

Test report

REP018182-2R1TRFWL

Date of issue: July 17, 2024

Applicant:

SOLiD

Product description:

Distributed Antenna System (DAS)

Model:

MRDU_AWS13_B66_B70

FCC ID:

W6UHMAWS13B66B70

Product marketing name(s):

AWS13

ISED certification number:

9354A-HMA13B66B70

Specifications:

- FCC 47 CFR Part 27 Miscellaneous Wireless Communication Services
- RSS 131 Issue 4 Zone Enhancers
- RSS-139 Issue 4 Advanced Wireless Services Equipment Operating in the Bands 1710-1780 MHz and 2110 – 2200 MHz

Lab and test locations

Company name	Nemko USA Inc.
Address	2210 Faraday Ave, Suite 150
City	Carlsbad
State	California
Postal code	92008
Country	USA
Telephone	+1 760 444 3500
Website	www.nemko.com
FCC Site Number	Test Firm Registration Number: 392943; Designation Number: US3165
ISED Test Site	2040B
Tested by	Lan Sayasane, EMC Test Engineer
Reviewed by	James Cunningham, EMC/WL Manager
Review date	July 9, 2024
Reviewer signature	281

Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by ANAB, NIST, or any agency of the U.S. Government.

Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Table of Contents

Table of C	Contents	. 3
Section 1	Report summary	. 4
1.1	Test specifications	. 4
1.2	Test methods	. 4
1.3	Exclusions	. 4
1.4	Statement of compliance	
1.5	Test report revision history	. 4
Section 2	Summary of test results	. 5
2.1	Sample information	. 5
2.2	Testing period	. 5
2.3	Test results	
Section 3	Equipment under test (EUT) details	. 6
3.1	Disclaimer	. 6
3.2	Applicant	. 6
3.3	Manufacturer	. 6
3.4	EUT information	
3.5	Transmitter Information	
3.6	EUT setup details	
Section 4		
4.1	Modifications incorporated in the EUT	
4.2	Technical judgement	
4.3	Deviations from laboratory test procedures	
Section 5		
5.1	Atmospheric conditions	10
5.2	Power supply range	
Section 6		
6.1	Uncertainty of measurement	
Section 7		
7.1	Test equipment list	
7.2	Test software list	
Section 8		
8.1	AGC Threshold	
8.2	Out of band rejection	
8.3	Occupied bandwidth / Input Versus Output Comparison	
8.4	Output power / Mean output power and amplifier gain	
8.5	Spurious emissions at RF connector	
8.6	Radiated spurious emissions	19

Section 1 Report summary

1.1 Test specifications

FCC 47 CFR Part 27	Miscellaneous Wireless Communication Services
RSS-131 Issue 4	Zone Enhancers
RSS 139 Issue 4	Advanced Wireless Services Equipment Operating in the Bands 1710-1780 MHz and 2110 – 2200 MHz
1.2 Test methods	

Amplifier Devices

Measurements Guidance for Industrial, and Non-Consumer Signal Booster, Repeater, and

1.3 Exclusions

FCC KDB 935210 D05 v01r04

None.

1.4 Statement of compliance

Testing was performed against all relevant requirements of the test standard(s).

Results obtained indicate that the product under test complies in full with the tested requirements.

The test results relate only to the item(s) tested.

See "Section 2 Summary of test results" for full details.

1.5 Test report revision history

Table 1.5-1: Test report revision history

Revision #	Issue Date	Details of changes made to test report
REP018182-2TRFEMC	March 26, 2024	Original report issued
REP018182-2R1TRFEMC	July 9, 2024	Split reports

Section 2 Summary of test results

2.1 Sample information

Receipt date	26-Oct-23
Nemko sample ID number	REP018182

2.2 Testing period

Test start date	26-Oct-23
Test end date	05-Dec-23

2.3 Test results

	Table	2.3-1: Summary of results		
FCC Part	ISED Part	Test method	Test description	Verdict
		KDB 935210 D05V01r04 (3.2) ANSI C63.26 7.2.2.1	AGC threshold	Pass
	RSS-131 Clause 9.1	KDB 935210 D05v01r04 (3.3) ANSI C63.26 7.2.2.2	Out of band rejection	Pass
FCC Part 2.1049	RSS-131 Clause 9.2	KDB 935210 D05v01r05 (3.4) ANSI C63.26 7.2.2.3	Occupied bandwidth / Input-versus-output spectrum	Pass
FCC Part 27.50(d) (band 66, 70 operation)	RSS-131 Clause 9.3	KDB 935210 D05v01r05 (3.5) ANSI C63.26 7.2.2.4	Input/output power and amplifier/booster gain	Pass
FCC Part 27.53(h) (band 66, 70 operation)	RSS-133 Clause 6.5.1 (band 25 operation) RSS-139 Clause 5.6 (band 66 operation)	KDB 935210 D05v01r05 (3.6) ANSI C63.26 7.2.2.5	Spurious emissions at RF antenna connector	Pass
FCC Part 27.54 (band 66, 70 operation)	RSS-131 Clause 9.4	KDB 935210 D05v01r05 (3.7) ANSI C63.26 7.2.2.6	Frequency stability	Not applicable ¹
FCC Part 27.53(h) (band 66, 70 operation)	RSS-133 Clause 6.5.1 (band 25 operation) RSS-139 Clause 5.6 (band 66 operation)	KDB 935210 D05v01r05 (3.8) ANSI C63.26 7.2.2.7	Radiated spurious emissions	Pass

Notes: ¹ Per ANSI C63.26-2015 clause 7.2.2.6 and KDB 935210 Clause 3.7, frequency stability testing is not required if the EUT does not process the input signal in a manner that can influence the output signal frequency/frequencies.

Section 3 Equipment under test (EUT) details

3.1 Disclaimer

This section contains information provided by the applicant and has been utilized to support the test plan. Inaccurate information provided by the applicant can affect the validity of the results within this test report. Nemko accepts no responsibility for the information contained within this section and the impact it may have on the test plan and resulting measurements.

3.2 Applicant

Company name	SOLID
Address	800 Klein Road, Suite 200
City	Plano
State	ТХ
Postal/Zip code	75074
Country	USA

3.3 Manufacturer

Company name	SOLID
Address	800 Klein Road, Suite 200
City	Plano
State	тх
Postal/Zip code	75074
Country	USA

3.4 EUT information

Product name	Distributed Antenna System (DAS)
Model	MRDU_AWS13_B66_B70
Variant(s)	None
Serial number	N/A
Part number	N/A
Power requirements	Input: 120Vac, 50/60Hz
Description/theory of operation	Distributed Antenna System (DAS) that efficiently delivers wireless RF signals into any indoor or outdoor location difficult to cover with traditional macro networks.
Operational frequencies	Band 70: 1995 – 2020 MHz DL / 1695 – 1710 UL
	Band 66: 2110 – 2220 MHz DL / 1710 – 1780 MHz UL
Software details	Alliance Rel6.0 Management Version 18.0.7
Type of signal booster	FCC:
	🗆 Consumer Signal Booster
	🗆 Provider-Specific Consumer Signal Booster
	🖂 Industrial Signal Booster
	ISED:
	🗆 Consumer Zone Enhancer
	🗆 Fixed Consumer Zone Enhancer
	🖂 Industrial Zone Enhancer
	Mobile Consumer Zone Enhancer
	Provider-Specific Consumer Zone Enhancer

