RF TEST REPORT Applicant Quectel Wireless Solutions Co., Ltd **FCC ID** XMR202005BG95M5 **Product** LTE Cat M1 & Cat NB2 & EGPRS Module **Brand** Quectel Model BG95-M5 Marketing Quectel BG95-M5 **Report No.** R2108A0767-R6V1 Issue Date November 11, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2020)/ FCC CFR 47 Part 24E (2020). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Peng Tao Approved by: Kai Xu # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** Report No.: R2108A0767-R6V1 | 1. | . Te | est Laboratory | | |----|------|--|----| | | 1.1. | Notes of the test report | | | | 1.2. | Test facility | 5 | | | 1.3. | Testing Location | 5 | | 2. | . Ge | eneral Description of Equipment under Test | 6 | | | 2.1. | Applicant and Manufacturer Information | | | | 2.2. | General information | 6 | | 3. | . Ap | oplied Standards | | | 4. | - | est Configuration | | | 5. | | est Case Results | | | | 5.1. | RF Power Output and Effective Isotropic Radiated Power | 9 | | | 5.2. | Occupied Bandwidth | 13 | | | 5.3. | Band Edge Compliance | 21 | | | 5.4. | Peak-to-Average Power Ratio (PAPR) | 26 | | | 5.5. | Frequency Stability | 28 | | | 5.6. | Spurious Emissions at Antenna Terminals | 33 | | | 5.7. | Radiates Spurious Emission | 36 | | 6 | . Ma | ain Test Instruments | 43 | | Α | NNEX | X A: The EUT Appearance | 44 | | Α | NNEX | X B: Test Setup Photos | 45 | | Α | NNEX | X C: Verify data | 46 | | | | X D: Product Change Description | | | Version | Revision description | Issue Date | |---------|---------------------------------|--------------------| | Rev.0 | Initial issue of report. | September 24, 2021 | | Rev.1 | Update data. Update description | November 11, 2021 | Note: This revised report (Report No. R2108A0767-R6V1) supersedes and replaces the previously issued report (Report No. R2108A0767-R6). Please discard or destroy the previously issued report and dispose of it accordingly. **Summary of measurement results** Report No.: R2108A0767-R6V1 | No. | Test Case | Clause in FCC rules | Verdict | |-----|--|----------------------------|---------| | 1 | RF Power Output and Effective Isotropic Radiated Power | 2.1046
24.232(c) | PASS | | 2 | Occupied Bandwidth | 2.1049 | PASS | | 3 | Band Edge Compliance | 2.1051 /24.238(a) | PASS | | 4 | Peak-to-Average Power Ratio | 24.232/KDB 971168 D01(5.7) | PASS | | 5 | Frequency Stability | 2.1055 / 24.235 | PASS | | 6 | Spurious Emissions at Antenna Terminals | 2.1051 / 24.238(a) | PASS | | 7 | Radiates Spurious Emission | 2.1053 / 24.238(a) | PASS | Date of Testing: May 24, 2020~ June 16, 2020 Note: PASS: The EUT complies with the essential requirements in the standard. FAIL: The EUT does not comply with the essential requirements in the standard. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. BG95-M5 (Report No.: R2108A0767-R6V1) is a variant model of BG95-M5 (Report No.: R2005A0283-R6). There is only changed the Power Amplifier and Software Version of product. Tested cases refer to the following table. Please refer to Appendix C for Verify data | Test Case | Original | Variant | |--|----------|---| | RF Power Output and Effective Radiated Power | PASS | Retest(NB-IoT Band 2 / NB-IoT Band 25) | | Occupied Bandwidth | PASS | Verify the worst combination of each frequency band(NB-IoT Band 2 / NB-IoT Band 25) | | Band Edge Compliance | PASS | Verify the worst combination of each frequency band(NB-IoT Band 2 / NB-IoT Band 25) | | Peak-to-Average Power Ratio | PASS | Retest(NB-IoT Band 2 / NB-IoT Band 25) | | Frequency Stability | PASS | Verify the worst combination of each frequency band(NB-IoT Band 2 / NB-IoT Band 25) | | Spurious Emissions at Antenna
Terminals | PASS | Verify the worst combination of each frequency band(NB-IoT Band 2 / NB-IoT Band 25) | | Radiates Spurious Emission | PASS | Verify the worst combination of each frequency band(NB-IoT Band 2 / NB-IoT Band 25) | The detailed product change description please refers to the Difference Declaration Letter. 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. 1.3. Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com 2. General Description of Equipment under Test # 2.1. Applicant and Manufacturer Information | Applicant | Quectel Wireless Solutions Co., Ltd | | | | | |----------------------|--|--|--|--|--| | Applicant address | Building 5, Shanghai Business Park Phase III (Area B), No.1016 | | | | | | Applicant address | Tianlin Road, Minhang District, Shanghai, China 200233 | | | | | | Manufacturer | Quectel Wireless Solutions Co., Ltd | | | | | | Manufacturer address | Building 5, Shanghai Business Park Phase III (Area B), No.1016 | | | | | | Manufacturer address | Tianlin Road, Minhang District, Shanghai, China 200233 | | | | | Report No.: R2108A0767-R6V1 ## 2.2. General information | | BG95-M5 | | | | | | | |----------------------------|---|------------|----------|-------------|--|--|--| | | Original | BG95-M5 | | | | | | | IN A CT | Original 866833040004456 | | | | | | | | IMEI | Variant | 8668330 | 40047463 | | | | | | Hardware Version | R1.1 | | | | | | | | Software Version | BG95M5LAR02A03 | | | | | | | | Power Supply | External power supply | | | | | | | | - | The EUT don't have standard Antenna, The Antenna used for | | | | | | | | Antenna Type t | testing in this report is the after-market accessor | | | | | | | | | Antenna) | | | | | | | | | Frequency(MHz | <u>(</u>) | G | ain (dBi) | | | | | Antenna Gain | 1860 | | | 1.25 | | | | | Automa Gam | 1880 | | 1.38 | | | | | | | 1900 1.59 | | | | | | | | Test Mode(s) | NB-IoT Band 2/25; | | | | | | | | Test Modulation: | (NB-IoT)BPSK, QPSK | | | | | | | | Category | NB2 | | | | | | | | Deployment: | stand-alone | | | | | | | | Sub-carrier spacing: | 3.75KHz, 15KHz | | | | | | | | Ntones: | single-tone, multi-tone | | | | | | | | Maximum E.I.R.P | NB-IoT Band 2: | | 25.54dBm | | | | | | Maximum E.I.IX.I | NB-IoT Band 25: | | 23.18dBm | า | | | | | Rated Power Supply Voltage | 3.8V | | | | | | | | Extreme Voltage | Minimum: 3.3V Maximum: 4.3V | | | | | | | | Extreme Temperature | Lowest: -40°C Highest: +85°C | | | | | | | | | Band | Tx (| MHz) | Rx (MHz) | | | | | Frequency Range(s) | NB-IoT Band 2 | 1850 | ~ 1910 | 1930 ~ 1990 | | | | | | NB-IoT Band 25 | 1850 | ~ 1915 | 1930 ~ 1995 | | | | Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant. TA Technology (Shanghai) Co., Ltd. TA-MB-05-002R Page 6 of 47 This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. # 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards: FCC CFR 47 Part 24E (2020) ANSI C63.26 (2015) Reference standard: FCC CFR47 Part 2 (2020) KDB 971168 D01 Power Meas License Digital Systems v03r01 4. Test Configuration Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, vertical polarization) and the worst case was recorded. Report No.: R2108A0767-R6V1 All modes as Subcarrier Spacing, modulations, Channel were investigated. Subsequently, only the worst case emissions are reported. The following testing in NB-IoT is set based on the maximum RF Output Power. The following testing in different mode is set to detail in the following table: Test modes are chosen to be reported as the worst case configuration below for NB-IoT Band 2/25 | Test items | Modes | Deployment mode | Subcarrier
Spacing (kHz) | | Modulation | | Test
Channel | | | |-------------------------------|----------------|-----------------|-----------------------------|----|------------|------|-----------------|---|---| | rest items | Wiodes | Stand-alone | 3.75 | 15 | BPSK | QPSK | ٦ | M | н | | RF Power Output and Effective | NB-IoT Band 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Isotropic Radiated Power | NB-IoT Band 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Occupied Dandwidth | NB-IoT Band 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Occupied Bandwidth | NB-IoT Band 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | D1 F.1 O | NB-IoT Band 2 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | | Band Edge Compliance | NB-IoT Band 25 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | | Poak to Average Power Petie | NB-IoT Band 2 | 0 | 0 | 0 | 0 | 0 | ı | 0 | - | | Peak-to-Average Power Ratio | NB-IoT Band 25 | 0 | 0 | 0 | 0 | 0 | ı | 0 | - | | Frequency Stability | NB-IoT Band 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Frequency Stability | NB-IoT Band 25 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Conducted Spurious | NB-IoT Band 2 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | | Emissions | NB-IoT Band 25 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | | Padiatas Spurious Emissian | NB-IoT Band 2 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | | Radiates Spurious Emission | NB-IoT Band 25 | 0 | - | 0 | - | 0 | 0 | 0 | 0 | ### Note ^{1.} The mark "O" means that this configuration is chosen for testing. ^{2.} The mark "-" means that this configuration is not testing. ## 5. Test Case Results ## 5.1.RF Power Output and Effective Isotropic Radiated Power ### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ## **Methods of Measurement** During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015). - a) Connect the equipment as illustrated. Mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer specified mounting surface located on a non-conducting rotating platform of a RF anechoic chamber (preferred) or a standard radiation site. - b) Key the transmitter, then rotate the EUT 360° azimuthally and record spectrum analyzer power level (LVL) measurements at angular increments that are sufficiently small to permit resolution of all peaks. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading at each angular increment. (Note: several batteries may be needed to offset the effect of battery voltage droop, which should not exceed 5% of the manufactured specified battery voltage during transmission). - c) Replace the transmitter under test with a vertically polarized half-wave dipole (or an antenna whose gain is known relative to an ideal half-wave dipole). The center of the antenna should be at the same location as the center of the antenna under test. - d) Connect the antenna to a signal generator with a known output power and record the path loss (in dB) as LOSS. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading.LOSS = Generator Output Power (dBm) - Analyzer reading (dBm) - e) Determine the effective radiated output power at each angular position from the readings in steps b) and d) using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB) - f) The maximum ERP is the maximum value determined in the preceding step. - q) When calculating ERP, in addition to knowing the antenna radiation and matching characteristics, it is necessary to know the loss values of all elements (e.g.transmission line attenuation, mismatches, filters, combiners) interposed between the point where transmitter output power is measured, and the point where power is applied to the antenna. ERP can then be calculated as follows: EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi) where:dBd refers to gain relative to an ideal dipole. EIRP (dBm) = ERP (dBm) + 2.15 (dB.) The RB allocation refers to section 5.1, using the maximum output power configuration. ## **Test Setup** The loss between RF output port of the EUT and the input port of the tester has been taken into consideration. ### Limits No specific RF power output requirements in part 2.1046. Rule Part 24.232(c) Mobile and portable stations are limited to 2 watts EIRP. Rule Part 24.232(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. | Limit | ≤ 2 W (33 dBm) | |-------|----------------| |-------|----------------| ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for EIRP. ## Test Results | Mada | Modulation | Sub-carrier | Nitomoo | | ted Powe
/mid/high | • | E | IRP (dBm | 1) | |--------------|------------|-------------|---------|--------|-----------------------|--------|--------|---|---| | Mode | Modulation | spacing | Ntones | 18602/ | 18900/ | 19198/ | 18602/ | 0.2 1880.0 19 0.3 25.25 25 0.9 25.12 25 0.0 25.00 25 0.3 24.91 25 0.3 25.13 25 0.7 25.17 25 0.2 24.88 25 0.3 24.95 25 | 19198/ | | | | (KHz) | | 1850.2 | 1880.0 | 1909.8 | 1850.2 | | 1909.8 | | | | 2.75 | 1@0 | 23.78 | 23.87 | 23.95 | 25.03 | 25.25 | 25.54 | | | BPSK | 3.75 | 1@47 | 23.64 | 23.74 | 23.86 | 24.89 | 25.12 | 25.45 | | | BPSK | 15 | 1@0 | 23.65 | 23.62 | 23.72 | 24.90 | 18900/ 19 1880.0 19 25.25 25 25.12 25 25.00 25 24.91 25 25.13 25 25.17 25 24.88 25 24.95 25 | 25.31 | | Band 2 | | 15 | 1@11 | 23.58 | 23.53 | 23.67 | 24.83 | 24.91 | 900/ 19198/
900/ 1909.8
900/ 1909.8
900/ 1909.8
925.25
95.25.31
91 25.26
95.25
95.25
95.25 | | Standalone | | 3.75 | 1@0 | 23.68 | 23.75 | 23.86 | 24.93 | 2 18900/ 19
2 1880.0 19
2 25.25 25
2 25.12 25
2 25.00 25
2 24.91 25
2 25.13 25
2 25.17 25
2 24.88 25
2 24.95 25 | 25.45 | | Staridatorie | | 3.75 | 1@47 | 23.62 | 23.79 | 23.76 | 24.87 | | 25.35 | | | QPSK | 15 | 1@0 | 23.57 | 23.50 | 23.66 | 24.82 | | 25.25 | | | | 15 | 1@11 | 23.58 | 23.57 | 23.64 | 24.83 | | 25.23 | | | | 15 | 12@0 | 21.25 | 21.28 | 21.46 | 22.50 | 22.66 | 23.05 | | Mada | Modulation | Sub-carrier | Ntonoo | | ted Powe
/mid/high | ` ' | E | IRP (dBm | 1) | |--------------|------------|-------------|--------|--------|-----------------------|--------|--------|---|--| | Mode | Modulation | spacing | Ntones | 26042/ | 26365/ | 26688/ | 26042/ | 2 1882.5 19
23.10 23
23.05 23
22.94 23
22.86 23
23.18 23
23.06 23
22.99 23
22.85 23 | 26688/ | | | | (KHz) | | 1850.2 | 1882.5 | 1914.8 | 1850.2 | | 1914.8 | | | | 2.75 | 1@0 | 23.82 | 23.87 | 23.85 | 22.92 | 23.10 | 23.06 | | | DDOK | 3.75 | 1@47 | 23.74 | 23.82 | 23.74 | 22.84 | 23.05 | 22.95 | | | BPSK | 15 | 1@0 | 23.78 | 23.71 | 23.64 | 22.88 | 2 26365/ 266
2 1882.5 19
23.10 23
23.05 22
22.94 22
22.86 22
23.18 22
23.06 22
22.89 22
22.85 22 | 22.85 | | Band 25 | | 15 | 1@11 | 23.73 | 23.63 | 23.58 | 22.83 | 22.86 | 26365/ 26688/
1882.5 1914.8
23.10 23.06
23.05 22.95
22.94 22.85
22.86 22.79
23.18 22.94
23.06 22.93
22.99 22.76
