUVO 1cModel No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
Manufacturer:CREATIVE LABS PTE. LTD.Address of Manufacturer:31, International Business Park, #03-01 Creative Resource, Singapore 609921Equipment Under Test (EUT):Creative MUVO 1cModel No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
Address of Manufacturer:31, International Business Park, #03-01 Creative Resource, Singapore 609921Equipment Under Test (EUT):EUT Name:Creative MUVO 1cModel No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
Equipment Under Test (EUT):EUT Name:Creative MUVO 1cModel No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
EUT Name:Creative MUVO 1cModel No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
Model No.:MF8251FCC ID:IBAMF8250Trade mark:CREATIVE
FCC ID:IBAMF8250Trade mark:CREATIVE
Trade mark: CREATIVE
Standards: 47 CFR Part 15, Subpart C (2016)
Date of Receipt: 2017-05-04
Date of Test: 2017-05-15
Date of Issue : 2017-05-27
Test Result : PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Report No.: SZEM160500340605 Page: 2 of 44

Revision Record					
Version	Chapter	Date	Modifier	Remark	
01		2017-05-27		Original	

Authorized for issue by:		
	Benson Wong	
	Benson Wang /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM160500340605 Page: 3 of 44

2 Test Summary

Radio Spectrum Technical Requirement

nadio opectrum recimical nequirement						
Item	Standard	Method	Requirement	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass		
Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)	Pass		

Radio Spectrum Matter Part					
Item	Standard	Method	Requirement	Result	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(1)	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.205 & 15.209	Pass	

Report No.: SZEM160500340605 Page: 4 of 44

Remark:

Model No.: MF8251

This test report (Ref. No.: SZEM160500340605) is only valid with the original test report (Ref. No.: SZEM160500340601).

Review this report and original report, the major change filed under this application are:

1.Add model No: MF8251, Product Name:Creative MUVO 1c

2.MF8251 is a derivative model of MF8250 with changes in product features, No other electrical difference other than those stated below. Mechanical design and construction are identical for both models.

	Before	After
Model No.:	MF8250	MF8251
Product Name:	Creative MUVO 2c	Creative MUVO 1c
Bluetooth Module	ATS2825 (dual mode)	ATS2825C (single mode)
		*with same pin-to-pin configuration as ATS2825
Firmware	V3.18	V1.02.1
Change:		
Components		Removal of the following 16 components:
		R20 R22 R23 R16 C17 C18 C8 C20 C21 FB7 ES7
		ES8 ES9 ES10 ES11 SD1
SD Card	With SD card	Without SD card
USB Audio	With USB Audio	Without USB Audio
USB cable	4 pin with data line, length	2 pin without data line, length 300mm
	600mm	

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Peak Output Power, Radiated Emissions which fall in the restricted bands and Radiated Spurious Emissions was fully retested on model MF8251 and shown the data in this report, other tests data please refer to original report SZEM160500340601

Additionally, just updated the below standard:

Original report standard

The newest report standard

47 CFR Part 15, Subpart C (2015)

47 CFR Part 15, Subpart C:2016

Report No.: SZEM160500340605 Page: 5 of 44

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	3
3	CONTENTS	5
3		
4		
	4.1 DETAILS OF E.U.T.	
	 4.2 DESCRIPTION OF SUPPORT UNITS	
	4.5 MEASUREMENT UNCERTAINTY	
	4.5 TEST FACILITY	
	4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	8
5	EQUIPMENT LIST	9
6		
	6.1 ANTENNA REQUIREMENT	
	6.1.1 Test Requirement:	
	 6.1.2 Conclusion 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence 	
	6.2.1 Test Requirement:	
	6.2.2 Conclusion	
7		
'	7.1 CONDUCTED PEAK OUTPUT POWER	
	7.1.1 CONDUCTED PEAK OUTPUT POWER	
	7.1.2 Test Setup Diagram	
	7.1.3 Measurement Procedure and Data	
	7.2 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Setup Diagram	
	7.2.3 Measurement Procedure and Data	
	7.3 RADIATED SPURIOUS EMISSIONS	
	7.3.2 Test Setup Diagram	
	7.3.3 Measurement Procedure and Data	
8	PHOTOGRAPHS	
	8.1 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS TEST SETUP	
	8.2 RADIATED SPURIOUS EMISSIONS TEST SETUP	
	8.3 EUT CONSTRUCTIONAL DETAILS	
9	APPENDIX	
	9.1 Appendix 15.247	

Report No.: SZEM160500340605 Page: 6 of 44

General Information 4

4.1 Details of E.U.T.

Lithium Ion Battery: 3.7V 650mAh 2.41Wh (Charge by usb port)
Battery Model: PL 652540
USB input: DC5V 650mA
USB cable: 30cm shielded
2402MHz to 2480MHz
V4.2 single mode +EDR
Frequency Hopping Spread Spectrum(FHSS)
GFSK, π/4DQPSK, 8DPSK
79
Adaptive Frequency Hopping systems
Portable production
Integral
2.05dBi
4 (Class II)
ACTs MP Tool (manufacturer declare)