3.5 Transmitter Information

Fraguancy band(c)	Band 70: 1995 – 2020 MHz DL / 1695 – 1710 UL
Frequency band(s)	Band 66: 2110 – 2220 MHz DL / 1710 – 1780 MHz UL
Antenna information	2 antenna ports (one for band 70 operation, one for band 66 operation).
Antenna mormation	Antenna details None
Nominal gain (*)	Nominal gain 57 dB, 58 dB for band 66 operation.
Gain-versus-frequency response (*)	Gain is nominally flat across the frequency bands. See out-of-band rejection data in section 8.2 for verification.
Rated mean output power P _{rated} (*)	37 dBm (5 Watts)
Output signal coupling attenuation (*)	0 dB
Mobile Station Coupling Loss (*)	N/A (EUT is not a Wideband Consumer Zone Enhancer)
Base Station Coupling Loss (*)	N/A (EUT is not a Provider-Specific Consumer Zone Enhancer)
Input port impedance	50 ohms (note – input port(s) are situated on the iBIU system interface unit, connected via fiber to EUT
Output port impedance	50 ohms
*) Information required per RSS-131	

(*) Information required per RSS-131

3.6 EUT setup details

Description	Brand name	Model/Part number	Serial number	Rev.
MRDU_AWS13_B66_B70	SOLID	AWS13	N/A	
	Table 3.6-2:	EUT interface ports		
Description				Qty
Power In				1
Power Out (Not Used)				1
ANT1				1
ANT2				1
Tx (Not Used)				1
Rx (Not Used)				1
I/O (Not Used)				1
Fan (Not Used)				1
Optic				1

Description	Brand name	Model/Part number	Serial number	Rev.
iBIU System Interface	SOLID	iBIU_AC	65100122800159	
Laptop	DELL	Latitude 5480	6KP16H2	

Table 3.6-4: Inter-connection cables

Cable description	From	То	Length (m)
Fiber Optic	Distributed Antenna Systems	iBIU System Interface	10
Serial to USB	iBIU System Interface	Laptop	2

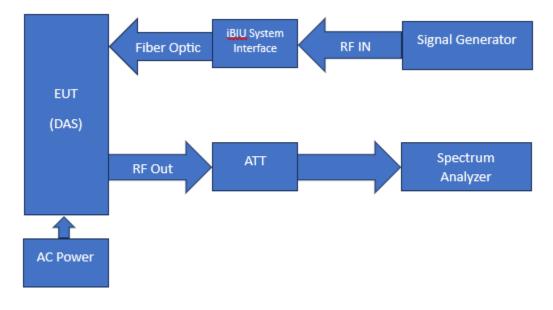


Figure 3.6-1: Test setup diagram

Section 4 Engineering considerations

4.1 Modifications incorporated in the EUT

None.

4.2 Technical judgement

None.

4.3 Deviations from laboratory test procedures

None.

Section 5 Test conditions

5.1 Atmospheric conditions

Temperature	15–30 °C
Relative humidity	20–75 %
Air pressure	86–106 kPa

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.

Section 6 Measurement uncertainty

6.1 Uncertainty of measurement

Nemko USA Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics, and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

Table 6.1-1: Measurement uncertainty calculations

Measurement		U _{cispr} dB	U _{lab} dB
Conducted disturbance at AC mains and other port power using a V-AMN	9 kHz to 150 kHz	3.8	2.9
	150 kHz to 30 MHz	3.4	2.3
Conducted disturbance at telecommunication port using AAN	150 kHz to 30 MHz	5.0	4.3
Conducted disturbance at telecommunication port using CVP	150 kHz to 30 MHz	3.9	2.9
Conducted disturbance at telecommunication port using CP	150 kHz to 30 MHz	2.9	1.4
Conducted disturbance at telecommunication port using CP and CVP	150 kHz to 30 MHz	4.0	3.1
Radiated disturbance (electric field strength in a SAC)	30 MHz to 1 GHz	6.3	5.5
Radiated disturbance (electric field strength in a FAR)	1 GHz to 6 GHz	5.2	4.7
Radiated disturbance (electric field strength in a FAR)	6 GHz to 18 GHz	5.5	5.0

Notes: Compliance assessment:

If U_{lab} is less than or equal to U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level exceeds the disturbance limit.
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If U_{lab} is greater than U_{cispr} then:

- compliance is deemed to occur is no measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit.
- non-compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit
- V-AMN: V type artificial mains network
- AAN: Asymmetric artificial network
- CP: Current probe
- CVP: Capacitive voltage probe
- SAC: Semi-anechoic chamber
- FAR: Fully anechoic room

Section 7 Test equipment

7.1 Test equipment list

Table 7.1-1: Test Equipment List

Equipment	Manufacturer	Model no.	Asset no.	Cal cycle	Next cal.
Signal and Spectrum Analyzer	Rohde & Schwarz	FSV40	E1120	2 years	14-Dec-2025
Vector Signal Generator	Rohde & Schwarz	SMW200A	E1156	3 years	10-May-2024
Power Sensor	ETS-Lindgren	7002-006	EW110	1 year	14-Apr-2024
EMI Test Receiver	Rohde & Schwarz	ESU 40	E1121	1 year	23-Aug-2024
System Controller	Sunol Sciences	SC104V	E1191	NCR	NCR
Antenna, Bilog	Schaffner-Chase	CBL6111C	1480	1 year	21-Feb-2024
Antenna, DRG Horn	ETS-Lindgren	3117-PA	E1160	1 year	13-Feb-2024
Antenna, Horn (18-26.5 GHz)	Eravant	SAZ-2410-42-S1	EW107	1 year	05-Dec-2024
Antenna, Horn (26.5-40 GHz)	Eravant	SAZ-2410-2-S1	EW108	1 year	05-Dec-2024
Termination, 50 ohms	Diamond Antenna	DC-500MHz	N/A	NCR	NCR
Attenuator, 30dB	Pasternack	PE7388-30	E1325	VBU	VBU

Notes: NCR: no calibration required VBU: verify before use

.

7.2 Test software list

Table 7.2-1: Test Software

Manufacturer	Details	
Rohde & Schwarz	EMC 32 V10.60.10 (AC conducted emissions)	
Rohde & Schwarz	EMC 32 V10.60.15 (radiated emissions)	

Section 8 Testing data

8.1 AGC Threshold

8.1.1 References and limits

- ANSI C63.26 Section 7.2.2.1

- KDB 935210 D05v01r04 Clause 3.2

8.1.2 Test summary

Verdict	Pass			
Test date	November 15, 2023	Temperature	21 °C	
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1006 mbar	
Test location	 □ 10m semi anechoic chamber □ 3m semi anechoic chamber ⊠ Wireless bench □ Other: 	Relative humidity	51 %	

8.1.3 Notes

Per KDB 935210 D05 v01r04, Clause 3.1 and ANSI C63.26 Clause 7.2.2.1, testing was performed with a narrowband test signal (MSK modulated, gaussian filter of 0.3 and data rate 270 kbps) and a broadband signal (AWGN, 4.1 MHz 99% occupied bandwidth).

8.1.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🛛 Table-top
	Floor standing
	Other:
Measurement details	The automatic gain control (AGC) threshold is determined as follows:
	a) Connect a signal generator to the input of the EUT.
	b) Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation.
	c) The signal generator must be set to either of the required modulation signals.
	d) Set the frequency to the middle frequency of the EUT operating band.
	e) While monitoring the output of the EUT using the method of ANSI C63.26 7.2.2.4.2 or 7.2.2.4.3, increase
	the input level until a 1 dB increase in the input signal no longer causes a 1 dB increase in the output signal.
	f) This is the AGC threshold level of the EUT.
	g) Repeat for the other modulation signal.