22.85 22.85 | | Standalone | | 3.75 | 1@0 | 23.90 | 23.95 | 23.73 | 23.00 | 26042/ 26365/ 2668 1850.2 1882.5 1914 22.92 23.10 23.0 22.84 23.05 22.9 22.88 22.94 22.8 22.83 22.86 22.7 23.00 23.18 22.9 23.04 23.06 22.9 22.78 22.99 22.7 22.93 22.85 22.8 | 22.94 | | Staridatorie | | 3.75 | 1@47 | 23.94 | 23.83 | 23.72 | 23.04 | | 22.93 | | | QPSK | 15 | 1@0 | 23.68 | 23.76 | 23.55 | 22.78 | | 22.76 | | | | 15 | 1@11 | 23.83 | 23.62 | 23.64 | 22.93 | | 22.85 | | | | 15 | 12@0 | 21.47 | 21.37 | 21.41 | 20.57 | 20.60 | 20.62 | ## 5.2. Occupied Bandwidth ## **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ## **Method of Measurement** The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer. RBW is set to 2kHz, VBW is set to 6.2kHz for NB-IoT Band 2/25. 99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages. ## **Test Setup** ### Limits No specific occupied bandwidth requirements in part 2.1049. ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz. ## **Test Result** | | | Cult comics | | | Bandwidth(| KHz) for lo | w/middle/hi | gh channe | l | |------------|------------|------------------|---------|--|------------|--------------|-------------|--------------|--------| | Mode | Modulation | Sub-carrier | Ntones | 18602/ | 1850.2 | 18900/ | 1880.0 | 19198/ | 1909.8 | | Mode | Modulation | spacing
(KHz) | Niones | 99%
Power | -26dBc | 99%
Power | -26dBc | 99%
Power | -26dBc | | | BPSK | 3.75 | 1@0 | 55.57 | 38.49 | 55.13 | 37.47 | 55.93 | 38.08 | | NB-loT | QPSK | 3.75 | 1@0 | 59.67 | 39.04 | 60.11 | 39.55 | 61.07 | 39.56 | | Band 2 | BPSK | 15 | 1@0 | 119.85 | 102.00 | 127.73 | 103.90 | 127.58 | 116.70 | | Standalone | QPSK | 15 | 1@0 | 116.37 | 116.60 | 116.56 | 116.80 | 118.12 | 117.20 | | | QPSK | 15 | 12@0 | 184.42 | 260.50 | 186.78 | 257.70 | 185.17 | 239.50 | | | | Cub corrier | | Bandwidth(KHz) for low/middle/high channel | | | | | | | Mode | Modulation | Sub-carrier | Nitopoo | 26042/ | 1850.2 | 26365/ | 1882.5 | 26688/ | 1914.8 | | Mode | Modulation | spacing
(KHz) | Ntones | 99%
Power | -26dBc | 99%
Power | -26dBc | 99%
Power | -26dBc | | | BPSK | 3.75 | 1@0 | 54.62 | 41.36 | 56.32 | 39.23 | 55.94 | 37.81 | | NB-loT | QPSK | 3.75 | 1@0 | 62.35 | 41.14 | 61.91 | 40.25 | 61.21 | 39.61 | | Band 25 | BPSK | 15 | 1@0 | 121.11 | 105.30 | 118.69 | 104.20 | 123.14 | 102.40 | | Standalone | QPSK | 15 | 1@0 | 117.54 | 117.20 | 119.48 | 114.50 | 116.16 | 117.20 | | | QPSK | 15 | 12@0 | 184.27 | 256.70 | 182.83 | 255.10 | 184.95 | 239.30 | NB-IoT Band 2 BPSK 3.75kHz 1@0 CH-Middle NB-IoT Band 2 BPSK 15kHz 1@0 CH-Middle NB-IoT Band 2 BPSK 3.75kHz 1@0 CH-High NB-IoT Band 2 BPSK 15kHz 1@0 CH-High NB-IoT Band 2 QPSK 3.75kHz 1@0 CH-Middle NB-IoT Band 2 QPSK 15kHz 1@0 CH-Middle 50.075 kHz NB-IoT Band 2 QPSK 3.75kHz 1@0 CH-High NB-IoT Band 2 QPSK 15kHz 1@0 CH-High ## NB-IoT Band 25 BPSK 3.75kHz 1@0 CH-Low ## NB-IoT Band 25 BPSK 15kHz 1@0 CH-Low NB-IoT Band 25 BPSK 3.75kHz 1@0 CH-Middle NB-IoT Band 25 BPSK 15kHz 1@0 CH-Middle NB-IoT Band 25 BPSK 3.75kHz 1@0 CH-High NB-IoT Band 25 BPSK 15kHz 1@0 CH-High ## NB-IoT Band 25 QPSK 3.75kHz 1@0 CH-Low ## NB-IoT Band 25 QPSK 15kHz 1@0 CH-Low NB-IoT Band 25 QPSK 3.75kHz 1@0 CH-Middle NB-IoT Band 25 QPSK 15kHz 1@0 CH-Middle NB-IoT Band 25 QPSK 3.75kHz 1@0 CH-High NB-IoT Band 25 QPSK 15kHz 1@0 CH-High NB-IoT Band 25 QPSK 15kHz 12@0 CH-Middle NB-IoT Band 25 QPSK 15kHz 12@0 CH-High ## 5.3. Band Edge Compliance ## **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No.: R2108A0767-R6V1 ### **Method of Measurement** The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to ≥1%EBW, VBW is set to 3x RBW. Spectrum analyzer plots are included on the following pages. ## **Test Setup** ### Limits Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB." | Limit | -13 dBm | |-------|---------| |-------|---------| ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB. ## **Test Result:** NB-IoT Band 2 QPSK 15kHz 1@11 CH-High NB-IoT Band 2 QPSK 15kHz 12@0 CH-Low NB-IoT Band 2 QPSK 15kHz 12@0 CH-High ## NB-IoT Band 25 BPSK 3.75kHz 1@0 CH-Low ## NB-IoT Band 25 BPSK 3.75kHz 1@47 CH-High NB-IoT Band 25 BPSK 15kHz 1@0 CH-Low NB-IoT Band 25 BPSK 15kHz 1@11 CH-High NB-IoT Band 25 QPSK 3.75kHz 1@0 CH-Low NB-IoT Band 25 QPSK 3.75kHz 1@47 CH-High NB-IoT Band 25 QPSK 15kHz 12@0 CH-Low NB-IoT Band 25 QPSK 15kHz 12@0 CH-High 5.4. Peak-to-Average Power Ratio (PAPR) ## **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No.: R2108A0767-R6V1 ## **Methods of Measurement** Measure the total peak power and record as PPk. And measure the total average power and record as PAvg. Both the peak and average power levels must be expressed in the same logarithmic units (*e.g.*, dBm). Determine the PAPR from: PAPR (dB) = PPk (dBm) - PAvg (dBm). ## **Test Setup** ## Limits In measuring transmissions in this band using an average power technique, the peakto-average ratio (PAR) of the transmission may not exceed 13 dB in 24.232(d). ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB. | Mode | Modulation | Sub-carrier spacing | Channel/ | Peak-to-A | Average Pow