4.2 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Description Manufacturer		Serial No.
AC/DC Adapter	SGS	DC 5V	REF. No.SEA0500

Report No.: SZEM160500340605 Page: 7 of 44

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10-8
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	RF Radiated power	4.5dB (below 1GHz)
1		4.8dB (above 1GHz)
	Dedicted Cruzieus emission test	4.5dB (30MHz-1GHz)
8	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
9	Temperature test	1℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM160500340605 Page: 8 of 44

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

• VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM160500340605 Page: 9 of 44

5 Equipment List

RF conducted test						
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)	
DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2016-10-09	2017-10-09	
Spectrum Analyzer	Rohde & Schwarz	FSP	SEM004-06	2016-10-09	2017-10-09	
Signal Generator	Rohde & Schwarz	SML03	SEM006-02	2017-04-14	2018-04-14	
Power Meter	Rohde & Schwarz	NRVS	SEM014-02	2016-10-09	2017-10-09	

RE in Chamber							
Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)		
3m Semi-Anechoic Chamber	ETS-Lindgren	N/A	SEM001-01	2017-05-10	2018-05-10		
Spectrum Analyzer	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-14		
BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2014-11-15	2017-11-15		
Double-ridged horn (1-18GHz)	ETS-Lindgren	3117	SEM003-11	2015-10-17	2018-10-17		
Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2014-11-24	2017-11-24		
Horn Antenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2015-02-12	2018-02-12		
Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14		
Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEM004-10	2016-10-17	2017-10-17		
Pre-amplifier (26GHz-40GHz)	Compliance Directions Systems Inc.	PAP-2640-50	SEM005-08	2017-04-14	2018-04-14		
DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09		
Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13		

Report No.: SZEM160500340605 Page: 10 of 44

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm- dd)	Cal. Due date (yyyy-mm- dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-05-10	2018-05-10
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2016-10-09	2017-10-09
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2014-11-01	2017-11-01
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015-10-17	2018-10-17
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2014-11-24	2017-11-24
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-14
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2016-10-09	2017-10-09
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015-05-13	2018-05-13

General used equipment							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12		
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12		
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12		
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-18		

Report No.: SZEM160500340605 Page: 11 of 44

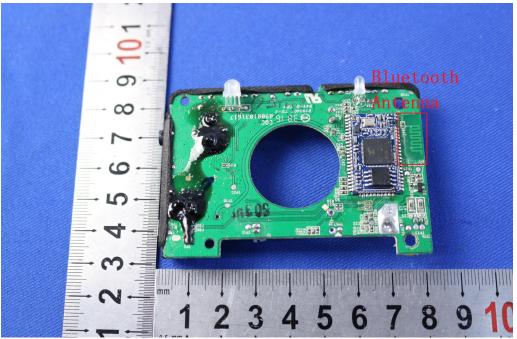
6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion


Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2.05 dBi.

Report No.: SZEM160500340605 Page: 12 of 44

6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence

6.2.1 Test Requirement:

47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h)

6.2.2 Conclusion

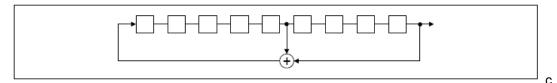
Standard Requirment:

The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

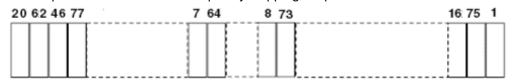
Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1):


According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

> Number of shift register stages: 9


> Length of pseudo-random sequence: 29 -1 = 511 bits

> Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g):

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) lested and such sample(s) are retained for 30 days only.

Report No.: SZEM160500340605 Page: 13 of 44

According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. Compliance for section 15.247(h):

According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individ

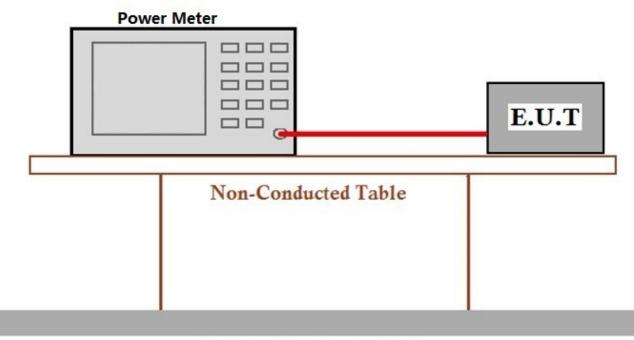
Report No.: SZEM160500340605 Page: 14 of 44

7 Radio Spectrum Matter Test Results

7.1 Conducted Peak Output Power

Test Requirement	47 CFR Part 15, Subpart C 15.247(b)(1)
Test Method:	ANSI C63.10 (2013) Section 7.8.5
Limit:	

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for ≥50 hopping channels				
902-928	0.25 for 25≤ hopping channels <50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels				
2400-2483.5	0.125 for all other frequency hopping systems				
	1 for digital modulation				
5725-5850	1 for frequency hopping systems and digital modulation				


Report No.: SZEM160500340605 Page: 15 of 44

7.1.1 E.U.T. Operation

Temperature:	23 °C	Humidity:	56 % RH	Atmospheric Pressure:	1015 mba	ar		
Test mode	b: TX _Keep the EUT in transmitting mode.							
	(Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation							
	type, 2-DH5	of data type is	the worst case of	π/4DQPSK modulation ty	pe, 3-DH5 of	f		

data type is the worst case of 8DPSK modulation type.)