8.1.5 Test data

Table 8.1-1: AGC Threshold results

Operating frequency band	Input signal type	AGC Threshold Level (dBm)
Band 70: 1995 – 2020 MHz	Narrowband	-21.0
	Broadband	-20.0
Band 66: 2110 – 2200 MHz	Narrowband	-24.0
	Broadband	-24.0

8.2 Out of band rejection

8.2.1 References and limits

- ANSI C63.26 Section 7.2.2.2

- KDB 935210 D05v01r04 Clause 3.3

- RSS-131 Clause 9.1

8.2.2 Test summary

Verdict	Pass		
Test date	October 26, 2023	Temperature	20 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1010 mbar
Test location	 10m semi anechoic chamber 3m semi anechoic chamber Wireless bench Other: 	Relative humidity	55 %

8.2.3 Notes

None

8.2.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🖂 Table-top
	Floor standing
	□ Other:
Measurement details	The out-of-band rejection is measured as follows:
	a. Connect a signal generator to the input of the EUT.
	b. Configure a swept CW signal with the following parameters:
	 Frequency range = ± 250 % of the passband from the center of the passband, for each applicable operating frequency band.
	2) Level = a sufficient level to affirm that the out-of-band rejection is > 20 dB above the noise floor
	and will not engage the AGC during the entire sweep.
	3) Dwell time = approximately 10 ms.
	4) Number of points = SPAN/(RBW/2).
	c. Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
	d. Set the span of the spectrum analyzer to the same frequency range of the signal generator.
	e. Set the RBW of the spectrum analyzer to be 1% to 5% of the EUT passband and the VBW shall be set to
	≥ 3 x RBW.
	f. Set the detector to Peak Max-Hold and wait for the spectrum analyzer's display to fill.
	g. Capture the frequency response of the EUT.
	h. Please a marker to the peak of the frequency response and record this frequency as f ₀ .
	i. Place two markers, one at the lowest and the other at the highest frequency of the envelope of the
	spectral display such that each marker is at or slightly below the -20 dB down amplitude to determine
	the 20 dB bandwidth.
	j. Repeat for all frequency bands applicable for use by the EUT.

8.2.5 Test data

8.2.5.1 Operating frequency band: Band 25 and Band 70: 1930 – 2020 MHz

Note: Since Band 25 and Band 70 are adjacent to each other, a single measurement was performed across both bands.

Table 8.2-1: Out of band rejection results, Band 25_Band 70

Parameter	Value
f ₀	1937.880
fi	1925.310
f _h	2024.690
20 dB bandwidth	99.380

Spectrum					
Ref Level 20.00 dt Att 20 Count 200/200		-	Mode Sweep		
Controlled by Nemko					
10 dBm	1013		M3[1]		-13.58 dBr 2.024690 GH
			M1[1]		5.10 dBn 1.937880 GH
0 dBm				<u>\</u>	1.937880 GH
-10 dBm	M2			M3	
-20 dBm	Ť				
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 1.975 GHz		451 pt	s		Span 270.0 MHz
Marker					
Type Ref Trc	X-value	Y-value	Function	Fund	ction Result
M1 1	1.93788 GHz	5.10 dBm			
M2 1 M3 1	1.92531 GHz 2.02469 GHz	-16.54 dBm -13.58 dBm			
)[Mea	saring	1990 - C

Figure 8.2-1: Out of band rejection results, Band 25_Band 70

8.2.5.2 Operating frequency band: Band 66: 2110 – 2200 MHz

Table 8.2-2: Out of band rejection results, Band 66

Parameter	Value
f ₀	2102.902
fi	2157.048
fh	2211.193
20 dB bandwidth	108.291

Out-of-band rejection, 2110-2200 MHz

tt 37 dB F "TEST" requency Sweep	SWT 1 ms = VBW	5 MHz Mode Sweep		Count 100/10
				M1[1] 25.28 d
dBm				2.157.048 G M2[1] 6.49 di
Bm				2,102,902,0
iBm				
IBm			he	
ism-		71	1 Y	
m				
dBm				
dBm day and server	man			
(JDIII)	humanyou	moren	humanan	warmen man maker and a survey of the second se
dBm				
dBm				
dBm				
2.155 GHz		990 pts	45.0 MHz/	Span 450.0 M
arker Table				
ype Ref Trc M1 1	X-Value 2.157 048 GHz	Y-Value 25.28 dBm	Function	Function Result

Figure 8.2-2: Out of band rejection results, Band 66

8.3 Occupied bandwidth / Input Versus Output Comparison

8.3.1 References and limits

- FCC 47 CFR Part 2.1049

- ANSI C63.26 Clause 7.2.2.4
- KDB 935210 D05v01r04 Clause 3.4
- RSS-131 Clause 9.2

8.3.2 Test summary

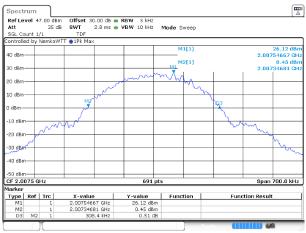
Verdict	Pass		
Test date	November 15, 2023	Temperature	21 °C
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1006 mbar
Test location	 10m semi anechoic chamber 3m semi anechoic chamber Wireless bench Other: 	Relative humidity	51 %

8.3.3 Notes

Per KDB 935210 D05 v01r04, Clause 3.3 and ANSI C63.26 Clause 7.2.2.3, testing was performed with a narrowband test signal (MSK modulated, gaussian filter of 0.3 and data rate 270 kbps) and a broadband signal (AWGN, 4.1 MHz 99% occupied bandwidth).

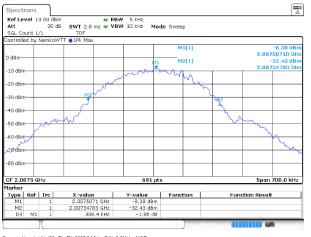
8.3.4 Setup details

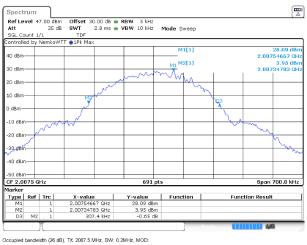
EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🖾 Table-top
	Floor standing
	□ Other:
Measurement details	A 26 dB bandwidth measurement shall be performed on the input and the output signal.
	a. Connect a signal generator to the EUT.
	b. Configure the signal generator to transmit the AWGN signal.
	c. Configure the signal level to be just below the AGC threshold, but not more than 015 dB below.
	d. Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
	e. Set the spectrum analyzer center frequency to the nominal EUT channel center frequency. The span
	range of the spectrum analyzer shall be between $2 \times OBW$ and $5 \times OBW$.
	f. The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW and the VBW shall be \ge 3 x
	RBW.
	g. Set the reference level of the instrument as required, to prevent the signal from exceeding the
	maximum spectrum analyzer input mixer level for linear operation. In general, the peak of the spectral
	envelope must be more than [10 log (OBW / RBW)] below the reference level. Step f) and step g) can
	require iteration to enable adjustments within the specified tolerances.
	h. The noise floor of the spectrum analyzer at the selected RBW shall be at least 36 dB below the reference
	level.
	i. Set spectrum analyzer detection mode to peak, and the trace mode to max hold.
	j. Determine the reference value: Set the EUT to transmit a modulated signal. Allow the trace to stabilize.
	Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference level).
	k. Determine the -26 dB down amplitude by placing two markers, one at the lowest and the other at the
	highest frequency of the envelope of the spectral display such that each marker is at or slightly below
	the-26 dB down amplitude. If a marker is below the -26 dB down value, it should be as close as possible
	to this value. The OBW is the positive frequency difference between the two markers.
	I. Repeat step 3) to step k) to measure the input signal to the EUT (i.e., signal generator output). Compare
	the 26 dB bandwidths to affirm they are similar.
	m. Repeat step e) to step I) with the input signal to the EUT set to 3 dB above the AGC threshold.
	n. Repeat step e) to step m) with the signal generator set to the narrowband signal.
	 Repeat step e) to step n) for all bands used by the EUT.