(PAPR) | er Ratio | Limit(dB) | Conclusion | |-----------------------|------------|---------------------|----------------------|-----------|-----------------------|----------|-----------|------------| | | | (KHz) | Frequency(MHz) | Peak(dBm) | Avg(dBm) | PAPR(dB) | | | | ND IoT | BPSK | 3.75 | 18900/1880.0 | 25.26 | 20.45 | 4.81 | ≤13 | PASS | | NB-loT
Band 2 | QPSK | 3.75 | 18900/1880.0 | 24.66 | 20.51 | 4.15 | ≤13 | PASS | | Standalone | BPSK | 15 | 18900/1880.0 | 24.75 | 17.51 | 7.24 | ≤13 | PASS | | Staridatorie | QPSK | 15 | 18900/1880.0 | 24.41 | 17.48 | 6.93 | ≤13 | PASS | | | | Sub-carrier | Channel/ | Peak-to-A | Average Pow | er Ratio | | | | Mode | Modulation | spacing | Frequency(MHz) | | (PAPR) | | Limit(dB) | Conclusion | | | | (KHz) | 1 requericy(ivii iz) | Peak(dBm) | Avg(dBm) | PAPR(dB) | | | | NB-IoT | BPSK | 3.75 | 26365/1882.5 | 25.47 | 20.68 | 4.79 | ≤13 | PASS | | | QPSK | 3.75 | 26365/1882.5 | 25.47 | 20.68 | 4.79 | ≤13 | PASS | | Band 25
Standalone | BPSK | 15 | 26365/1882.5 | 24.92 | 17.71 | 7.21 | ≤13 | PASS | | Gianuaione | QPSK | 15 | 26365/1882.5 | 24.92 | 17.71 | 7.21 | ≤13 | PASS | ## 5.5. Frequency Stability ### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ### **Method of Measurement** Frequency Stability (Temperature Variation) The temperature inside the climate chamber is varied from -40°C to +85°C in 10°C step size, - (1) With all power removed, the temperature was decreased to 0°C and permitted to stabilize for three hours. - (2) Measure the carrier frequency with the test equipment in a "call mode". These measurements should be made within 1 minute of powering up the mobile station, to prevent significant self warming. - (3) Repeat the above measurements at 10°C increments from -40°C to +85°C. Allow at least 1.5 hours at each temperature, un-powered, before making measurements. Frequency Stability (Voltage Variation) The frequency stability shall be measured with variation of primary supply voltage as follows: - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment. - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery-operating end point which shall be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.3 V and 4.3 V, with a nominal voltage of 3.8V. ## **Test setup** ## Limits The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 3, U= 0.01ppm. ## **Test Result** | | | NB- | loT Band 2 | | | | |---------------------------|---------|------------|------------|----------------|----------------|---------| | Condition | | Freq.Error | Freq.Error | Frequency | Frequency | | | Sub-carrier spacing (KHz) | 3.75 | (Hz) | (Hz) | Stability(ppm) | Stability(ppm) | Verdict | | Temperature | Voltage | BPSK | QPSK | BPSK | QPSK | | | Normal(25℃) | | 4.49 | 10.45 | 0.00239 | 0.00556 | PASS | | Extreme(85°C) | | 13.06 | 2.47 | 0.00695 | 0.00131 | PASS | | Extreme(80°C) | | 13.37 | 10.33 | 0.00711 | 0.00550 | PASS | | Extreme(70°C) | | 6.88 | 4.47 | 0.00366 | 0.00238 | PASS | | Extreme(60°C) | | 2.91 | 2.24 | 0.00155 | 0.00119 | PASS | | Extreme(50°C) | | 15.13 | 1.01 | 0.00805 | 0.00054 | PASS | | Extreme(40°C) | | 13.77 | 13.12 | 0.00732 | 0.00698 | PASS | | Extreme(30°C) | Normal | 3.36 | 15.92 | 0.00179 | 0.00847 | PASS | | Extreme(20°C) | | 6.48 | 2.41 | 0.00345 | 0.00128 | PASS | | Extreme(10°C) | | 16.20 | 3.24 | 0.00862 | 0.00172 | PASS | | Extreme(0°C) | | 15.24 | 17.25 | 0.00811 | 0.00918 | PASS | | Extreme(-10°C) | | 3.58 | 10.57 | 0.00190 | 0.00562 | PASS | | Extreme(-20°C) | | 1.73 | 3.52 | 0.00092 | 0.00187 | PASS | | Extreme(-30°C) | | 14.66 | 10.76 | 0.00780 | 0.00572 | PASS | | Extreme(-40°C) | | 14.82 | 7.29 | 0.00788 | 0.00388 | PASS | | 2 5°○ | LV | 5.43 | 16.90 | 0.00289 | 0.00899 | PASS | | 25℃ | HV | 6.22 | 17.45 | 0.00331 | 0.00928 | PASS | | Condition | | Freq.Error | Freq.Error | Frequency | Frequency | | | Sub-carrier spacing (KHz) | 15 | (Hz) | (Hz) | Stability(ppm) | Stability(ppm) | Verdict | | Temperature | Voltage | BPSK | QPSK | BPSK | QPSK | | | Normal(25℃) | | 5.06 | 4.58 | 0.00269 | 0.00244 | PASS | | Extreme(85°C) | | 3.10 | 16.68 | 0.00165 | 0.00887 | PASS | | Extreme(80°C) | | 7.29 | 7.64 | 0.00388 | 0.00406 | PASS | | Extreme(70°C) | | 12.13 | 6.65 | 0.00645 | 0.00354 | PASS | | Extreme(60°C) | | 6.47 | 12.35 | 0.00344 | 0.00657 | PASS | | Extreme(50°C) | Normal | 9.11 | 3.22 | 0.00485 | 0.00171 | PASS | | Extreme(40°C) | Normai | 7.35 | 16.39 | 0.00391 | 0.00872 | PASS | | Extreme(30°C) | | 15.14 | 10.28 | 0.00805 | 0.00547 | PASS | | Extreme(20°C) | | 7.37 | 1.04 | 0.00392 | 0.00055 | PASS | | Extreme(10°C) | | 1.72 | 14.09 | 0.00092 | 0.00750 | PASS | | Extreme(0°C) | | 12.26 | 8.64 | 0.00652 | 0.00459 | PASS | | Extreme(-10°C) | | 7.55 | 4.04 | 0.00402 | 0.00215 | PASS | | Extreme(-20℃) | | 10.47 | 12.32 | 0.00557 | 0.00655 | PASS | |----------------|----|-------|-------|---------|---------|------| | Extreme(-30°C) | | 8.05 | 1.06 | 0.00428 | 0.00057 | PASS | | Extreme(-40°C) | | 17.12 | 8.12 | 0.00911 | 0.00432 | PASS | | 25 ℃ | LV | 10.98 | 11.50 | 0.00584 | 0.00612 | PASS | | 25 C | HV | 1.70 | 8.85 | 0.00091 | 0.00471 | PASS | | | | NB-I | oT Band 25 | | | | |------------------------------|---------|------------|------------|----------------|----------------|---------| | Condition | 1 | Freq.Error | Freq.Error | Frequency | Frequency | | | Sub-carrier spacing
(KHz) | 3.75 | (Hz) | (Hz) | Stability(ppm) | Stability(ppm) | Verdict | | Temperature | Voltage | BPSK | QPSK | BPSK | QPSK | | | Normal(25℃) | | 14.82 | 14.11 | 0.00788 | 0.00751 | PASS | | Extreme(85°C) | | 11.87 | 17.73 | 0.00631 | 0.00943 | PASS | | Extreme(80°C) | | 14.43 | 12.51 | 0.00767 | 0.00665 | PASS | | Extreme(70°C) | | 7.87 | 11.96 | 0.00419 | 0.00636 | PASS | | Extreme(60°C) | | 8.20 | 12.02 | 0.00436 | 0.00639 | PASS | | Extreme(50°C) | | 14.44 | 4.28 | 0.00768 | 0.00228 | PASS | | Extreme(40°C) | | 7.59 | 17.22 | 0.00404 | 0.00916 | PASS | | Extreme(30°C) | Normal | 14.08 | 15.69 | 0.00749 | 0.00834 | PASS | | Extreme(20°C) | | 15.79 | 9.27 | 0.00840 | 0.00493 | PASS | | Extreme(10°C) | | 6.89 | 3.73 | 0.00366 | 0.00198 | PASS | | Extreme(0°C) | - | 17.64 | 12.11 | 0.00938 | 0.00644 | PASS | | Extreme(-10°C) | | 1.06 | 1.55 | 0.00056 | 0.00083 | PASS | | Extreme(-20°C) | - | 17.69 | 8.34 | 0.00941 | 0.00444 | PASS | | Extreme(-30°C) | | 9.27 | 13.12 | 0.00493 | 0.00698 | PASS | | Extreme(-40°C) | | 11.49 | 5.71 | 0.00611 | 0.00304 | PASS | | 05 °C | LV | 3.60 | 9.07 | 0.00192 | 0.00483 | PASS | | 25℃ | HV | 3.05 | 7.25 | 0.00162 | 0.00386 | PASS | | 0 1111 | - | | | | | | | Condition | | Freq.Error | Freq.Error | Frequency | Frequency | | | Sub-carrier spacing | | (Hz) | (Hz) | Stability(ppm) | Stability(ppm) | Verdict | | (KHz) | 15 | | | | | | | Temperature | Voltage | BPSK | QPSK | BPSK | QPSK | | | Normal(25°ℂ) | | 4.57 | 15.25 | 0.00243 | 0.00811 | PASS | | Extreme(85°C) | | 14.83 | 16.14 | 0.00789 | 0.00859 | PASS | | Extreme(80°C) | | 4.28 | 8.08 | 0.00228 | 0.00430 | PASS | | Extreme(70℃) | Normal | 13.12 | 1.05 | 0.00698 | 0.00056 | PASS | | Extreme(60°C) | | 10.06 | 17.46 | 0.00535 | 0.00929 | PASS | | Extreme(50°C) | | 5.17 | 16.52 | 0.00275 | 0.00879 | PASS | | Extreme(40°C) | | 14.59 | 16.39 | 0.00776 | 0.00872 | PASS | | Extreme(30°C) | | 7.13 | 10.77 | 0.00379 | 0.00573 | PASS | |----------------|----|-------|-------|---------|---------|------| | Extreme(20℃) | | 4.30 | 13.74 | 0.00229 | 0.00731 | PASS | | Extreme(10℃) | | 9.49 | 12.05 | 0.00505 | 0.00641 | PASS | | Extreme(0°C) | | 9.57 | 4.12 | 0.00509 | 0.00219 | PASS | | Extreme(-10°C) | | 3.57 | 2.83 | 0.00190 | 0.00150 | PASS | | Extreme(-20°C) | | 3.49 | 1.03 | 0.00185 | 0.00055 | PASS | | Extreme(-30°C) | | 2.66 | 5.09 | 0.00142 | 0.00271 | PASS | | Extreme(-40°C) | | 9.66 | 16.77 | 0.00514 | 0.00892 | PASS | | 25 ℃ | LV | 8.59 | 15.84 | 0.00457 | 0.00843 | PASS | | 23 (| HV | 16.74 | 13.66 | 0.00890 | 0.00727 | PASS | ## 5.6. Spurious Emissions at Antenna Terminals ### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ### **Method of Measurement** The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The measurement is carried out using a spectrum analyzer. The spectrum analyzer scans from 9kHz to the 10th harmonic of the carrier. The peak detector is used. RBW is set to 100kHz, VBW is set to 300kHz for 30MHz~1GHz RBW is set to 1MHz, VBW is set to 3MHz for above 1GHz, Sweep is set to ATUO. The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration. ## **Test setup** ### Limits Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB." | Limit -13 dBm | |---------------| |---------------| ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 99.75% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |------------|-------------| | 9kHz-1GHz | 0.684 dB | | 1GHz-20GHz | 1.407 dB | ## **Test Result** Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions more than 20 dB below the limit are not reported. The signal beyond the limit is carrier. TA Technology (Shanghai) Co., Ltd. TA-MB-05-002R Page 34 of 47 **RF Test Report** Report No.: R2108A0767-R6V1 NB-IoT Band 25 CH-Low 30MHz~1GHz NB-IoT Band 25 CH-Low 1GHz ~20GHz **% %** 1 RM AVG Date: 