7.1.2 Test Setup Diagram

Ground Reference Plane

7.1.3 Measurement Procedure and Data

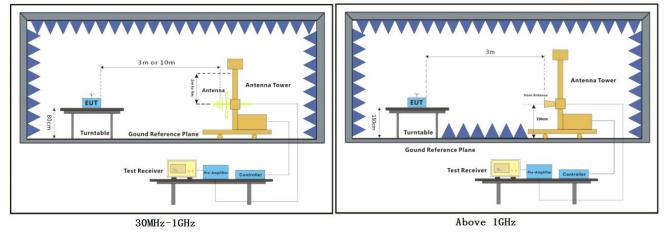
The detailed test data see: Appendix 15.247

> Report No.: SZEM160500340605 16 of 44 Page:

7.2 Radiated Emissions which fall in the restricted bands

Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.10.5
Moasuromont Distanco:	3m

Measurement Distance: Зm


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: Humidity: 54 % RH 23 °C Atmospheric Pressure: 1015 mbar Test mode b: TX _Keep the EUT in transmitting mode.

b: TX Keep the EUT in transmitting mode. (Through Pre-scan, find the DH5 of data The worst case for final test: type and GFSK modulation is the worst case. Only the worst case is recorded in the report.)

7.2.2 Test Setup Diagram

Report No.: SZEM160500340605 Page: 17 of 44

7.2.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

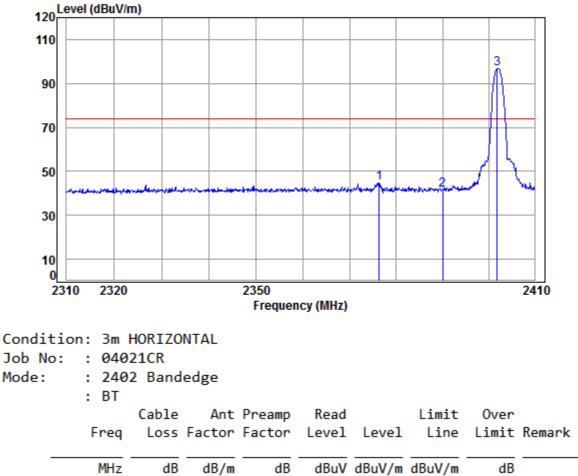
d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

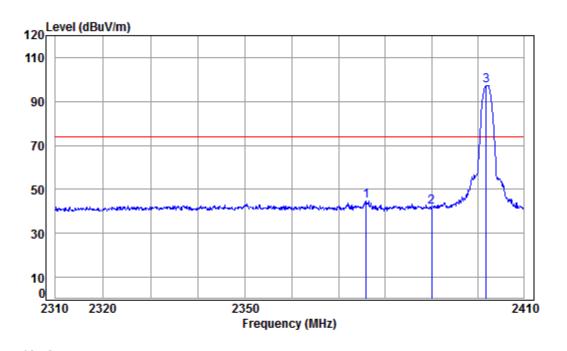
h. Test the EUT in the lowest channel, the middle channel, the Highest channel.


i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM160500340605 Page: 18 of 44

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low



			-			-	-	
1	2376.329	5.33	29.04	37.96	48.32	44.73	74.00 -29.27 pea	k
2	2390.000	5.34	29.08	37.96	45.11	41.57	74.00 -32.43 pea	k
3 рр	2401.843	5.35	29.11	37.96	100.13	96.63	74.00 22.63 pea	k

Report No.: SZEM160500340605 Page: 19 of 44

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

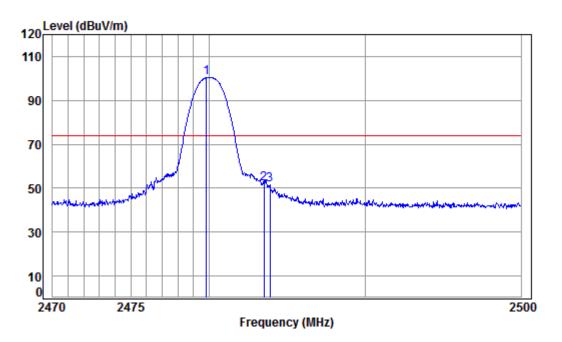
Condition: 3m VERTICAL Job No: : 04021CR