8.3.5 Test data

8.3.5.1 Operating frequency band: Band 70: 1995 – 2020 MHz

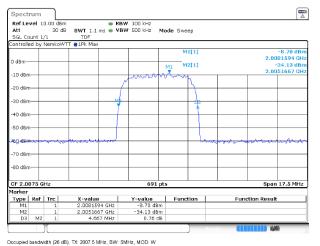
Table 8.3-1: Occupied bandwidth / Input Versus Output Comparison	results
--	---------


Condition	Test Frequency (MHz)	26 dB Bandwidth (Input Signal) (MHz)	26 dB Bandwidth (Output Signal) (MHz)
Input Level = AGC Threshold0.5 dB Input signal = narrowband	2007.5	0.3084	0.3084
Input Level = AGC Threshold + 3 dB Input signal = narrowband	2007.5	0.3084	0.3074
Input Level = AGC Threshold0.5 dB Input signal = broadband	2007.5	4.667	4.667
Input Level = AGC Threshold + 3 dB Input signal = broadband	2007.5	4.667	4.667



Occupied bandwidth (26 dB), TX 2007.5 MHz, BW: 0.2MHz, MOD:

Figure 8.3-1: Occupied bandwidth / Input Versus Output Comparison results, narrowband signal, 0.5 dB below AGC threshold, input and output signal respectively


Occupied bandwidth (26 dB), TX 2007.5 MHz, BW: 0.2MHz, MOD: GSM

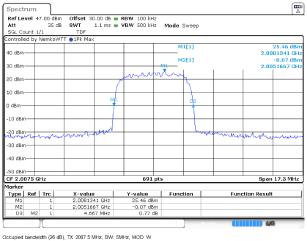
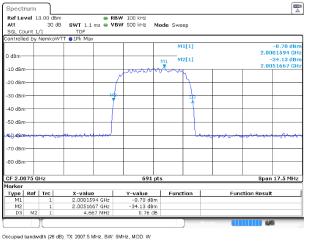
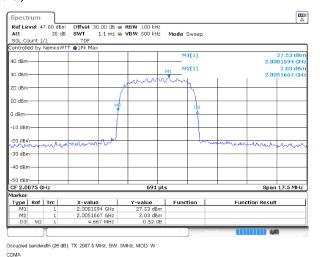

GSM

Figure 8.3-2: Occupied bandwidth / Input Versus Output Comparison results, narrowband signal, 3.0 dB above AGC threshold, input and output signal respectively

Section 8 Testing data Test name Occupied bandwidth / Input Versus Output Comparison





CDMA

Figure 8.3-3: Occupied bandwidth / Input Versus Output Comparison results, broadband signal, 0.5 dB below AGC threshold, input and output signal respectively

CDMA

CDMA

Figure 8.3-4: Occupied bandwidth / Input Versus Output Comparison results, broadband signal, 3.0 dB above AGC threshold, input and output signal respectively

8.3.5.2 Operating frequency band: Band 66: 2110 – 2200 MHz

Table 8.3-2: Occupied bandwidth / Input Versus Output Comparison results

Condition	Test Frequency (MHz)	26 dB Bandwidth (Input Signal) (MHz)	26 dB Bandwidth (Output Signal) (MHz)
Input Level = AGC Threshold0.5 dB Input signal = narrowband	2155	0.3087	0.3087
Input Level = AGC Threshold + 3 dB Input signal = narrowband	2155	0.3094	0.3087
Input Level = AGC Threshold0.5 dB Input signal = broadband	2155	4.6725	4.6375
Input Level = AGC Threshold + 3 dB Input signal = broadband	2155	4.6725	4.665

Figure 8.3-5: Occupied bandwidth / Input Versus Output Comparison results, narrowband signal, 0.5 dB below AGC threshold, input and output signal respectively

Figure 8.3-6: Occupied bandwidth / Input Versus Output Comparison results, narrowband signal, 3.0 dB above AGC threshold, input and output signal respectively

Figure 8.3-7: Occupied bandwidth / Input Versus Output Comparison results, broadband signal, 0.5 dB below AGC threshold, input and output signal respectively

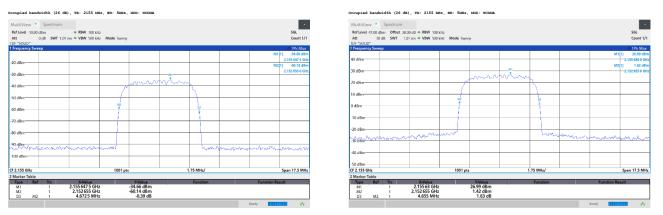


Figure 8.3-8: Occupied bandwidth / Input Versus Output Comparison results, broadband signal, 3.0 dB above AGC threshold, input and output signal respectively

8.4 Output power / Mean output power and amplifier gain

8.4.1 References and limits

- FCC Part 27.50(d) & RSS-139 (band 66 operation)
- FCC Part 27.50(d) (band 70 operation)
- ANSI C63.26 Clause 7.2.2.4
- KDB 935210 D05v01r05 Clause 3.5

8.4.2 Test summary

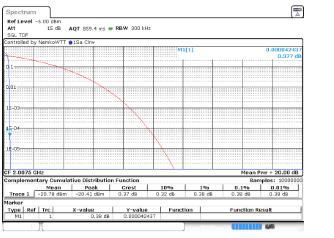
Verdict	Pass			
Test date	November 15, 2023	Temperature	21 °C	
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1006 mbar	
Test location	 10m semi anechoic chamber 3m semi anechoic chamber Wireless bench Other: 	Relative humidity	51 %	

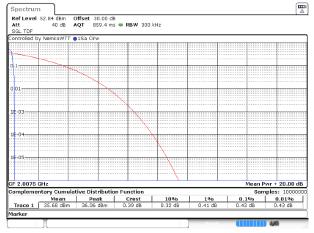
8.4.3 Notes

Per KDB 935210 D05 v01r04, Clause 3.4 and ANSI C63.26 Clause 7.2.2.4, testing was performed with a narrowband test signal (MSK modulated, gaussian filter of 0.3 and data rate 270 kbps) and a broadband signal (AWGN, 4.1 MHz 99% occupied bandwidth).

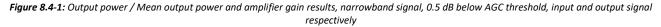
8.4.4 Setup details

EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🛛 Table-top
	Floor standing
	□ Other:
Measurement details	Adjust the internal gain control of the EUT to the maximum gain for which the equipment certification is sought.
	Any EUT attenuation settings shall be set to their minimum value.
	a. Connect a signal generator to the input of the EUT.
	b. The modulation shall be set to the AWGN signal.
	c. The frequency of the signal generator shall be set to the frequency f_0 as determined during the out-of-
	band rejection measurement.
	d. Connect a spectrum analyzer or power meter to the output of the EUT using appropriate attenuation,
	e. Set the level of the signal generator to a level that produces an output just below the AGC threshold,
	but not more than 015 dB below.
	f. Measure the output power of the EUT.
	g. Remove the EUT from the measurement set-up. Using the same signal generator settings, repeat the
	power measurement on the input signal to the EUT (i.e., the signal generator output). Calculate the
	amplifier gain as follows:
	Gain (dB) = output (dBm) – input (dBm).
	h. Repeat step f) and g) with the input level set to a level that is 3 dB above the AGC threshold.
	i. Repeat step e) to step h) with the input signal set to narrowband modulation.
	j. Repeat step e) to step i) for all bands used by the EUT.




