

Report No.: FCC2003217 File reference No.: 2020-06-18

Applicant: Dongguan Yutai Electronic Co., Ltd

Product: Wireless Bluetooth Earbuds

Model No.: YH623

Brand Name: Kinera

Test Standards: FCC Part 15.249

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.4&FCC Part 15 Subpart C, Paragraph 15.249 regulations for the evaluation of

electromagnetic compatibility

Approved By

Jack Chung

Jack Chung

Manager

Dated: June 18, 2020

Results appearing herein relate only to the sample tested The technical reports is issued errors and omissions exempt and is subject to withdrawal at

SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Report No.: FCC2003217 Page 2 of 45

Date: 2020-06-18

Special Statement:

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAS. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

CNAS-LAB Code: L2292

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of testing Laboratories.

FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

A2LA (Certification Number:5013.01)

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Report No.: FCC2003217

Date: 2020-06-18

Test Report Conclusion Content

1.0	General Details	4
1.1	Test Lab Details	4
1.2	Applicant Details	4
1.3	Description of EUT	4
1.4	Submitted Sample	4
1.5	Test Duration.	5
1.6	Test Uncertainty.	5
1.7	Test By	5
2.0	List of Measurement Equipment.	6
3.0	Technical Details	7
3.1	Summary of Test Results.	7
3.2	Test Standards	7
4.0	EUT Modification.	7
5.0	Power Line Conducted Emission Test.	8
5.1	Schematics of the Test.	8
5.2	Test Method and Test Procedure.	8
5.3	Configuration of the EUT	8
5.4	EUT Operating Condition.	9
5.5	Conducted Emission Limit.	9
5.6	Test Result.	9
6.0	Radiated Emission test.	12
6.1	Test Method and Test Procedure.	12
6.2	Configuration of the EUT	12
6.3	EUT Operation Condition.	12
6.4	Radiated Emission Limit.	13
6.5	Test Result.	14
7.0	Band Edge	22
7.1	Test Method and Test Procedure.	22
7.2	Radiated Test Setup.	22
7.3	Configuration of the EUT	22
7.4	EUT Operating Condition.	22
7.5	Band Edge Limit.	22
7.6	Band Edge Test Result.	23
8.0	Antenna Requirement.	27
9.0	20dB bandwidth measurement.	28
10.0	FCC ID Label	37
11.0	Photo of Test Setup and EUT View.	38

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC2003217 Page 4 of 45

Date: 2020-06-18

1.0 General Details

1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site on File with the Federal Communications Commission – United Sates

Registration Number: 744189 For 3m Anechoic Chamber

1.2 Applicant Details

Applicant: Dongguan Yutai Electronic Co., Ltd

Address: 4th Fl., Building F, No.129 Xiaotang Road, Youganpu, Fenggang Town, Dongguan City,

Guangdong Province, China

Telephone: -Fax: --

1.3 Description of EUT

Product: Wireless Bluetooth Earbuds

Manufacturer: Dongguan Yutai Electronic Co., Ltd

Address: 4th Fl., Building F, No.129 Xiaotang Road, Youganpu, Fenggang Town,

Dongguan City, Guangdong Province, China

Brand Name: Kinera
Model Number: YH623
Additional Model Name N/A

Rating: Built-in DC3.7V, 50mAh Li-ion battery
Modulation Type: GFSK, J/4-DQPSK, 8DPSK (Bluetooth)

Operation Frequency: 2402-2480MHz

Channel Separate: 1MHz
Channel Number: 79

Antenna Designation Chip antenna with gain -0.51dBi Max

1.4 Submitted Sample: 1 Sample

1.5 Test Duration

2020-03-23 to 2020-06-18

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC2003217 Page 5 of 45

Date: 2020-06-18

Test Uncertainty

Conducted Emissions Uncertainty =3.6dB Radiated Emissions below 1GHz Uncertainty =4.7dB Radiated Emissions above 1GHz Uncertainty =6.0dB Conducted Power Uncertainty =6.0dB Occupied Channel Bandwidth Uncertainty =5% Conducted Emissions Uncertainty = 3.6dB

1.7 Test Engineer

Terry lang The sample tested by

Print Name: Terry Tang

Page 6 of 45 Report No.: FCC2003217

2.0 Test Equipment					
Instrument Type	Manufacturer	Model	Serial No.	Date of Cal.	Due Date
ESPI Test Receiver	R&S	ESPI 3	100379	2019-06-21	2020-06-20
LISN	R&S	EZH3-Z5	100294	2019-06-21	2020-06-20
LISN	R&S	EZH3-Z5	100253	2019-06-21	2020-06-20
Ultra Broadband ANT	R&S	HL562	100157	2019-06-21	2020-06-20
Impuls-Begrenzer	R&S	ESH3-Z2	100281	2019-06-21	2020-06-20
Loop Antenna	EMCO	6507	00078608	2018-06-25	2021-06-24
Spectrum	R&S	FSIQ26	100292	2019-06-21	2020-06-20
Horn Antenna	A-INFO	LB-180400-KF	J211060660	2019-06-21	2021-06-20
Horn Antenna	R&S	BBHA 9120D	9120D-631	2018-07-09	2021-07-08
Power meter	Anritsu	ML2487A	6K00003613	2019-08-22	2020-08-21
Power sensor	Anritsu	MA2491A	32263	2019-08-22	2020-08-21
Bilog Antenna	Schwarebeck	VULB9163	9163/340	2018-07-04	2021-07-03
9*6*6 Anechoic			N/A	2018-02-07	2021-02-06
EMI Test Receiver	RS	ESVB	826156/011	2019-06-21	2020-06-20
EMI Test Receiver	RS	ESH3	860904/006	2019-06-21	2020-06-20
Spectrum	HP/Agilent	ESA-L1500A	US37451154	2019-06-21	2020-06-20
Spectrum	HP/Agilent	E4407B	MY50441392	2019-06-21	2020-06-20
Spectrum	RS	FSP	1164.4391.38	2020-01-18	2021-01-17
RF Cable	Zhengdi	ZT26-NJ-NJ-8 M/FA		2019-06-21	2020-06-20
RF Cable	Zhengdi	7m		2019-06-21	2020-06-20
RF Switch	EM	EMSW18	060391	2019-06-21	2020-06-20
Pre-Amplifier	Schwarebeck	BBV9743	#218	2019-06-21	2020-06-20
Pre-Amplifier	HP/Agilent	8449B	3008A00160	2019-06-21	2020-06-20
LISN	SCHAFFNER	NNB42	00012	2020-01-07	2021-01-06

Report No.: FCC2003217 Page 7 of 45

Date: 2020-06-18

3.0 Technical Details

3.1 Summary of test results

The EUT has	been tested	according t	o the fol	lowing	specifications:

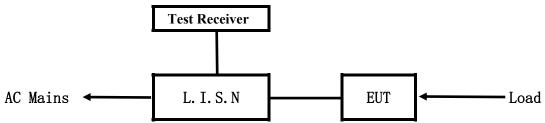
Standard	Test Type	Result	Notes
FCC Part 15, Paragraph 15.207	Conducted Emission Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(a) & 15.249(b) Limit	Field Strength of Fundamental	PASS	Complies
FCC Part 15, Paragraph 15.209 and RSS-210	Radiated Emission Test	PASS	Complies
FCC Part 15 Subpart C Paragraph 15.249(d) Limit	Band Edge Test	PASS	Complies

3.2 Test Standards

FCC Part 15 Subpart C, Paragraph 15.249, ANSI C63.4:2014 and ANSI C63.10:2013

4.0 EUT Modification

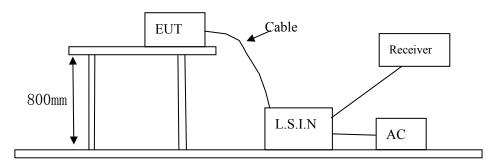
No modification by SHENZHEN TIMEWAY TESTING LABORATORIES


Report No.: FCC2003217

Date: 2020-06-18

5. Power Line Conducted Emission Test

5.1 Schematics of the test



EUT: Equipment Under Test

5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.4-2014. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.4-2014.

Block diagram of Test setup

5.3 Configuration of The EUT

The EUT was configured according to ANSI C63.4-2014. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

One channels are provided to the EUT

A. EUT

Device	Manufacturer	Model	FCC ID
Wireless Bluetooth	Dongguan Yutai Electronic Co., Ltd	YH623	2AWJ9-YH623BP
Earbuds	Dongguan Tutal Electronic Co., Ltd	1 11023	2AWJ9-1 H023DF

The report refers only to the sample tested and does not apply to the bulk.

Report No.: FCC2003217 Page 9 of 45

Date: 2020-06-18

B. Internal Device

Device	Manufacturer	Model	FCC ID/DOC
N/A			

C. Peripherals

Device	Manufacturer	Model	Rating
Power Supply KEYU		KA23-0502000DEU	Input: 100-240V~, 50/60Hz, 0.35A;
			Output: DC5V, 2A

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.4 -2014

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition

5.5 Power line conducted Emission Limit according to Paragraph 15.107 and 15.207

Eraguanay (MHz)	Class A Lir	nits (dB µ V)	Class B Lim	nits (dB μ V)
Frequency(MHz)	Quasi-peak Level	Average Level	Quasi-peak Level	Average Level
$0.15 \sim 0.50$	79.0	66.0	66.0~56.0*	56.0~46.0*
$0.50 \sim 5.00$	73.0	60.0	56.0	46.0
5.00 ~ 30.00	73.0	60.0	60.0	50.0

Notes:

- 1. *Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

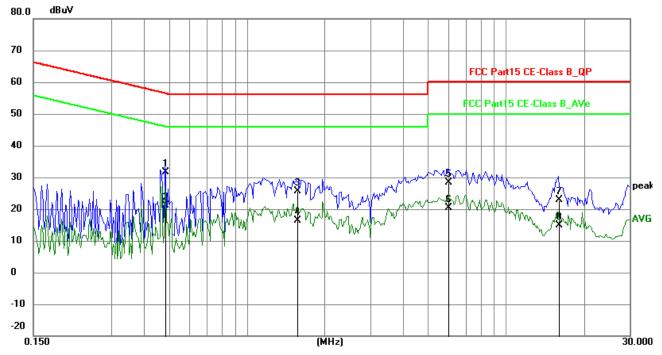
5.6 Test Results:

Pass

Date: 2020-06-18

A: Conducted Emission on Live Terminal (150kHz to 30MHz)

EUT Operating Environment


Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by Bluetooth

Equipment Level: Class B

Results: PASS

Please refer to following diagram for individual

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.4854	21.84	9.77	31.61	56.25	-24.64	QP	Р
2	0.4854	11.33	9.77	21.10	46.25	-25.15	AVG	Р
3	1.5618	15.81	9.80	25.61	56.00	-30.39	QP	Р
4	1.5618	6.50	9.80	16.30	46.00	-29.70	AVG	Р
5	6.0030	18.50	9.97	28.47	60.00	-31.53	QP	Р
6	6.0030	10.41	9.97	20.38	50.00	-29.62	AVG	Р
7	15.9714	12.38	10.44	22.82	60.00	-37.18	QP	Р
8	15.9714	4.32	10.44	14.76	50.00	-35.24	AVG	Р

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

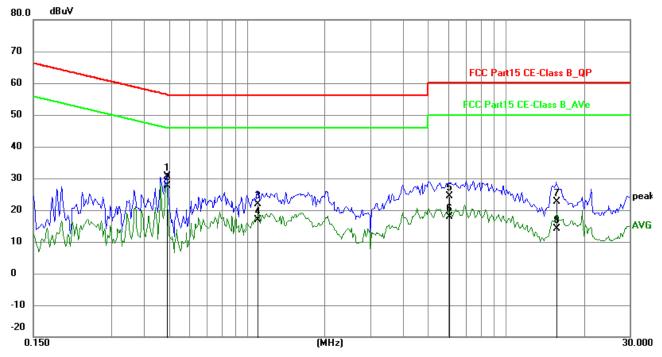
In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC2003217 Page 11 of 45

Date: 2020-06-18

B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)

EUT Operating Environment


Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

EUT set Condition: Charging and Communication by Bluetooth

Equipment Level: Class B

Results: Pass

Please refer to following diagram for individual

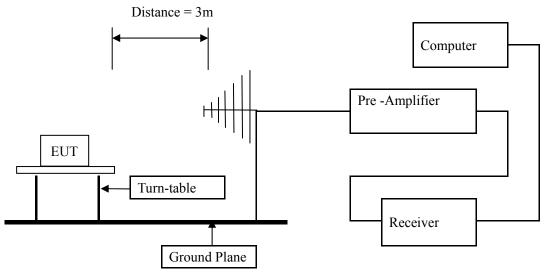
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.4893	20.78	9.77	30.55	56.18	-25.63	QP	Р
2	0.4893	17.75	9.77	27.52	46.18	-18.66	AVG	Р
3	1.0976	11.99	9.79	21.78	56.00	-34.22	QP	Р
4	1.0976	6.97	9.79	16.76	46.00	-29.24	AVG	Р
5	6.0498	14.32	9.97	24.29	60.00	-35.71	QP	Р
6	6.0498	7.96	9.97	17.93	50.00	-32.07	AVG	Р
7	15.6438	12.17	10.42	22.59	60.00	-37.41	QP	Р
8	15.6438	3.83	10.42	14.25	50.00	-35.75	AVG	Р

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC2003217 Page 12 of 45


Date: 2020-06-18

6 Radiated Emission Test

- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 25 GHz was investigated. All readings from 30 MHz to 1 GHz are quasi-peak values with a resolution bandwidth of 120 kHz. All readings are above 1 GHz, peak values with a resolution bandwidth of 1 MHz (Note: for Fundamental frequency radiated emission measurement, RBW=3MHz, VBW=10MHz). Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) The antenna polarization: Vertical polarization and Horizontal polarization.