JOD NO:	-	04021CK
Mode:		2402 Bandedge

lode:	: 240. : BT	2 Band	edge						
	. 51	Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2375.926	5.33	29.04	37.96	48.18	44.59	74.00	-29.41	peak
2	2390.000								
3 pp	2401.843	5.35	29.11	37.96	100.82	97.32	74.00	23.32	peak

Report No.: SZEM160500340605 Page: 20 of 44

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High


Condition: 3m HORIZONTAL Job No: : 04021CR

Mode:	: 248 : BT	0 Band	edge							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
-	MHz	dB		dB		dBuV/m	dBuV/m	dB		_
			,							
1 pp	2479.830	5.41	29.34	37.95	101.63	98.43	74.00	24.43	peak	
2	2483.500	5.41	29.35	37.95	53.79	50.60	74.00	-23.40	peak	
3	2483.995	5.41	29.35	37.95	51.71	48.52	74.00	-25.48	peak	
2	2483.500	5.41	29.34 29.35	37.95 37.95	53.79	98.43 50.60	74.00 74.00	24.43 -23.40	peak	

Report No.: SZEM160500340605 Page: 21 of 44

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition:	3m VERTICAL
Job No: :	04021CR
Mode: :	2480 Bandedge

	: BT	Cable	Ant	Preamp	Read		Limit	0ver	
	Freq				Level				Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2479.830 2483.500 2483.875	5.41	29.35	37.95	55.19	52.00	74.00	-22.00	peak

Report No.: SZEM160500340605 Page: 22 of 44

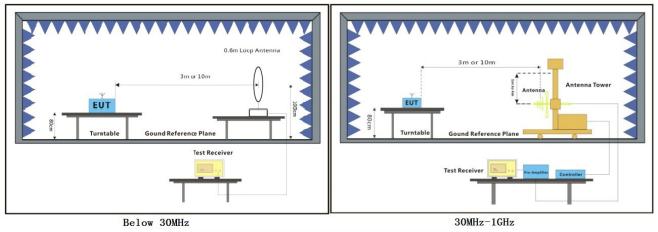
7.3 Radiated Spurious Emissions

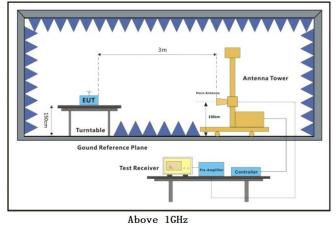
Test Requirement	47 CFR Part 15, Subpart C 15.205 & 15.209
Test Method:	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Measurement Distance:	3m
Limit:	

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Report No.: SZEM160500340605 Page: 23 of 44


7.3.1 E.U.T. Operation


Operating Environment:

Temperature:25 °CHumidity:55 % RHAtmospheric Pressure:1015 mbarTest modec: TX+Charge_Keep the EUT in transmitting mode and being chargedThe worst casec: TX+Charge_Keep the EUT in transmitting mode and being chargedfor final test:(Through Pre-scan, find the DH1 of data type and GFSK modulation is the worst case.For below 1GHz part, through pre-scan, the worst case is the lowest channel.

Only the worst case is recorded in the report.)

7.3.2 Test Setup Diagram

Report No.: SZEM160500340605 Page: 24 of 44

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

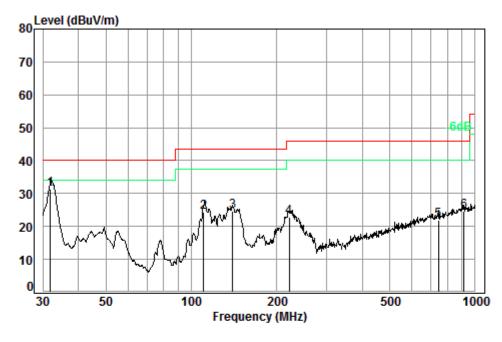
e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

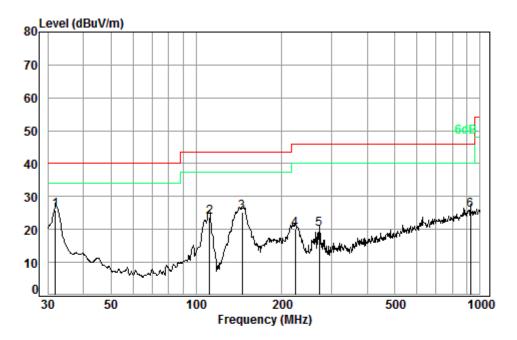

j. Repeat above procedures until all frequencies measured was complete.