8.4.5 Test data

8.4.5.1 Operating frequency band: Band 70: 1995 – 2020 MHz


Table 8.4-1: Output power / Mean output power and amplifier gain test data

Condition	Test frequency (MHz)	Input power (dBm / MHz)	Output power (dBm/MHz)	Amplifier gain (dB)	0.1 % PAPR (dB)
Input Level = AGC Threshold0.5 dB Input signal = narrowband	2007.5	-20.78	35.68	56.46	0.43
Input Level = AGC Threshold + 3 dB Input signal = narrowband	2007.5	-17.26	35.62	52.88	0.38
Input Level = AGC Threshold0.5 dB Input signal = broadband	2007.5	-20.61	35.88	56.49	4.64
Input Level = AGC Threshold + 3 dB Input signal = broadband	2007.5	-17.11	35.85	52.96	4.52

Peak power, TX: 2007.5 MHz, BW: 0.2MHz, MOD: GSM

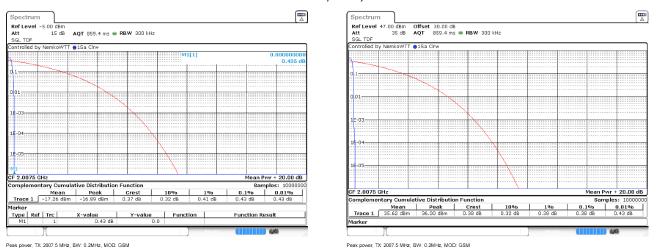
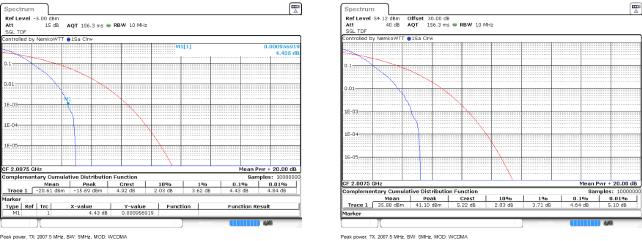
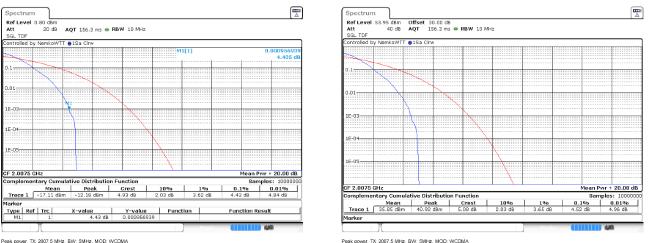
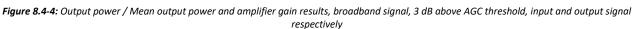



Figure 8.4-2: Output power / Mean output power and amplifier gain results, narrowband signal, 3 dB above AGC threshold, input and output signal respectively

Peak power, TX: 2007.5 MHz, BW: 0.2MHz, MOD: GSM

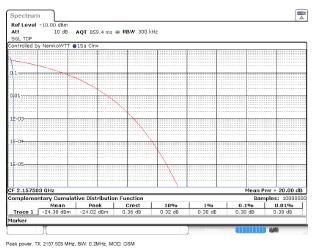




Peak power, TX: 2007.5 MHz, BW: 5MHz, MOD: WCDMA

Figure 8.4-3: Output power / Mean output power and amplifier gain results, broadband signal, 0.5 dB below AGC threshold, input and output signal respectively

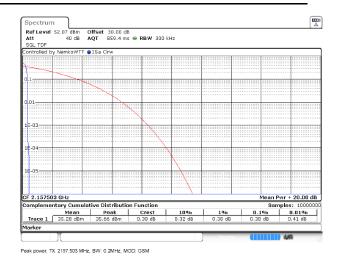
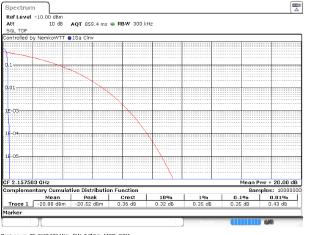
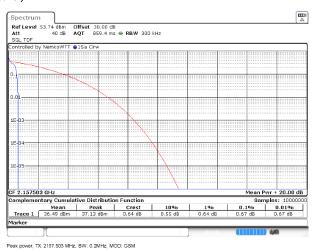
Peak power, TX: 2007.5 MHz, BW: 5MHz, MOD: WCDMA



8.4.5.2 Operating frequency band: Band 66: 2110 - 2200 MHz

Table 8.4-2: Output power / Mean output power and amplifier gain test data

Condition	Test frequency (MHz)	Input power (dBm / MHz)	Output power (dBm/MHz)	Amplifier gain (dB)	0.1 % PAPR (dB)
Input Level = AGC Threshold0.5 dB Input signal = narrowband	2157.503	-24.38	35.28	59.66	0.38
Input Level = AGC Threshold + 3 dB Input signal = narrowband	2157.503	-20.88	36.49	57.37	0.67
Input Level = AGC Threshold0.5 dB Input signal = broadband	2157.503	-24.23	37.15	61.38	4.46
Input Level = AGC Threshold + 3 dB Input signal = broadband	2157.503	-20.62	36.97	57.59	4.55

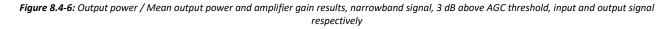


Figure 8.4-5: Output power / Mean output power and amplifier gain results, narrowband signal, 0.5 dB below AGC threshold, input and output signal respectively

Peak power, TX: 2157.503 MHz, BW: 0.2MHz, MOD: GSM

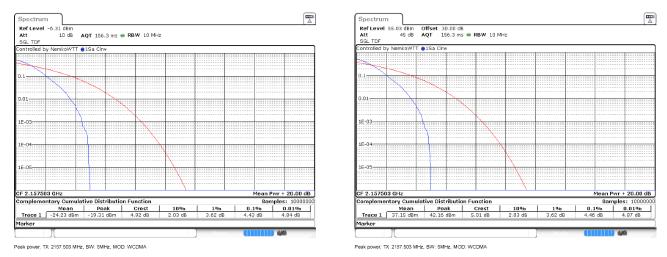



Figure 8.4-7: Output power / Mean output power and amplifier gain results, broadband signal, 0.5 dB below AGC threshold, input and output signal respectively

reak power, 1X 2137.303 WHz, BVV. 3WHz, WOD. WODWA

Figure 8.4-8: Output power / Mean output power and amplifier gain results, broadband signal, 3 dB above AGC threshold, input and output signal respectively

8.5 Spurious emissions at RF connector

8.5.1 References and limits

- FCC Part 27.53(h) & RSS-139 (band 66 operation)
- FCC Part 27.53(h) (band 70 operation)
- ANSI C63.26 Clause 7.2.2.5
- KDB 935210 D05v01r05 Clause 3.6

8.5.2 Test summary

Verdict	Pass			
Test date	November 15, 2023	Temperature	21 °C	
Test engineer	Lan Sayasane, EMC Test Engineer	Air pressure	1006 mbar	
Test location	 □ 10m semi anechoic chamber □ 3m semi anechoic chamber ⊠ Wireless bench □ Other: 	Relative humidity	51 %	

8.5.3 Notes

Per KDB 935210 D05 v01r04, Clause 3.4 and ANSI C63.26 Clause 7.2.2.4, testing was performed with a narrowband test signal (MSK modulated, gaussian filter of 0.3 and data rate 270 kbps) and a broadband signal (AWGN, 4.1 MHz 99% occupied bandwidth).

For intermodulation products and out-of-channel block tests, testing is performed under the following two conditions (per ANSI C63.26 7.2.2.5.1 and KDB 935210 D05v01r04 Section 3.6):

- a) Two modulated signals set to the lower or upper block edge.
- b) A single modulated signal set to the low or high channel

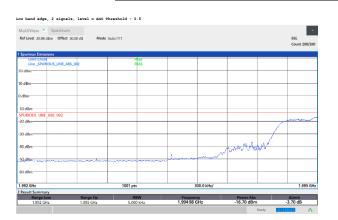
8.5.4 Setup details

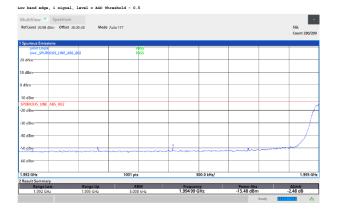
EUT power input during test	120 VAC / 60 Hz
EUT setup configuration	🖂 Table-top
	Floor standing
	□ Other:
Measurement details	Out-of-channel-block and out-of-band emissions:
	a. Connect a signal generator to the input of the EUT. If the signal generator is not capable of generating
	two modulated carriers at one time, then it may be replaced by two signal generators connected with
	an appropriate combining network
	b. Set the signal generator to produce 2 AWGN signals.
	c. The frequencies shall be set so that the AWGN signals occupy adjacent channels, as defined by industry
	standards such as 3GPP or3GPP2, at the upper block edge of the frequency band under test.
	d. The composite power levels shall be set so that the signal is just below the AGC threshold, but not more
	than 0.5 dB below. The composite power can be measured using the methods described in the output
	power methods, however, it will be necessary to measure the composite power by increasing the band
	power integration bandwidth to include both transmit channels, or alternatively, this measurement can
	be performed using an average power meter.
	e. Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
	f. Set the RBW= reference bandwidth in the applicable rule section for the supported frequency band
	(typically 1% of the EBW or 100 kHz or 1 MHz).
	g. Set the VBW = 3 x RBW.
	h. Set the detector to power averaging (rms) detector.
	i. Set the sweep time = auto couple.
	j. Set the spectrum analyzer start frequency to the upper block edge frequency and the stop frequency to
	the upper block edge frequency plus 300 kHz or 3 MHz for frequencies below and above 1 GHz,
	respectively.
	k. Trace average at least one hundred traces in power averaging (i.e., rms) mode.
	I. Use the marker function to find the maximum power level.
	m. Capture the spectrum analyzer trace of the power level for inclusion in the test report.
	n. Repeat step k) and step m) with the input level set to 3 dB above the AGC threshold.