Block diagram of Test setup

- 6.2 Configuration of The EUT
 Same as section 5.3 of this report
- 6.3 EUT Operating Condition
 Same as section 5.4 of this report.

Report No.: FCC2003217 Page 13 of 45

Date: 2020-06-18

6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

A FCC Part 15 Subpart C Paragraph 15.249(a) Limit

Fundamental Frequency	Field Strength of Fundamental (3m)			Field S	trength of Harmo	onics (3m)
(MHz)	mV/m	dBuV/m		uV/m	dBu	V/m
2400-2483.5	50	94 (Average)	114 (Peak)	500	54 (Average)	74 (Peak)

Note:

- 1. RF Field Strength (dBuV) = 20 log RF Voltage (uV)
- 2.Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.
- 3. The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

B. Frequencies in restricted band are complied to limit on Paragraph 15.209.

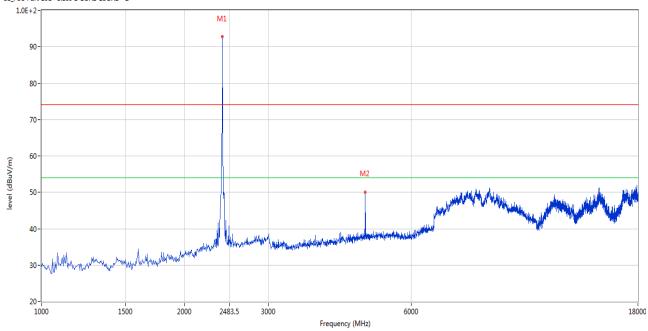
Frequency Range (MHz)	Distance (m)	Field strength (dB μ V/m)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 5. All scanning using PK detector. And the final emission level was get using QP detector for frequency range from 30-1000MHz.As to 1G-25G, the final emission level got using PK. For fundamental measurement, PK detector used.
- 6. Battery full charged during tests.
- 7. The three modulation modes of GFSK, $\Pi/4$ -DQPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: FCC2003217 Page 14 of 45

Date: 2020-06-18


6.5 Test result

A Fundamental & Harmonics Radiated Emission Data

Please refer to the following test plots for details: Low Channel-2402MHz

Horizontal

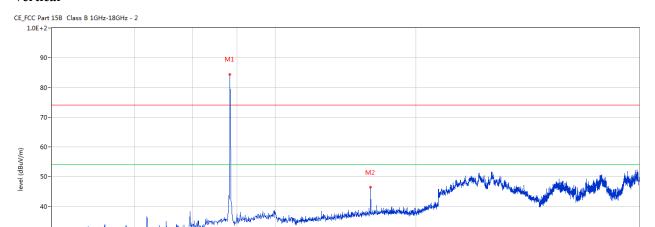
CE_FCC Part 15B Class B 1GHz-18GHz - 2

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	2402.149	92.75	-3.57	94.0	-1.75	Peak	159.00	100	Н	N/A
2	4802.799	50.15	3.12	54.0	-3.85	Peak	151.00	100	Н	Pass

Report No.: FCC2003217 Page 15 of 45

Date: 2020-06-18

Vertical


20-

1500

2000

2483.5

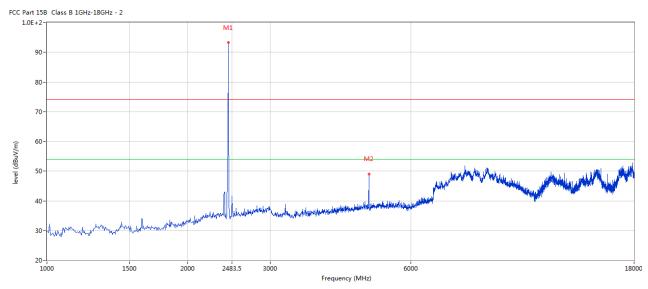
3000

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2402.149	85.32	-3.57	94.0	-8.68	Peak	105.00	100	V	N/A
2	4802.799	47.40	3.12	54.0	-6.60	Peak	205.00	100	V	Pass

Frequency (MHz)

6000

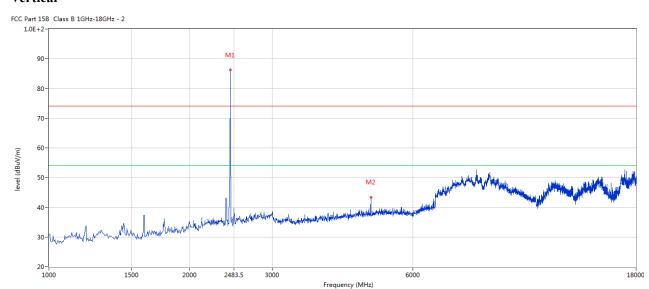
18000


Report No.: FCC2003217 Page 16 of 45

Date: 2020-06-18

Please refer to the following test plots for details: Middle Channel-2441MHz

Horizontal


No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2440.390	93.06	-3.57	94.0	-0.94	Peak	192.00	100	Н	N/A
2	4879.280	49.09	3.20	54.0	-4.91	Peak	27.00	100	Н	Pass

Report No.: FCC2003217 Page 17 of 45

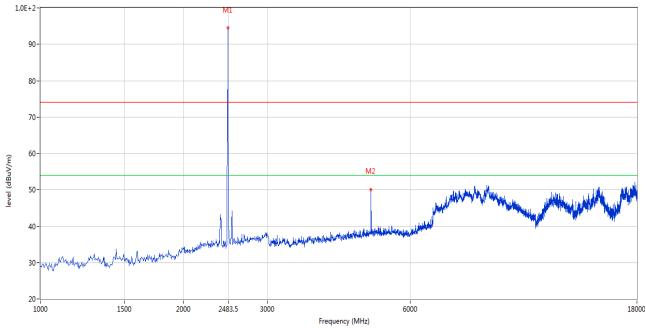
Date: 2020-06-18

Vertical

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2440.390	86.28	-3.57	94.0	-7.72	Peak	346.00	100	V	N/A
2	4879.280	43.42	3.20	54.0	-10.58	Peak	359.00	100	V	Pass