Report No.: SZEM160500340605 Page: 25 of 44

Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	TX+Charge	Vertical

Condition: 3m VERTICAL Job No. : 04021CR Test mode: C

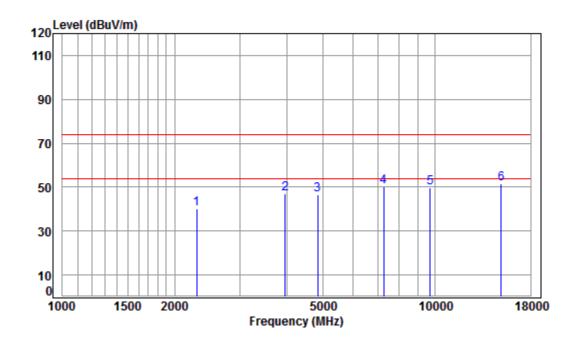

: 8251

	Freq			Preamp Factor				Over Limit
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp 2 3 4 5 6	31.95 110.57 139.85 221.39 742.26 912.86	1.30 1.52 3.03	8.56 8.09 11.31 21.67	27.35 27.13 26.96 26.62 27.36 26.71	41.52 42.07 36.52 24.45	24.18 24.50 22.73 21.79	43.50 43.50 46.00 46.00	-19.32 -19.00 -23.27 -24.21

Report No.: SZEM160500340605 Page: 26 of 44

Test mode:	TX+Charge	Horizontal
------------	-----------	------------

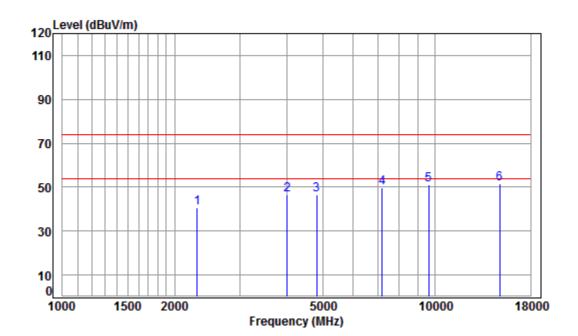
Condition:	3m HORIZONTAL
Job No. :	04021CR
Test mode:	C


	_	_	
			8251
			0201

	. 025	1						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 pp	31.95	0.60	17.61	27.35	34.99	25.85	40.00	-14.15
2	111.35	1.23	8.51	27.13	41.09	23.70	43.50	-19.80
3	145.35	1.31	8.58	26.93	42.19	25.15	43.50	-18.35
4	222.95	1.53	11.39	26.62	33.68	19.98	46.00	-26.02
5	271.32	1.77	12.73	26.47	32.05	20.08	46.00	-25.92
6	925.76	3.63	23.30	26.64	25.47	25.76	46.00	-20.24

Report No.: SZEM160500340605 Page: 27 of 44

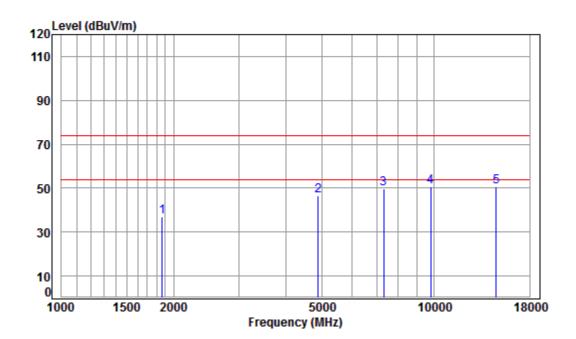
Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low


Condition: 3m HORIZONTAL Job No: : 04020CR

Mode	: : 240	2 TX S	E						
	: BT								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2292.257	5.26	28.78	37.97	44.24	40.31	74.00	-33.69	peak
2	3958.309	6.67	33.49	38.00	44.90	47.06	74.00	-26.94	peak
3	4840.000	7.78	34.22	38.42	43.13	46.71	74.00	-27.29	peak
4	7260.000	9.69	36.39	37.07	41.22	50.23	74.00	-23.77	peak
5	9680.000	11.13	37.54	35.06	36.20	49.81	74.00	-24.19	peak
6 p	p15003.420	14.85	41.30	38.90	34.12	51.37	74.00	-22.63	peak

Report No.: SZEM160500340605 Page: 28 of 44

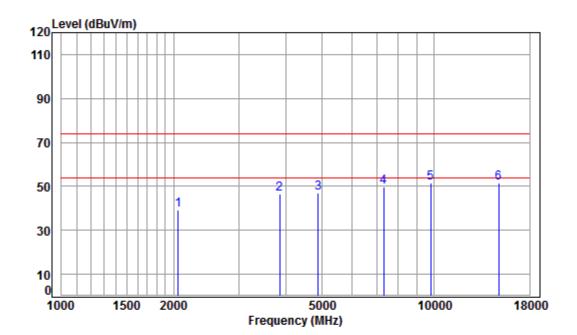
Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low


Condition: 3m VERTICAL Job No: : 04020CR

Mode:	: 240 : BT	2 TX S	E						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2298.892	5.27	28.80	37.97	44.48	40.58	74.00	-33.42	peak
2	4004.339	6.71	33.60	38.00	44.23	46.54	74.00	-27.46	peak
3	4804.000	7.73	34.16	38.40	42.99	46.48	74.00	-27.52	peak
4	7206.000	9.65	36.42	37.11	40.95	49.91	74.00	-24.09	peak
5	9608.000	11.06	37.52	35.10	37.82	51.30	74.00	-22.70	peak
6 p	p14873.890	14.82	41.08	38.91	34.72	51.71	74.00	-22.29	peak