- o. Set the frequencies of the input signals to the lower block edge of the frequency band under test.
- p. Reset the analyzer start frequency to the lower block edge frequency minus 300 kHz or 3 MHz for frequencies below and above 1 GHZ, respectively, and the stop frequency to the lower block edge frequency.
- q. Repeat step k) to step n).
- r. Repeat step a) to step q) with the signal generator set to only a single signal closest to the block edges.
- s. Repeat step a) to step r) with the narrowband signal.
- t. Repeat step a) to step s) for all bands used by the EUT.

Conducted spurious:

- a. Connect a signal generator to the input of the EUT.
- b. Set the signal generator to produce the AWGN signal.
- c. Set the frequency of the signal to the lowest channel within the frequency block.
- d. The power levels shall be set so that the signal is just below the AGC threshold, but not more than 0.5 dB below.
- e. Connect a spectrum analyzer to the output of the EUT using appropriate attenuation.
- f. Set the RBW = reference bandwidth in the applicable rule section for the supported frequency band (typically 100 kHz or 1 MHz).
- g. Set the VBW = 3 x RBW.
- h. Set the sweep time = auto-couple.
- i. Set the spectrum analyzer start frequency to the lowest RF signal generated in the equipment, without going below 9 kHz, and the stop frequency to the lower band/block edge frequency minus 100 kHz to 1 MHz, as specified in the applicable rule part. The number of measurement points in each sweep must be ≥ (2 x span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided depending on the available number of measurement points provided by the spectrum analyzer.
- j. Trace average at least ten traces in power averaging (i.e., rms) mode.
- k. Use the peak marker function to identify the highest amplitude level over each of measured frequency range. Record the frequency and amplitude and capture a plot for inclusion in the test report.
- I. Reset the spectrum analyzer start frequency to the upper band/block edge frequency plus 100 kHz or 1 MHz, as specified in the applicable rule part, and the spectrum analyzer stop frequency to ten times the highest frequency of the fundamental emission. The number of measurement points in each sweep must be ≥ (2 x span/RBW), which may require that the measurement range defined by the start and stop frequencies be subdivided, depending on the available number of measurement points provided by the spectrum analyzer.
- m. Trace average at least ten traces in power averaging (i.e., rms) mode.
- n. Use the peak marker function to identify the highest amplitude level over each of the measured frequency ranges. Record the frequency and amplitude and capture a plot for inclusion in the test report; also provide tabular data, if required.
- o. Repeat step i) to step n) with the input signal firstly set to a middle channel frequency and then tuned to a high channel frequency.
- p. Repeat step c) to step o) with the narrowband signal.
- q. Repeat step b) to step p) for all bands used by the EUT




8.5.5 Test data – out-of-channel block and out-of-band emissions

8.5.5.1 Operating frequency band: Band 70: 1995-2020 MHz

Table 8.5-1: Spurious emissions at RF connector test data, narrowband

Condition	Frequency of highest emission (MHz)	Level (dBm)	Limit (dBm)
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 2 Low band edge	1994.984	-16.70	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 1 Low band edge	1994.989	-15.48	-13.00
Input Level = AGC Threshold +3 dB Input signal = narrowband Number of signals: 2 Low band edge	1994.987	-16.13	-13.00
Input Level = AGC Threshold + 3 dB Input signal = narrowband Number of signals: 1 Low band edge	1994.983	-15.58	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 2 High band edge	2020.013	-16.89	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 1 High band edge	2020.010	-15.45	-13.00
Input Level = AGC Threshold +3 dB Input signal = narrowband Number of signals: 2 High band edge	2020.013	-17.00	-13.00
Input Level = AGC Threshold + 3 dB Input signal = narrowband Number of signals: 1 High band edge	2020.019	-14.89	-13.00

Section 8 Test name

Testing data Spurious emissions at RF connector

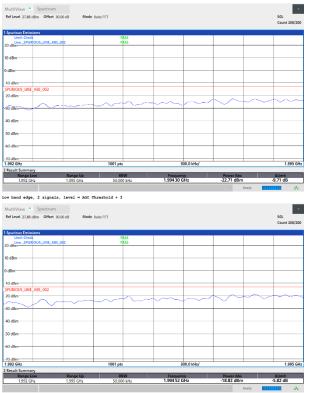


Table 8.5-2: Spurious emissions at RF connector test data, broadband

Condition	Frequency of highest emission (MHz)	Level (dBm)	Limit (dBm)
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 2 Low band edge	1994.297	-22.71	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 1 Low band edge	1994.804	-22.25	-13.00
Input Level = AGC Threshold +3 dB Input signal = broadband Number of signals: 2 Low band edge	1994.516	-18.82	-13.00
Input Level = AGC Threshold + 3 dB Input signal = broadband Number of signals: 1 Low band edge	1994.998	-25.75	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 2 High band edge	2020.001	-28.29	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 1 High band edge	2020.235	-21.01	-13.00
Input Level = AGC Threshold +3 dB Input signal = broadband Number of signals: 2 High band edge	2020.001	-28.64	-13.00
Input Level = AGC Threshold + 3 dB Input signal = broadband Number of signals: 1 High band edge	2020.001	-26.95	-13.00

Low band edge, 2 signals, level = AGC Threshold - 0.5

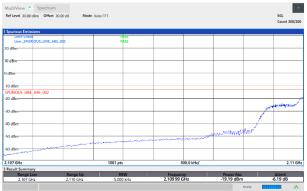
Report reference ID: REP018182-2R1TRFEMC

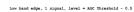
Section 8 Test name

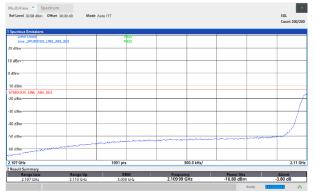
Testing data Spurious emissions at RF connector