Page 18 of 45

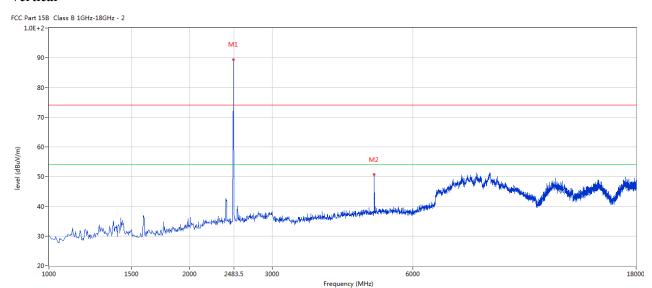
Report No.: FCC2003217


Date: 2020-06-18

Please refer to the following test plots for details: High Channel-2480MHz

Horizontal

No.	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
1	2478.630	94.53	-3.57	114.0	-19.47	Peak	183.00	100	Н	Pass
1**	2478.630	76.12	-3.57	94.0	-17.88	Peak	183.00	100	Н	Pass
2	4960.010	50.04	3.36	54.0	-3.96	Peak	356.00	100	Н	Pass


Page 19 of 45

Report No.: FCC2003217

Date: 2020-06-18

Vertical

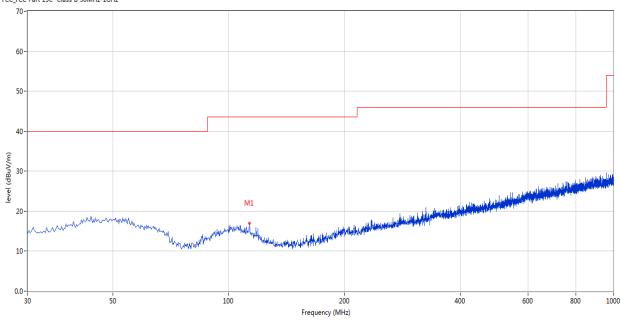
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1	2478.630	89.43	-3.57	94.0	-4.57	Peak	347.00	100	V	Pass
2	4960.010	50.79	3.36	54.0	-3.21	Peak	23.00	100	V	Pass

Note: (2) Emission Level = Reading Level + Antenna Factor + Cable Loss-Amplifier

- (3)Margin=Emission-Limits
- (4)According to section 15.35(b), the peak limit is 20dB higher than the average limit
- (5) For test purpose, keep EUT continuous transmitting
- (5) For emission above 18GHz and Below 30MHz, It is only the floor noise. No necessary to take down.
- (6) when the measured PK value is less than the AV limit, no necessary to record the AV value.

Report No.: FCC2003217 Page 20 of 45

Date: 2020-06-18


B. General Radiated Emission Data Radiated Emission In Horizontal (30MHz----1000MHz)

EUT set Condition: Keep Tx transmitting

Results: Pass

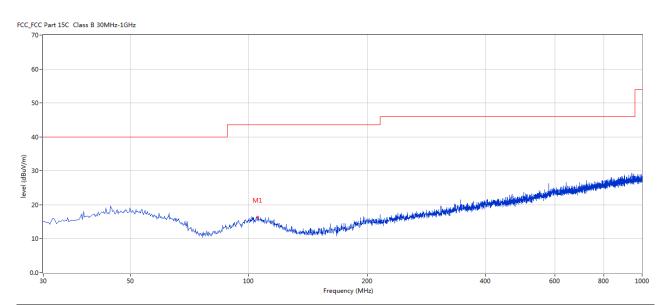
Please refer to following diagram for individual

FCC_FCC Part 15C Class B 30MHz-1GHz

No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)		(0)	(cm)		
1	113.157	17.04	-14.06	43.5	-26.46	Peak	360.00	200	Н	Pass

Report No.: FCC2003217 Page 21 of 45

Date: 2020-06-18



Radiated Emission In Vertical (30MHz----1000MHz)

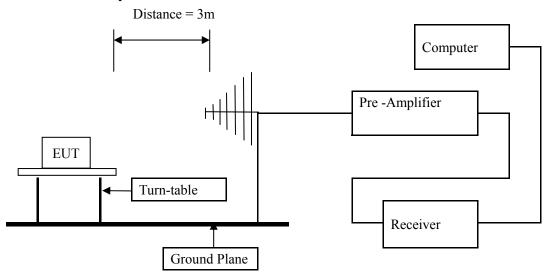
EUT set Condition: Keep Tx transmitting

Results: Pass

Please refer to following diagram for individual

Ν	lo.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
		(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)			(cm)		
1		105.399	16.36	-13.25	43.5	-27.14	Peak	360.00	200	V	Pass

Date: 2020-06-18



7. Band Edge

7.1 Test Method and test Procedure:

- (1) The EUT was tested according to ANSI C63.10–2013. The radiated test was performed at Timeway EMC Laboratory. This site is on file with the FCC laboratory division, Registration No. 744189
- (2) Set Spectrum as RBW=1MHz, VBW=3MHz and Peak detector used for PK value. RBW=1MHz, VBW=10Hz and Peak detector used for AV value.
- (3) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (4) The antenna polarization: Vertical polarization and Horizontal polarization.

7. 2 Radiated Test Setup

For the actual test configuration, please refer to the related items – Photos of Testing

7.3 Configuration of The EUT

Same as section 5.3 of this report

7.4 EUT Operating Condition

Same as section 5.4 of this report.

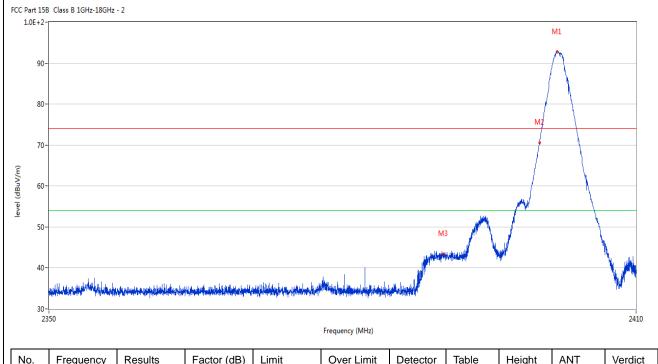
7.5 Band Edge Limit

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: FCC2003217 Page 23 of 45

Date: 2020-06-18

7.6 Test Result

Product:	Wireless Bluetooth Earbuds	Polarity	Horizontal
Mode	Keeping Transmitting	Test Voltage	DC3.7V
Temperature	24 deg. C,	Humidity	56% RH
Test Result:	Pass		