Report No.: SZEM160500340605 Page: 29 of 44

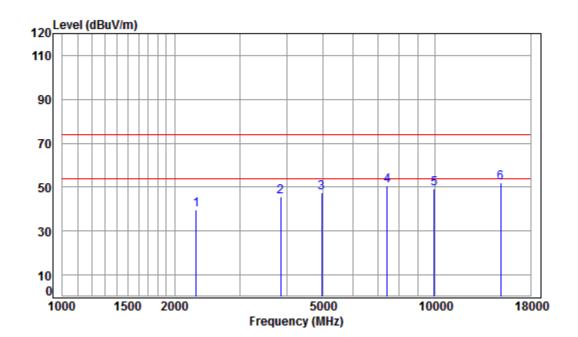
Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle


Condition: 3m HORIZONTAL Job No: : 04020CR

Mode	: : 244	1 TX S	E						
	: BT								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1861.588	4.88	27.30	38.01	42.92	37.09	74.00	-36.91	Peak
2	4882.000	7.84	34.30	38.44	42.88	46.58	74.00	-27.42	peak
3	7323.000	9.73	36.37	37.01	40.60	49.69	74.00	-24.31	peak
4 p	p 9764.000	11.21	37.55	35.02	37.13	50.87	74.00	-23.13	peak
5	14660.480	14.76	40.69	38.93	34.29	50.81	74.00	-23.19	peak

Report No.: SZEM160500340605 Page: 30 of 44

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

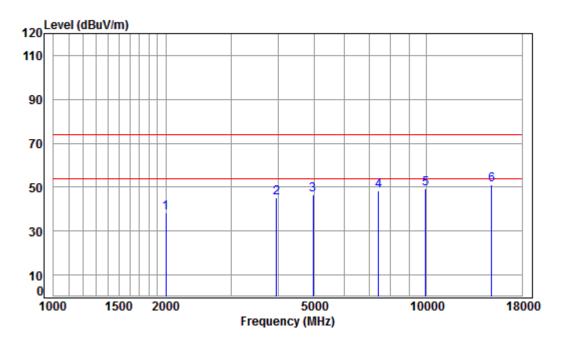

Condition: 3m VERTICAL Job No: : 04020CR

Mode		1 TX S	E						
	: BT								
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2059.767	5.06	28.01	37.99	44.25	39.33	74.00	-34.67	peak
2	3845.537	6.58	33.19	37.98	44.89	46.68	74.00	-27.32	peak
3	4882.000	7.84	34.30	38.44	43.22	46.92	74.00	-27.08	peak
4	7323.000	9.73	36.37	37.01	40.56	49.65	74.00	-24.35	peak
5	9764.000	11.21	37.55	35.02	37.68	51.42	74.00	-22.58	peak
6 p	p14873.890	14.82	41.08	38.91	34.54	51.53	74.00	-22.47	peak

Report No.: SZEM160500340605 Page: 31 of 44

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL Job No: : 04020CR


300 110.	. 0402001	
Mode:	: 2480 TX SE	
	: BT	

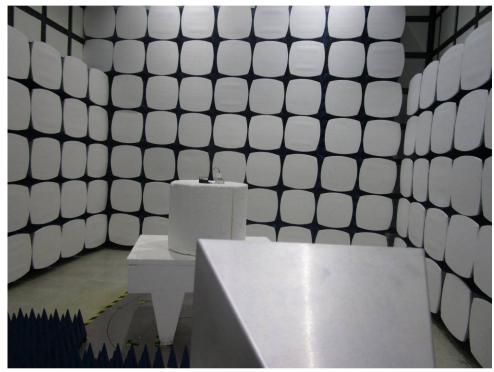
	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2	2285.641 3845.537			37.97 37.98					•
3 4	4960.000 7440.000	7.95	34.43	38.48	43.56	47.46	74.00	-26.54	peak
5 6	9920.000 pp14960.120								-

Report No.: SZEM160500340605 32 of 44 Page:

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition:	3m VERTICAL
Job No: :	04020CR
Mode: :	2480 TX SE

	RT


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2001.084	5.01	27.80	38.00	43.54	38.35	74.00	-35.65	peak
2	3958.309	6.67	33.49	38.00	42.85	45.01	74.00	-28.99	peak
3	4960.000	7.95	34.43	38.48	42.74	46.64	74.00	-27.36	peak
4	7440.000	9.81	36.32	36.90	38.99	48.22	74.00	-25.78	peak
5	9920.000	11.36	37.58	34.94	35.06	49.06	74.00	-24.94	peak
6	pp14916.940								

Report No.: SZEM160500340605 Page: 33 of 44

8 Photographs

8.1 Radiated Emissions which fall in the restricted bands Test Setup

8.2 Radiated Spurious Emissions Test Setup

Report No.: SZEM160500340605 Page: 34 of 44

8.3 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1705004021CR.