utilitiker * Spectrum et Level 27.66 den Offet 1 Spectrum gesteur Extens Level 20.66 den Spectrum Jahr den Jahr Jahr Jahr Deller Spectrum Jahr Jahr Jahr Jahr Jahr Jahr Deller Spectrum Jahr Jahr Deller Spectrum Jahr Jahr Deller Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr Jahr	10.00 dB Mode Au	PASS PASS 001 ps	300.0 UKg		50. Count 200/20
et Level 27.65 den Offen 1 purfores Entistent Level 1990 (1997 - 1997	10.00 dB Mode Au	Pàss			
et Level 27.65 den Offen 1 purdozi Entesten den Servin Ocs Link Ado den Servin Ocs Link Ado den Ado den Ado den Ado den Ado den Ado den Ado	10.00 dB Mode Au	Pàss			
d Lovi 27.65 dbm Offet 1 purous Emission During State (State 1) During State (State 2) During State (State 2) During State (State 2) dbm Differ Diffe	10.00 dB Mode Au	Pàss			
d Level 27.66 dbm Offeet 1 Jana Cook Jana Cook Jana Cook Jana Cook Jana Cook Jana	10.00 dB Mode Au	Pàss			
et Level 27.86 dBm Office 13 putitious Emissions Umit Check UBM Ch	10.00 dB Mode Au	Pàss			
er Level 27.86 dBm Offeet 3 purfeus Emissions Umit Checki UBM Leve_SPURIOUS_LINE_ABS dBm D	10.00 dB Mode Au	Pàss			
ef Level 27,66 dBm Offset 3 purious Emissions Umit Check dBm JPURIOUS_INFE_ABS dBm JPURIOUS_UNE_ABS 00 dBm URBOUS_UNE_ABS_002 0 dBm	10.00 dB Mode Au	Pàss			
ef Level 27,66 dBm Offset 3 purious Emissions Umit Check dBm dBm dBm dBm dBm dBm dBm dBm	10.00 dB Mode Au	Pàss			
ef Level 27,66 dBm Offset 3 purious Emissions Umit Check dBm dBm dBm dBm dBm dBm dBm dBm	10.00 dB Mode Au	Pàss			
ef Level 27.85 dBm Offset 3 purious Emissions Umit Check Umit Check dBm	10.00 dB Mode Au	Pàss			
ef Level 27,85 dBm Offset 3 purious Emissions Umit Check dBm dBm	10.00 dB Mode Au	Pàss			
ef Level 27.86 dBm Offset 3 purious Emissions Unit Check Unit Check dBm dBm	10.00 dB Mode Au	Pàss			
ef Level 27,86 dBm Offset 3 ourlous Emissions Limit Check Line_SPUR OUS_LINE_ABI	10.00 dB Mode Au	Pàss			
ef Level 27,86 dBm Offset 3 ourlous Emissions Limit Check Line_SPUR OUS_LINE_ABI	10.00 dB Mode Au	Pàss			
ef Level 27,86 dBm Offset 3	10.00 dB Mode Au	Pàss			
f Level 27.86 dBm Offset 3	10.00 dB Mode Au	Pàss			
f Level 27.86 dBm Offset 3		to FFT			
		to FFT			
h band edge, 2 signal	ls, level = AGC Th	reshold + 3			
				- Ready	÷
2.020 GHz	2.023 GHz	50.000 kHz	Erequency 2.020 00 GHz	Power Abs -28.29 dBm	ΔUmit -15.29 dB
esult Summary Range Low	Range Up	RBW	Fragueory	Power At-	Allerit
2 GHz		1001 pts	300.0 kHz,	/	2.023 G
dBm					
) dBm					
dBm					
dBm					
		$\sim -$	$\gamma \sim \uparrow \sim$		\sim
) dBm					
) d8m					
URIOUS_LINE_ABS_002					
) dBm					
Bm	-				
dBm					
dBm					
Line_SPUR OUS_LINE_AB	5_002	PASS PASS			
purious Emissions					
					Count 200/20
	10.00 dB Mode Au	to FFT			SGL
f Level 27.86 dBm Offset 3					
sltiView Spectrum					

	1001 pts	300.0 kHz/		2.023 G
				^
				^
				^
	\rightarrow			~~~~
\sim	\sim			~~~~
$\sim \sim$	$\sim \sim \sim$			~~~~
T				
2	PASS			
	Dire.			
dB Mode Auto	FFT			SGL Count 200/20
evel = AGC Three	hold + 3		. mary	
2.023 GHZ	50.000 kHz	2.020 24 GHZ		-8.01 db
Range Up	RBW	Frequency	Power Abs	Alimit -8.01 dB
	1001 pts	300.0 kHz/		2.023 G
		$+ \sim \vee$		\sim
\sim	~~~~			
2	cing a			
	PASS			
				Count 200/20
dB Mode Auto	FFT			SGL
	(1) Mete Aux	2 PAS PAS PAS PAS PAS PAS PAS PAS PAS PAS	40 Mode AUGUTT 2 PAS PAS 1 PAS 2 PAS 2 PAS 3 PAS 4 PAS 2 PAS 4 PAS	a PAS pAS pas




8.5.5.2 Operating frequency band: Band 66: 2110-2200 MHz


Table 8.5-3: Spurious emissions at RF connector test data, narrowband

Condition	Frequency of highest emission (MHz)	Level (dBm)	Limit (dBm)
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 2 Low band edge	2109.989	-19.19	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 1 Low band edge	2109.993	-16.80	-13.00
Input Level = AGC Threshold +3 dB Input signal = narrowband Number of signals: 2 Low band edge	2109.984	-16.61	-13.00
Input Level = AGC Threshold + 3 dB Input signal = narrowband Number of signals: 1 Low band edge	2109.996	-15.23	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 2 High band edge	2200.019	-17.25	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = narrowband Number of signals: 1 High band edge	2200.025	-15.89	-13.00
Input Level = AGC Threshold +3 dB Input signal = narrowband Number of signals: 2 High band edge	2200.013	-16.84	-13.00
Input Level = AGC Threshold + 3 dB Input signal = narrowband Number of signals: 1 High band edge	2200.025	-14.74	-13.00

Section 8 Test name

Testing data Spurious emissions at RF connector

•

SGL Count 200

2.11 GHz 1001 pts 300.0 kHz/ Erequency 2.11000 GHz Power Al -15.23 dB High band edge, 1 signal, level = AGC Threshold - 0.5 -SGL Count 200/200 Mode Auto FFT 1001 pts 300.0 kHz/ 2.203 GHz RE Frequency 2.20003 GHz AUmit -2.89 dB Power Ab -15.89 dB Low hand edge, 1 signal, level = AGC Threshold + 3 • Mode Auto FFT 1001 pts 800.0 kHz/ 2.203 GHz Power Abs -14.74 dBm Frequency 2.200 03 GHz .74 dB



Table 8.5-4: Spurious emissions at RF connector test data, broadband

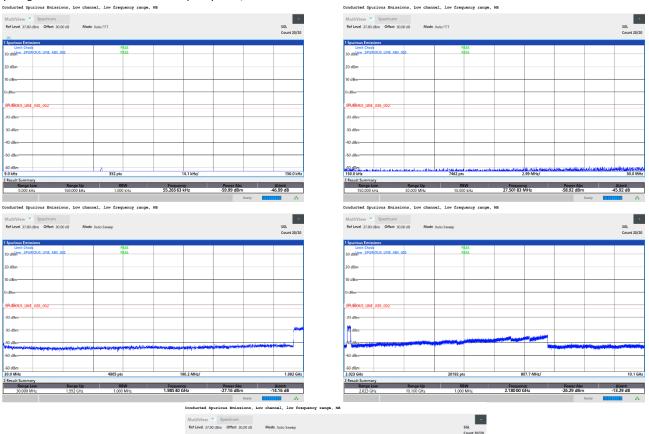
Condition	Frequency of highest emission (MHz)	Level (dBm)	Limit (dBm)
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 2 Low band edge	2109.998	-29.79	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 1 Low band edge	2109.912	-23.49	-13.00
Input Level = AGC Threshold +3 dB Input signal = broadband Number of signals: 2 Low band edge	2109.858	-27.02	-13.00
Input Level = AGC Threshold + 3 dB Input signal = broadband Number of signals: 1 Low band edge	2109.998	-27.44	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 2 High band edge	2200.001	-28.68	-13.00
Input Level = AGC Threshold - 0.5 dB Input signal = broadband Number of signals: 1 High band edge	2200.001	-26.58	-13.00
Input Level = AGC Threshold +3 dB Input signal = broadband Number of signals: 2 High band edge	2200.001	-26.41	-13.00
Input Level = AGC Threshold + 3 dB Input signal = broadband Number of signals: 1 High band edge	2200.001	-25.72	-13.00