No	Frequency	Results	Factor (dB)	Limit	Over Limit	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(o)	(cm)		
2	2400.027	70.59	-3.57	74.0	-3.41	Peak	184.00	100	Н	Pass
2**	2400.027	51.13	-3.57	54.0	-2.87	AV	184.00	100	Н	Pass
3	2390.130	43.30	-3.53	54.0	-10.70	Peak	222.00	100	Н	Pass

Page 24 of 45 Report No.: FCC2003217

	Pr	oduct:	Wi	reless Blu	etooth Ear	buds	Dete	ector		Vertical	
	N	Mode		Keeping 7	Transmittin	g	Test V	oltage		DC3.7V	7
7	Гет	perature		24 d	leg. C,		Hum	idity		56% RF	I
,	Tes	t Result:		P	ass		_	-			
	art 15B 0E+2-	Class B 1GHz-18GHz -	2								
1.	UE+2-										
	90-									M1	
										\wedge	
	80-										
	70-									M2	
(m/										<i> </i>	\
level (dBuV/m)	60-									_	
eve	50-										
								M3	MAN TO SERVICE STATE OF THE SE		
	40-	dal luck .						Mary Constitution	Trans.		Ne al
	20		nderskiediskiepteteisperskiedel	المتراطية المتراطية المتراطية			i jarahatarka da katilista da ingalatika da ingalatika da ingalatika da ingalatika da ingalatika da ingalatika	,			A Street Land
	30 - 23	50				Frequency	(MHz)				2410
No	,	Frequency	Results	Factor	Limit	Over	Detector	Table (o)	Height	ANT	Verdict
		(MHz)	(dBuV/m	(dB)	(dBuV/m	Limit	Botootoi	14510 (0)	(cm)	7	Volume
		(···· 12))	(32)	(abav/iii	(dB)			(3111)		
2		2400.087	64.31	-3.57	74.0	-9.69	Peak	139.00	100	V	Pass
2**	*	2400.087	46.52	-3.57	54.0	-7.48	AV	139.00	100	V	Pass
3		2390.070	43.01	-3.53	74.0	-30.99	Peak	176.00	100	V	Pass

Page 25 of 45 Report No.: FCC2003217

P	roduct:	W	ireless E	Bluetooth Ea	arbuds	Pola	rity		Horizonta	ıl
	Mode		Keepin	g Transmitt	ing	Test Vo	oltage		DC3.7V	
Ten	nperature		2	4 deg. C,		Humi	dity		56% RH	
Tes	st Result:			Pass						
1.0E+2 90 80 70 60 40 30		Manual Control of the			2483.5 Frequency (N	ΛΗz)	Mark at a training to be designed.	the special different of the life,	standers de de la dela des de	25
No.	Frequency	Results	Factor	Limit	Over Limit	Detector	Table (o)	Height	ANT	Verdict
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	ı		(cm)		
			-	 	1		+	+		

Page 26 of 45

Report No.: FCC2003217

Date: 2020-06-18

P	roduct:	W	ireless Blueto	ooth Earbud	S	Detector		V	ertical	
	Mode		Keeping Tra	nsmitting	Т	est Voltage	e	De	C3.7V	
Ter	nperature		24 deg	g. C,		Humidity		56	% RH	
Tes	st Result:		Pas	S						
CE_FCC Par 1.0E+2	t 15B Class B 1GHz-18	GHz - 2								
90										
70										
(E // 60)-	سنمر								
level (dBuV/m) 50			V	,	Mary Mary Mary Mary Mary and Assessment Company of the Company of	la affal liblet a constitue on o			ll. l	
30					- Albitrit		ik galilater i dagi sapi andali iku liku en		ignigged fraud diseased	He design of the second by
20)- - 2470			24	83.5 Frequency (MHz)					25
No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	Table (o)	Height (cm)	ANT	Verdict
	1	48.79	-3.57	54.0	-5.21	Peak	346.00	100	V	Pass

Note: 1. When the PK emission is level less than the AV limit. No necessary to record the AV emission level.

- 2. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.
- 3. The three modulation modes of GFSK, JJ/4-DQPSK, and 8DPSK were tested. And only the worst case was recorded in the test report. GFSK was the worst case.

Report No.: FCC2003217 Page 27 of 45

Date: 2020-06-18

8.0 Antenna Requirement

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

This product has a Chip antenna. The antenna gain is -0.51dBi Max. It fulfills the requirement of this section. Test Result: Pass

Page 28 of 45

Report No.: FCC2003217

9.0 20dB Bandwidt	h Measurement									
GFSK Modulation	1						_			
Product:	Wireless	Bluetooth	Earbuds		Tes	t Mode:		Keep tran	nsmitting	
Mode	Keepi	ng Transm	itting		Test	t Voltage		DC3	.7V	
Temperature		24 deg. C,			Нι	umidity		56%	RH	
Test Result:		Pass			D	etector		Pl	K	
20dB Bandwidth	;	859.72kHz							-	
Ref Lvl	Marker ndB	1 [T1 r	ndB] .00 dB	RE VE		30 ki		F Att	20 dB	
10 dBm	BW 85	9.719438	888 kHz	SW	ΙΤ	8.5 ms	s U	nit	dBn	ı
						V ₁	[T1]	-13 2.40184	.70 dBm	A
0						ndB BW ⊽⊤1	89 [T1]	20 39.71943 -33	.00 dB 888 kHz	
-10				M,			[T1]		210 GHz	
-20 1MAX			N		M			2.40241	182 GHz	1MA
-30						A S				
-40	كرسم					Ì	λ,			
-60								MM		
-70 Llhh	7						W	W.	MMM	
-80										
-90										
Center 2.	402 GHz		300	kHz/		•		Spa	ın 3 MHz	u

Page 29 of 45

Date: 2020-06-18

Report No.: FCC2003217

Product:	Wireless	Bluetooth l	Earbuds	Т	est Mode:		Keep tra	nsmitting	
Mode	Keepi	ing Transmitting			est Voltage		DC3.7V		
Temperature		24 deg. C,	=	-	Humidity		56% RH		
Test Result:	Cest Result:				Detector		P	K	_
dB Bandwidth	{	365.73kHz					-		_
>	Marker	1 [T1 n	ndB]	RBW	30 k	Hz Rl	F Att	20 dB	
Ref Lvl	ndB	20.	00 dB	VBW	100 k				
10 dBm	BW 86	5.731462	293 kHz	SWT	8.5 m	ıs Uı	nit	dBm	
10					v ₁	[T1]	-13	3.67 dBm	
							2.44084	1068 GHz	
0					ndI	8	20	0.00 dB	
					BW		5.73146	5293 kHz	
-10			1		∇_{T}	[T1]	-33	3.38 dBm	
			1		$\nabla -$	2 [T1]	2.44055		
-20				\mathcal{M}	* T2	[TI]	-3.	3.89 dBm 784 GHz	
1MAX			\mathcal{N}	7	^		2.44141		1
-40					T2				
-50	\ \frac{1}{2}	V			\	4			
-60						\/	~~_	u 1	
-70 mm						•	Ψ,	mull !	
-80									
-90									
Center 2.4	41 GHz		300	kHz/			Spa	an 3 MHz	