29.MAY.2020 21:31:13 Date: 29.MAY.2020 21:33:21 NB-IoT Band 25 CH-Middle 30MHz~1GHz NB-IoT Band 25 CH-Middle 1GHz ~20GHz **%** Date: 29.MAY.2020 21:34:32 NB-IoT Band 25 CH-High 30MHz~1GHz NB-IoT Band 25 CH-High 1GHz ~20GHz **% %** 1 RM AVG Date: 29.MAY.2020 21:31:33 Date: 29.MAY.2020 21:35:33 ## 5.7. Radiates Spurious Emission ### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ### **Method of Measurement** - 1. The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015). - 2. Below 1GHz: The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). Above 1GHz: (Note: the FCC's permission to use 1.5m as an alternative per TCBC Conf call of Dec. 2, 2014.) The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H). - 3. A loop antenna, A log-periodic antenna or horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver. - 4. The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=200Hz,VBW=600Hz for 9kHz-150kHz, RBW=10kHz, VBW=30kHz 150kHz-30MHz, RBW=100kHz,VBW=300kHz for 30MHz to 1GHz and RBW=1MHz, VBW=3MHz for above 1GHz, And the maximum value of the receiver should be recorded as (Pr). 5. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source - the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization. - 6. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test. - 7. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga 8. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi. The modulation mode and RB allocation refer to section 5.1, using the maximum output power configuration. ## **Test setup** ## 9KHz ~ 30MHz ## 30MHz ~ 1GHz ## **Above 1GHz** Note: Area side: 2.4mX3.6m ### Limits Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB." | Limit | -13 dBm | |-------|---------| |-------|---------| ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 3.55 dB. **Test Result** Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the emissions below the noise floor will not be recorded in the report. Report No.: R2108A0767-R6V1 NB-IoT Band 2 15kHz+QPSK CH-Low | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3760.0 | -54.51 | 5.10 | 11.05 | Horizontal | -48.56 | -13.00 | 35.56 | 135 | | 3 | 5640.0 | -57.74 | 5.42 | 12.65 | Horizontal | -50.51 | -13.00 | 37.51 | 315 | | 4 | 7520.0 | -56.89 | 6.70 | 13.85 | Horizontal | -49.74 | -13.00 | 36.74 | 90 | | 5 | 9400.0 | -54.40 | 7.01 | 14.75 | Horizontal | -46.66 | -13.00 | 33.66 | 45 | | 6 | 11280.0 | -53.72 | 7.48 | 15.95 | Horizontal | -45.25 | -13.00 | 32.25 | 315 | | 7 | 13160.0 | -52.56 | 7.51 | 16.55 | Horizontal | -43.52 | -13.00 | 30.52 | 180 | | 8 | 15040.0 | -50.14 | 8.24 | 15.35 | Horizontal | -43.03 | -13.00 | 30.03 | 225 | | 9 | 16920.0 | -47.24 | 8.41 | 14.95 | Horizontal | -40.70 | -13.00 | 27.70 | 135 | | 10 | 18800.0 | - | ı | - | - | - | - | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. ### NB-IoT Band 2 15kHz QPSK CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3700.2 | -54.30 | 5.10 | 11.05 | Horizontal | -48.35 | -13.00 | 35.35 | 45 | | 3 | 5550.3 | -57.11 | 5.42 | 12.65 | Horizontal | -49.88 | -13.00 | 36.88 | 270 | | 4 | 7400.4 | -56.61 | 6.70 | 13.85 | Horizontal | -49.46 | -13.00 | 36.46 | 45 | | 5 | 9250.5 | -54.20 | 7.01 | 14.75 | Horizontal | -46.46 | -13.00 | 33.46 | 270 | | 6 | 11100.6 | -54.10 | 7.48 | 15.95 | Horizontal | -45.63 | -13.00 | 32.63 | 90 | | 7 | 12950.7 | -52.78 | 7.51 | 16.55 | Horizontal | -43.74 | -13.00 | 30.74 | 315 | | 8 | 14800.8 | -50.52 | 8.24 | 15.35 | Horizontal | -43.41 | -13.00 | 30.41 | 0 | | 9 | 16650.9 | -48.04 | 8.41 | 14.95 | Horizontal | -41.50 | -13.00 | 28.50 | 90 | | 10 | 18501.0 | - | - | - | - | - | - | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. ## NB-IoT Band 2 15kHz QPSK CH-High | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3819.8 | -53.54 | 5.10 | 11.05 | Horizontal | -47.59 | -13.00 | 34.59 | 45 | | 3 | 5729.7 | -58.50 | 5.42 | 12.65 | Horizontal | -51.27 | -13.00 | 38.27 | 90 | | 4 | 7639.6 | -57.08 | 6.70 | 13.85 | Horizontal | -49.93 | -13.00 | 36.93 | 0 | | 5 | 9549.5 | -54.78 | 7.01 | 14.75 | Horizontal | -47.04 | -13.00 | 34.04 | 315 | | 6 | 11459.4 | -52.52 | 7.48 | 15.95 | Horizontal | -44.05 | -13.00 | 31.05 | 45 | | 7 | 13369.3 | -51.37 | 7.51 | 16.55 | Horizontal | -42.33 | -13.00 | 29.33 | 90 | | 8 | 15279.2 | -50.09 | 8.24 | 15.35 | Horizontal | -42.98 | -13.00 | 29.98 | 0 | | 9 | 17189.1 | -47.26 | 8.41 | 14.95 | Horizontal | -40.72 | -13.00 | 27.72 | 225 | | 10 | 19099.0 | - | - | - | - | - | - | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. ## NB-IoT Band 25 15kHz QPSK CH-Low | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3700.2 | -55.45 | 5.10 | 11.05 | Horizontal | -49.50 | -13.00 | 36.50 | 45 | | 3 | 5550.3 | -56.63 | 5.42 | 12.65 | Horizontal | -49.40 | -13.00 | 36.40 | 315 | | 4 | 7400.4 | -56.55 | 6.70 | 13.85 | Horizontal | -49.40 | -13.00 | 36.40 | 180 | | 5 | 9250.5 | -54.24 | 7.01 | 14.75 | Horizontal | -46.50 | -13.00 | 33.50 | 90 | | 6 | 11100.6 | -53.17 | 7.48 | 15.95 | Horizontal | -44.70 | -13.00 | 31.70 | 45 | | 7 | 12950.7 | -52.27 | 7.51 | 16.55 | Horizontal | -43.23 | -13.00 | 30.23 | 225 | | 8 | 14800.8 | -48.81 | 8.24 | 15.35 | Horizontal | -41.70 | -13.00 | 28.70 | 135 | | 9 | 16650.9 | -46.34 | 8.41 | 14.95 | Horizontal | -39.80 | -13.00 | 26.80 | 270 | | 10 | 18501.0 | - | - | - | - | - | - | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ## NB-IoT Band 25 15kHz QPSK CH-Middle | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3765.0 | -54.35 | 5.10 | 11.05 | Horizontal | -48.40 | -13.00 | 35.40 | 180 | | 3 | 5647.5 | -57.03 | 5.42 | 12.65 | Horizontal | -49.80 | -13.00 | 36.80 | 90 | | 4 | 7530.0 | -54.35 | 6.70 | 13.85 | Horizontal | -47.20 | -13.00 | 34.20 | 225 | | 5 | 9412.5 | -54.04 | 7.01 | 14.75 | Horizontal | -46.30 | -13.00 | 33.30 | 270 | | 6 | 11295.0 | -52.37 | 7.48 | 15.95 | Horizontal | -43.90 | -13.00 | 30.90 | 135 | | 7 | 13177.5 | -50.44 | 7.51 | 16.55 | Horizontal | -41.40 | -13.00 | 28.40 | 45 | | 8 | 15060.0 | -50.01 | 8.24 | 15.35 | Horizontal | -42.90 | -13.00 | 29.90 | 270 | | 9 | 16942.5 | -46.24 | 8.41 | 14.95 | Horizontal | -39.70 | -13.00 | 26.70 | 90 | | 10 | 18825.0 | - | - | - | - | - | - | - | - | Note: 1.The other Spurious RF Radiated emissions level is no more than noise floor. 2. The worst emission was found in the antenna is Horizontal position. TA Technology (Shanghai) Co., Ltd. TA-MB-05-002R ^{2.} The worst emission was found in the antenna is Horizontal position. ## NB-IoT Band 25 15kHz QPSK CH-High | Harmonic | Frequency
(MHz) | SG
(dBm) | Cable
Loss
(dB) | Gain
(dBi) | Antenna
Polarization | EIRP
Level
(dBm) | Limit
(dBm) | Margin
(dB) | Azimuth (deg) | |----------|--------------------|-------------|-----------------------|---------------|-------------------------|------------------------|----------------|----------------|---------------| | 2 | 3829.8 | -53.55 | 5.10 | 11.05 | Horizontal | -47.60 | -13.00 | 34.60 | 0 | | 3 | 5744.7 | -56.43 | 5.42 | 12.65 | Horizontal | -49.20 | -13.00 | 36.20 | 135 | | 4 | 7659.6 | -56.25 | 6.70 | 13.85 | Horizontal | -49.10 | -13.00 | 36.10 | 180 | | 5 | 9574.5 | -54.44 | 7.01 | 14.75 | Horizontal | -46.70 | -13.00 | 33.70 | 270 | | 6 | 11489.4 | -50.97 | 7.48 | 15.95 | Horizontal | -42.50 | -13.00 | 29.50 | 90 | | 7 | 13404.3 | -51.84 | 7.51 | 16.55 | Horizontal | -42.80 | -13.00 | 29.80 | 45 | | 8 | 15319.2 | -47.91 | 8.24 | 15.35 | Horizontal | -40.80 | -13.00 | 27.80 | 135 | | 9 | 17234.1 | -46.44 | 8.41 | 14.95 | Horizontal | -39.90 | -13.00 | 26.90 | 225 | | 10 | 19149.0 | - | | - | - | - | | - | - | Note: 1. The other Spurious RF Radiated emissions level is no more than noise floor. ^{2.} The worst emission was found in the antenna is Horizontal position. ## 6. Main Test Instruments | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration Date | |--|--------------|--------------|------------------|---------------------|-----------------| | Base Station
Simulator | R&S | CMU200 | 118133 | 2020-05-17 | 2021-05-16 | | Base Station
Simulator | R&S | CMW500 | 113824 | 2020-05-18 | 2021-05-17 | | Power Splitter | Hua Xiang | SHX-GF2-2-13 | 10120101 | 1 | / | | Spectrum
Analyzer | Key sight | N9010A | MY50210259 | 2020-05-18 | 2021-05-17 | | Universal Radio
Communication
Tester | Key sight | E5515C | MY48367192 | 2020-05-27 | 2021-05-26 | | Signal Analyzer | R&S | FSV30 | 100815 | 2019-12-15 | 2020-12-14 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2017-09-26 | 2020-09-25 | | Trilog Antenna | SCHWARZBECK | VUBL 9163 | 9163-201 | 2017-11-18 | 2020-11-17 | | Horn Antenna | R&S | HF907 | 100126 | 2018-07-07 | 2020-07-06 | | Horn Antenna | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2020-06-19 | | Signal
generator | R&S | SMB 100A | 102594 | 2020-05-18 | 2021-05-17 | | Climatic
Chamber | ESPEC | SU-242 | 93000506 | 2017-12-17 | 2020-12-16 | | Preampflier | R&S | SCU18 | 102327 | 2020-05-18 | 2021-05-17 | | MOB COMMS
DC SUPPLY | Keysight | 66319D | MY43004105 | 2020-05-18 | 2021-05-17 | | RF Cable | Agilent | SMA 15cm | 0001 | 2019-12-13 | 2020-06-12 | | RF Cable | Agilent | SMA 15cm | 0001 | 2020-06-12 | 2020-12-11 | | Software | R&S | EMC32 | 9.26.0 | 1 | / | ******END OF REPORT ****** # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately. # **ANNEX C: Verify data** The Verify data are submitted separately. # **ANNEX D: Product Change Description** The Product Change Description are submitted separately.