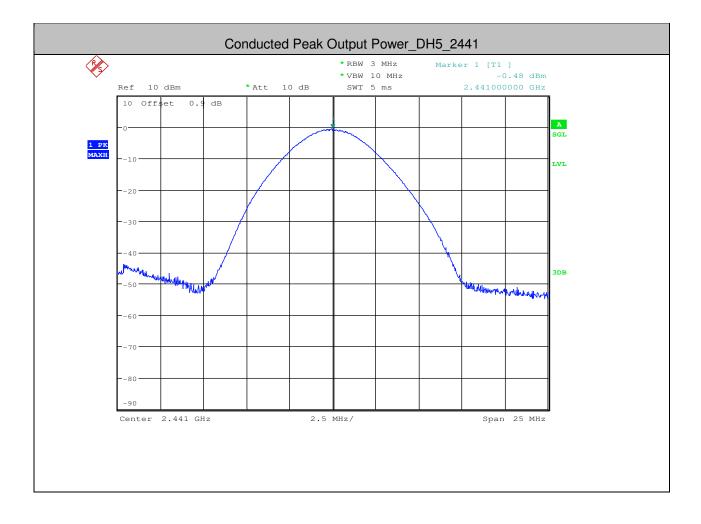
Report No.: SZEM160500340605 Page: 35 of 44

9 Appendix

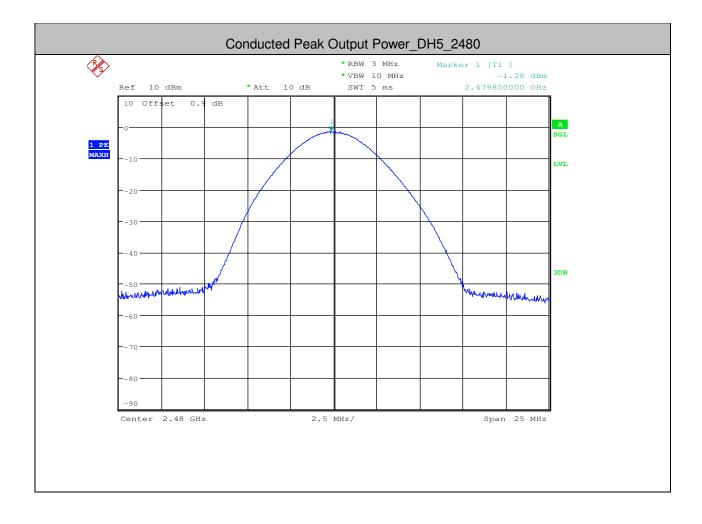

9.1 Appendix 15.247

1.Conducted Peak Output Power

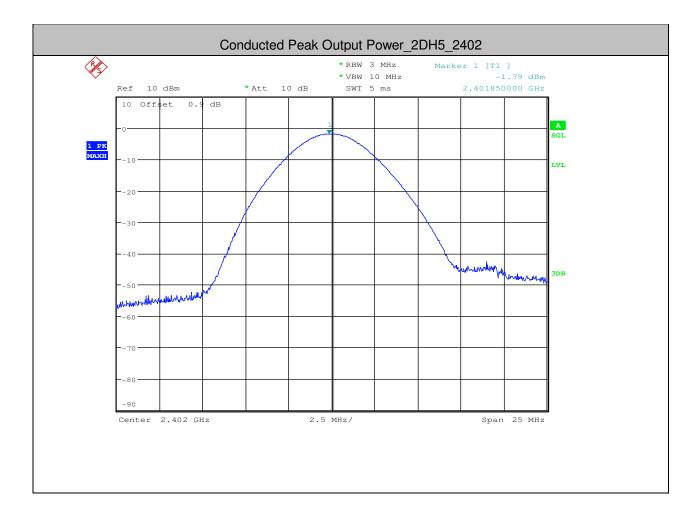
Test Mode	Test Channel	Power[dBm]	Limit[dBm]	Verdict
DH5	2402	-2.95	<20.97	PASS
DH5	2441	-0.48	<20.97	PASS
DH5	2480	-1.28	<20.97	PASS
2DH5	2402	-1.79	<20.97	PASS
2DH5	2441	0.23	<20.97	PASS
2DH5	2480	-0.58	<20.97	PASS
3DH5	2402	-1.41	<20.97	PASS
3DH5	2441	0.49	<20.97	PASS
3DH5	2480	-0.21	<20.97	PASS