Page 30 of 45 Report No.: FCC2003217

GFSK Modula	tion								
Product:	Te	est Mode:		Keep trai	nsmitting				
Mode	1 0				st Voltage	DC3.7V			
Temperature		24 deg. C,		I	Iumidity		56%	RH	
Test Result:		Pass			Detector		P	K	
20dB Bandwidth		871.74kHz					-	-	
<u> </u>		er 1 [T1 n		RBW	30 kI		F Att	20 dB	
Ref Lvl 10 dBm	ndB BW	20. 871.743486	00 dB 97 kHz	VBW SWT	100 kI 8.5 ms		nit	dBm	ı
10					v ₁	[T1]	-13	.57 dBm	
							2.47984	068 GHz	A
0					ndB		20	.00 dB	
					BW ▽ _T	87 <u>[T1]</u>	1.74348		
-10			1		* 11	1.T.T.1	2.47954		
			\sim	\mathcal{M}	$ abla_{\mathrm{T}2}$	[T1]	-33	.63 dBm	
-20			\)		2.48041	784 GHz	1MA
-30		TA			F2				
-40						<u>\</u>			
-50	May /						Λή		
-60 WWW						→		Which	
-70									
-80									
-90 Center 2.	48 GHz		300	kHz/			Spa	ın 3 MHz	
		14:50:43	500	/			5Pa	5 1.1112	

Page 31 of 45

Report No.: FCC2003217

2.40184068 GHz nd8 20.00 dB BW 1.23847695 MHz VT1 [T1] -34.73 dBm 2.40135972 GHz VT2 [T1] -34.52 dBm 2.40259820 GHz	Product:	Wireless	Bluetooth I	Earbuds		Test Mode	:	Keep tra	nsmitting	
Temperature 24 deg. C, Humidity 56% RH Test Result: Pass Detector PK dB Bandwidth 1.238MHz Ref Lvl ndB 20.00 dB VBW 100 kHz 10 dBm BW 1.23847695 MHz SWT 8.5 ms Unit dBm 10 dBm BW 1.23847695 MHz SWT 8.5 ms Unit dBm 20 dB BBW 1.23847695 MHz SWT 8.5 ms Unit dBm 21 dBw 22 d00 dB BW 1.23847695 MHz SWT 8.5 ms Unit dBm 22 d013847695 MHz SWT 8.5 ms Unit dBm 24 d013847695 MHz SWT 8.5 ms Unit dBm 25 dBw 1.23847695 MHz SWT 8.5 ms Unit dBm 26 dBw 27 d11 -14.75 dBm 27 dBw 2.40138972 GHz 20 1MAX	Mode	Keepi	ng Transmi	tting	,	Test Voltag	e	DC3.7V		
Test Result: Pass	Temperature		24 deg. C,			Humidity		56%	k RH	
Marker 1 [T1 ndB] RBW 30 kHz RF Att 20 dB ndB 20.00 dB VBW 100 kHz 10 dBm 10 BW 1.23847695 MHz SWT 8.5 ms Unit dBm 10 Ref Lv1 ndB BW 1.23847695 MHz SWT 8.5 ms Unit dBm 10 Ref Lv1 ndB SWT 8.5 ms Unit dBm 10 Ref Lv1 ndB SWT 8.5 ms Unit dBm 2.40184068 GHz Ref Lv1 ndB	Test Result:							P	K	
Ref Lv1 ndB 20.00 dB VBW 100 kHz 10 dBm BW 1.23847695 MHz SWT 8.5 ms Unit dBm V1 [T1] -14.75 dBm 2.40184068 GHz 3.00 dB BW 1.23847695 MHz VT [T1] -34.73 dBm 2.40135972 GHz VT2 [T1] -34.52 dBm 2.40259820 GHz IMAX 10 dBm BW 1.23847695 MHz VT3 [T1] -34.52 dBm 2.40259820 GHz 10 dBm BW 1.23847695 MHz VT3 [T1] -34.52 dBm 2.40259820 GHz	dB Bandwidth		1.238MHz					-	-	
Ref Lv1		Marker	1 [TT] n	idB l	RRW	7 30	kHz F	RF A++	20 dB	
10 dBm BW 1.23847695 MHz SWT 8.5 ms Unit dBm 10	Ref Lvl							1100	20 42	
T1 [T1] -18.75 dBm 2.40184 068 GHz 20.00 dB BW 1.23847695 MHz 7T [T1] -34.73 dBm 2.40135972 GHz 7T [T1] -34.52 dBm 2.40259820 GHz 30 dBm 30 dB	10 dBm	BW	1.238476	95 MHz	SWI	8.5	ms (Jnit	dBn	n
2.40184068 GHz nds 2.000 dB BW 1.23847695 MHz VTI JT1 -38.73 dBr 2.40135972 GHz 20 1MAX 10 2.40253820 GHz 10 20 10 10 10 10 10 10 10 10	10					v ₁	[T1]	-1	4.75 dBm	1
10								2.40184	068 GHz	
10	0					no	В	20	.00 dB	1
10 2.40135972 GHz 20 1MAX 2.40259820 GHz 30 70 60 70								1.23845		i
20 1MAX 2.40259820 GHz 3 30 40 50 60 70 60 70 60 70 60 70 60 70 60 70 60 70 70 70 70 70 70 70 70 70 70 70 70 70	-10			1			<u> [T1]</u>	-34		1
1MAX 2.40259320 GHz 1 10 10 10 10 10 10 10 10 10				Ž ,		∇		2.40135		
1MAX 40 50 60 70	-20			$ \wedge$.	1	* 1	Z [TI]	2 40250		1
50 			\mathcal{M}^{\wedge}		\\	m		2.40233	020 GH2	1
50 60 70	-30	T) V				12			1
50 60 70	4.0	\ \frac{1}{2}					4			
60 -70										
70	$\sim\sim\sim$						M	~~~	~~~	
	00									
80	70						1			1
80										
	80									
.90	90									

Page 32 of 45

Report No.: FCC2003217

Л/4-DQPSK M										
Product:			Bluetooth			est Mode:		Keep trai		
Mode		Keepir	ng Transmi	tting	Te	est Voltage		DC3	3.7V	
Temperature 24 deg. C, Test Result: Pass]	Humidity		56%	RH		
Test Result:			Pass			Detector		P	K	
20dB Bandwidth		1	.238MHz						-	
		Marker	1 [T1 r	ndB]	RBW	30 k	Hz R	F Att	20 dB	
Ref Lvl		ndB		00 dB	VBW	100 k				
10 dBm		BW 1	L.238476	95 MHz	SWT	8.5 m	ıs U	nit	dBm	ı
10						v ₁	[T1]	-14	.62 dBm	A
								2.44084	068 GHz	A
0						ndE	8	20	.00 dB	
						BW		1.23847	695 MHz	
-10				1		$ abla_{\mathrm{T}^{2}}$	[T1]	-34	.59 dBm	
				T A		<u> </u>		2.44035		
-20				/\ /	_ <u></u>	$ abla_{\mathrm{T}_{2}}$	[T1]	-34	.25 dBm	
1MAX			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ ~		Thy		2.44159	820 GHz	1MA
-30		T7	<i></i> √				2			
-40							$\overline{}$			
							L _y			
-50	V~~	M					D/	M	~~~	
-60	*									
-70										
-80										
-90					·			_		J
Center 2.	.441 GI	1Z		300	kHz/			Spa	n 3 MHz	

Page 33 of 45

Report No.: FCC2003217

Л/4-DQPSK M	Iodulation							
Product:	Wireless	Bluetooth Earbuds	Те	est Mode:	Keep tra	nsmitting		
Mode	Keep	ing Transmitting	Tes	st Voltage	DC3.7V			
Temperature	Temperature 24 deg. C, Test Result: Pass				56%	RH		
Test Result:		Pass	I	Detector	P	K		
20dB Bandwidth		1.238MHz				-		
(R)	Marke	1 [T1 ndB]	RBW	30 kHz		20 dB		
Ref Lvl	ndB	20.00 dB	VBW	100 kHz				
10 dBm	BW	1.23847695 MHz	SWT	8.5 ms	Unit	dBm		
				V 1 [T1] -1:	.50 dBm		
					2.47984	068 GHz		
0				ndB	20	0.00 dB		
				BW	1.23845			
-10		1		$oldsymbol{ abla}_{ ext{T1}}$	[T1] -3:	3.55 dBm		
				$ abla_{\mathrm{T2}}$	2.47935 [T1] -33			
-20			\n_1 = 1	7	2.48059	9820 GHz		
1MAX				~~~		1MA		
-30		1		***	\			
-40								
-50	V				Mary Mary	m^u_		
-60								
-70						<u> </u>		
-80								
-00								
-90								
Center 2.	48 GHz	300	kHz/		Spa	an 3 MHz		
Date: 30	.MAY.2020 1	4:46:05						

Page 34 of 45

Report No.: FCC2003217

8DPSK Modulation				
Product:	Wireless Bluetooth Earbud	Test Mode:	Keep transmitting	
Mode	Keeping Transmitting	Test Voltage	DC3.7V	
Temperature	24 deg. C,	Humidity	56% RH	
Test Result:	Pass	Detector	PK	
20dB Bandwidth	1. 238MHz			
	Marker 1 [T1 ndB]	RBW 30 ki		
Ref Lvl 10 dBm	ndB 20.00 dB BW 1.23847695 MB			
10				
		V 1	[T1] -14.70 dBm 2.40184068 GHz	
0		ndB	20.00 dB	
		BW	1.23847695 MHz	
-10		∇_{T1}	[T1] -34.70 dBm	
			2.40135972 GHz	
		▼ _{T2}	[T1] -34.53 dBm	
-20 1MAX	M	1 my	2.40259820 GHz	IA
-30	Ŧ	V	2	
-40				
-50	N		home	
-60				
-70				
-80				
-90				
Center 2.402 G Date: 30.MAY.2		0 kHz/	Span 3 MHz	

Page 35 of 45

Report No.: FCC2003217

Product:	Т	est Mode:		Keep tra	nsmitting					
Mode	Keep	ing Transmi	tting	Te	est Voltage		DC3.7V			
emperature emperature		24 deg. C,]	Humidity		56%	6 RH		
Test Result:		Pass			Detector		P	PΚ		
lB Bandwidth		1.238MHz								
<u> </u>	Marker	1 [T1 n	ndB]	RBW	30 k	Hz R	F Att	20 dB		
Ref Lvl	ndB	20.	00 dB	VBW	100 k	Hz				
10 dBm	BW	1.238476	95 MHz	SWT	8.5 m	s U	nit	dBr	n	
					v ₁	[T1]	-1	4.51 dBm	4	
							2.44084	4068 GHz	:	
0					ndI	3	20	0.00 dB	1	
					BW		1.2384		2	
10			1		$ abla_{\mathrm{T}1}$	[T1]	-3	4.56 dBm	1	
			/		∨	2 [T1]	2.44039			
20			$ \wedge$ \wedge \wedge	1200	. 1.	. [11]	2 44159	9820 GHz	1	
1MAX		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			my T					
30	Ţ	7			7	2			1	
						4				
40						-\			1	
						Ļ				
50						$-\sqrt{V}$	Λ .	200	1	
Mary Mary	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					, , , , , , , , , , , , , , , , , , ,		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	
60									1	
70										
, ,										
80									1	
90 Center 2.441	CUE	1	200	kHz/			Cr	an 3 MHz	_]	

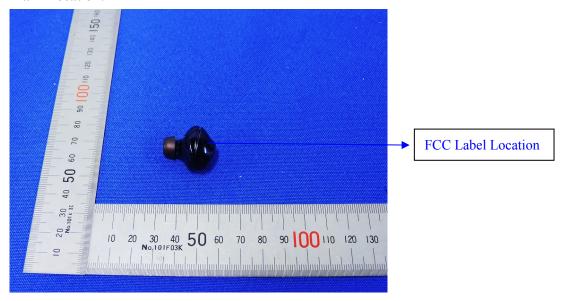
Page 36 of 45

Report No.: FCC2003217

Product:	Wireless	Bluetooth 1	Earbuds	Т	est Mode:		Keep tra	nsmitting		
Mode	Keep	ing Transmi	tting	Те	est Voltage		DC3.7V			
Temperature		24 deg. C,	24 deg. C,				56% RH			
Test Result:		Pass			Humidity Detector		P	PΚ		
)dB Bandwidth		1.238MHz					-			
<u> </u>	Marker	1 [T1 r	ndB]	RBW	30 k	Hz R	F Att	20 dB		
Ref Lvl	ndB	20.	00 dB	VBW	100 k	Hz				
10 dBm	BW	1.238476	95 MHz	SWT	8.5 m	s U	nit	dB	m	
10					v ₁	[T1]	-14	4.02 dBr	m	
							2.47984	4068 GH2	z	
0					ndI	8	20	0.00 dB	1	
					BW		1.23847	7695 MH2	z	
-10			1		∇_{T}	[T1]	-3:	3.93 dBr	m	
			\ \rightarrow{\bar{\chi}}{\chi}		-		2.47935			
-20				\ <u> </u>	V _T	2 [T1]	-3:	3.72 dBt	m	
1MAX		\mathcal{M}		W. [W	M		2.48059	9820 GH2	1	
-30	Ţ	7			 	2				
- 40					,	م				
10										
-50	ww					4	\w\	~~~	م	
-60										
-70										
-80										
-90										
Center 2.48	GHz		300	kHz/			Spa	an 3 MH2	Z	