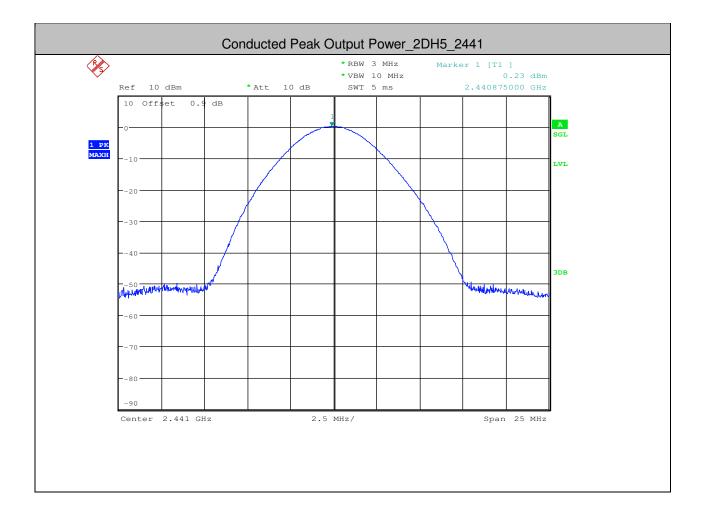
Report No.: SZEM160500340605 Page: 36 of 44



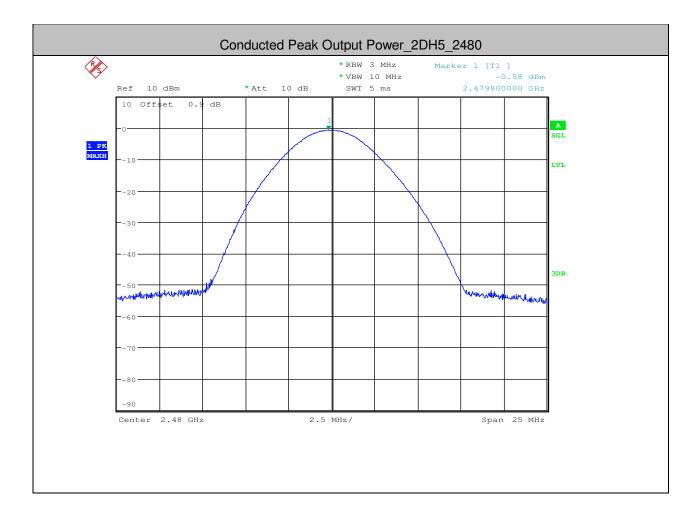
Report No.: SZEM160500340605 Page: 37 of 44



Report No.: SZEM160500340605 Page: 38 of 44

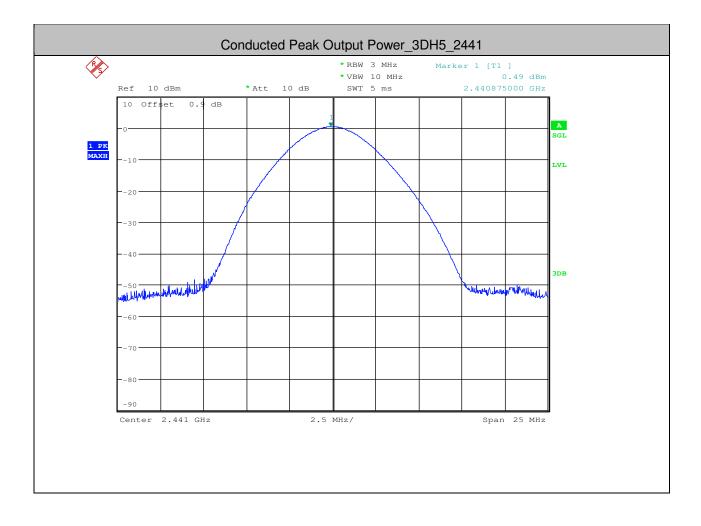


Report No.: SZEM160500340605 Page: 39 of 44

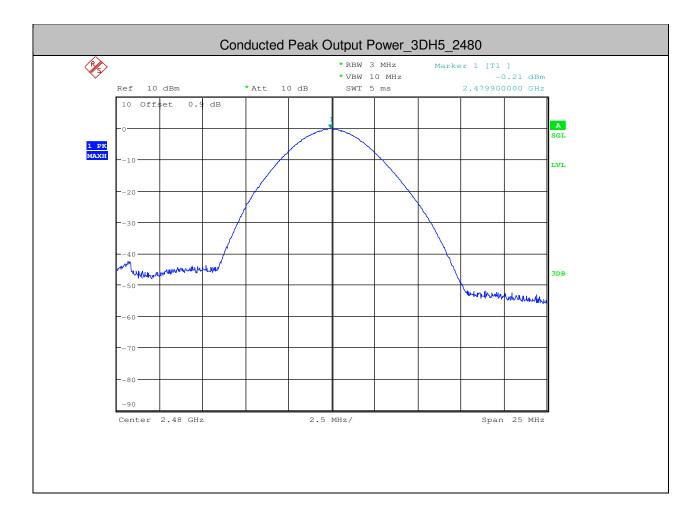


Report No.: SZEM160500340605 Page: 40 of 44

Report No.: SZEM160500340605 Page: 41 of 44



Report No.: SZEM160500340605 Page: 42 of 44



Report No.: SZEM160500340605 Page: 43 of 44

Report No.: SZEM160500340605 Page: 44 of 44