Report No.: FCC2003217 Page 37 of 45

Date: 2020-06-18



10.0 FCC ID Label

FCC ID: 2AWJ9-YH623BP

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

Mark Location:

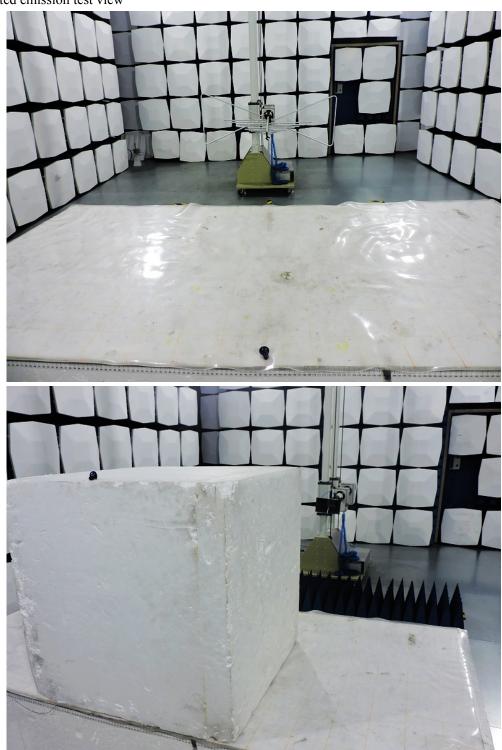
Page 38 of 45

Report No.: FCC2003217

Date: 2020-06-18

11.0 Photo of testing

11.1 Conducted test View--


Page 39 of 45

Report No.: FCC2003217

Date: 2020-06-18

Radiated emission test view

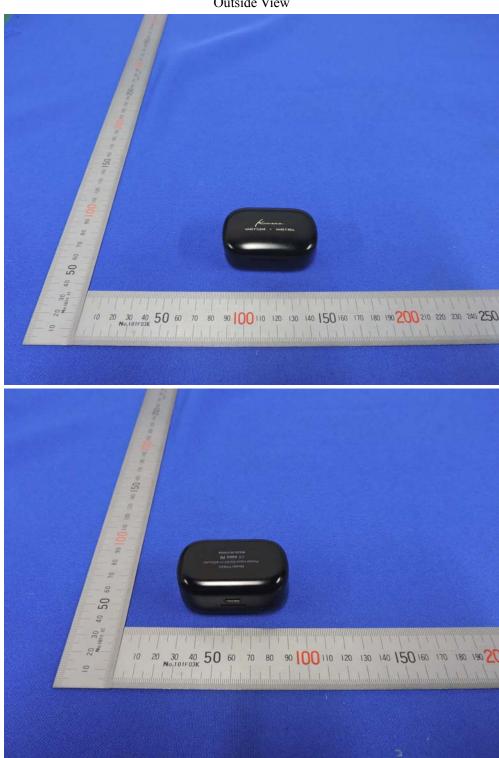
The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES.

will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.


Report No.: FCC2003217

Date: 2020-06-18

11.2 Photographs – EUT

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: FCC2003217

Date: 2020-06-18

Photographs – EUT

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Page 42 of 45

Report No.: FCC2003217

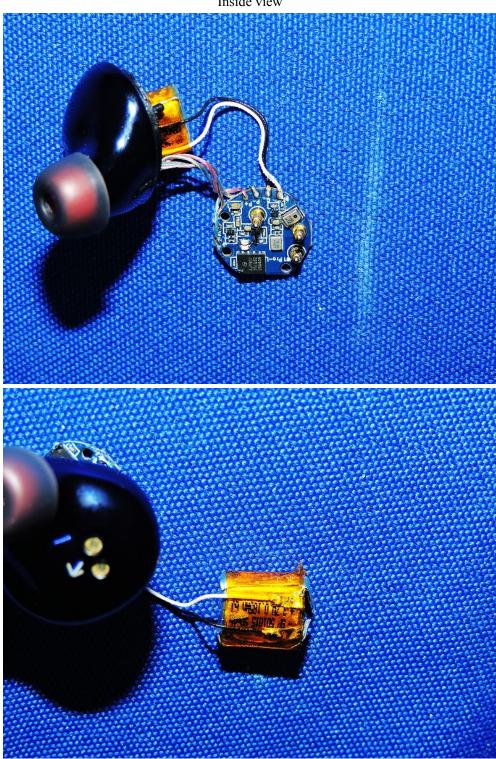
Date: 2020-06-18

Outside View

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Page 43 of 45

Report No.: FCC2003217

Date: 2020-06-18

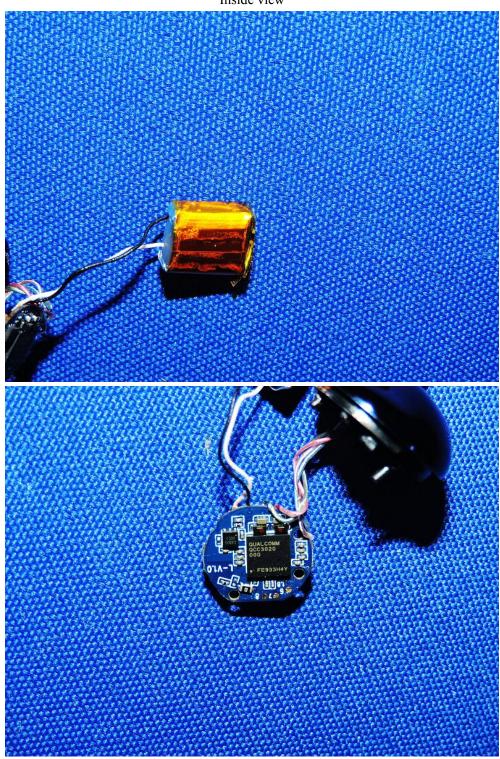
Inside view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.


Page 44 of 45

Report No.: FCC2003217

Date: 2020-06-18

Inside view

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any

discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.


Report No.: FCC2003217

Date: 2020-06-18

Inside view

-- End of the report--

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.