Report reference ID: REP018182-2R1TRFEMC

Section 8 Test name

Testing data Spurious emissions at RF connector

1ultiView 🝨 Spectrui	n				
ef Level 27.86 dBm Offset	30.00 dB Mode Aut	IN FFT			SGL
					Count 200/20
Spurious Emissions					
Umit Check Line_SPURIOUS_LINE_/ 0 dBm	85.002	PASS PASS			
0 dBm					
0 dBm					
u dBm					
dBm					
dam					
0 dBm					
PURIOUS_LINE_ABS_002					
0 dBm				-	
0 dBm					
40 dBm				T	
i0 dBm					
o0 d8m					
/0 dBm					
2 GHz		1001 pts	300.0 kHz/		2.203 GH
Result Summary Range Low	Range Up	RBW	Frequency	Power Abs	ΔUmit
2.200 GHz	2.203 GHz	50.000 kHz	2,200 00 GHz	-28.68 dBm	-15.68 dB
gh band edge, 2 sign	als, level = AGC Th			-28,06 dBm	
gh band edge, 2 sign AultiView - Spectrum	als, level = AGC Th	reshold + 3			sgl
	als, level = AGC Th	reshold + 3			••••••
gh band edge, 2 sigr AultiView = Spectrur Ref Level 27.86 dBm Offset Spurious Emissions	als, level = AGC Th	reshold + 3 w FFT			sgl
gh band edge, 2 sign AutiView = Spectrum Ref Level 27.86 dBm Offset Spurious Emissions Unit Check	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3			sgl
gh band edge, 2 sign AutiView = Spectrum Ref Level 27.86 dBm Offset Spurious Emissions Unit Check	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr AultiView = Spectrun Ref Level 27.86 dBm Office Spurtous Emissions Limit Check Unite SPURIOUS LINE # O dBm	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr AultiView Spectrun Ref Level 27,86 dBm Offset Spurious Emissions	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr AultiView = Spectru Ref Level 27.86 dBm Office Spurious Emissions Umit Check Line_SPUR OUS_LINE_/ 0 dBm	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sign AultiView = Spectrun Ref Level 27,86 dBm Offset Spurious Emissions Limit Check Unit Check Uni Check	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr hultiView = Spectru Kel Level 27.86 dBm. Offset Spurfous Emissions Umit Check Umit Check dBm. 0 dBm. dBm. 10 dBm.	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sign hultiView * Spectrarium Spectrarium Office Spectrarium Spectrarium Une SPUTOUS_INIT_A dBm dBm dBm dBm dBm dBm dBm	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sign hultiView * Spectrarium Spectrarium Office Spectrarium Spectrarium Une SPUTOUS_INIT_A dBm dBm dBm dBm dBm dBm dBm	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr hult/Wiew * Spectrum Fel (vel 2, 268 dim Offer Spectrum Constraints Constraint Constraints Constraint Constraints Constraint Constraints Constraints Constraints Constraints Cons	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr AultiView = Spectrun Ref Level 27.86 dBm Office Spurtous Emissions Limit Check Unite SPURIOUS LINE # O dBm	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr tutit/iew Spectrum felt keel 27.80 dim Offer Sectors and the sectors Sectors and the sectors and the sectors and the sectors Sectors and the sectors and the sectors and the sectors Sectors and the sectors and the sectors and the sectors and the sectors Sectors and the sectors	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr tutit/iew Spectrum felt keel 27.80 dim Offer Sectors and the sectors Sectors and the sectors and the sectors and the sectors Sectors and the sectors and the sectors and the sectors Sectors and the sectors and the sectors and the sectors and the sectors Sectors and the sectors	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 alig gh band edge, 2 alig Spectrum Loss Const Loss Const	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 alig gh band edge, 2 alig Spectrum Loss Const Loss Const	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sigr hult/Wiew * Spectrum Fel (vel 2, 268 dim Offer Spectrum Constraints Constraint Constraints Constraint Constraints Constraint Constraints Constraints Constraints Constraints Cons	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
gh band edge, 2 sign gh band edge, 2 sign Spectrour Link Conce Link Conce	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
ph band edge, 2 sign ph band edge, 2 sign Spectrum et level 27.66 dbm Other Spectrum Spectr	als, level = AGC Th n : 30.00 dB Mode Aut	PR45 PR45 PR45 PR45 PR45 PR45 PR45 PR45			Sil Count 200/20
ph band edge, 2 sign ph band edge, 2 sign portout for the second	als, level = AGC Th n : 30.00 dB Mode Aut	reshold + 3 w FFT			sgl
ph band edge, 2 sign ph band edge, 2 sign Spectrum et level 27.66 dbm Other Spectrum Spectr	als, level = AGC Th n : 30.00 dB Mode Aut	PR45 PR5 PR5			Sil Count 200/20


f Level 27.86 dBm Offset 3	0.00 dB Mode Au	to FFT			SGL Count 200/20
ourious Emissions					Count 200/20
Limit Charle		PASS PASS			
Line_SPUR OUS_LINE_AB	_002	PASS			
dBm					
IBm					
d8m					
URIOUS_LINE_ABS_002					
dBm					
) dBm					
) dBm					
					~
) dBm					
) dBm					
d8m					
GHz		1001 pts	300.0 kHz/		2.203 G
esult Summary					
Range Low	Range Up	RBW	Frequency	Power Abs	ΔUmit
ultiView Spectrum			2.200 00 GHz	-26.58 dBm - Ready	-13.58 dB
v band edge, 1 signal ultiView Spectrum of Level 27.86 dBm Offset 3	, level = AGC Thre	shold + 3	2.200 00 GHz		SGL
 band edge, 1 signal, ultiView = Spectrum of Level 27.86 dBm Offset 3 purfous Emissions Umit Check 	, level = AGC Thre	shold + 3 to FFT	2.200.00 GHz		SGL
 band edge, 1 signal, ultiView = Spectrum of Level 27.86 dBm Offset 3 purfous Emissions Umit Check 	, level = AGC Thre	shold + 3	2.200.00 GHz		SGL
band edge, 1 signal uttiView = Spectrum f Level 27.86 dBm Offset 3 unit Check	, level = AGC Thre	shold + 3 to FFT	2.200.00 GHz		SGL
band edge, 1 signal ultiView = Spectrum ef Level 27.66 dBm Offret 3 Unit Check Unit Check Unit Check UBer SPURIOUS_LINE_ABS	, level = AGC Thre	shold + 3 to FFT	2.200.00 GHz		SGL
band edge, 1 signal ultiView = Spectrum ef Level 27.86 dBm Offset 3 Unit Ched Unit Ched ultime_SPUTOUS_LINE_ABS	, level = AGC Thre	shold + 3 to FFT	2.20000 GHz		SGL
band edge, 1 signal ultiView Spectrum flevel 27.86 dBm Genetation Genetation Genetation Genetation Genetation	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge, 1 signal ultiView Spectrum flevel 27.86 dBm Genetation Genetation Genetation Genetation Genetation	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		*
band edge, 1 signal uttiView = Spectrum uttiView = Spectrum uttiView = Spectrum uttiView = Unit Check Unit Ch	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge, 1 signal uttiView = Spectrum uttiView = Spectrum uttiview = Spectrum Den Contect Den Spectrum Den Spectrum den den den den den den den den	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge, 1 signal uttiView = Spectrum uttiView = Spectrum uttiview = Spectrum Den Contect Den Spectrum Den Spectrum den den den den den den den den	, level = AGC Thre	shold + 3 to FFT	2.20000 GHz		SGL
band edge, 1 signal uttiview * Spectrum ef keet 22.68 den Offer 1 uttiview * Spectrum uttiview * Spectrum	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge, 1 signal uttView * Spectrum flevel 22.63 dm Offer 1 uttra flevel 22.63 dm Offer 1 uttra flevel 22.63 dm Offer 1 uttra flevel 22.63 dm Offer 1 dbm Offer	, level = AGC Thre	shold + 3 to FFT	2.20000 GHz		SGL
band edge, 1 signal uttiview * Spectrum eff keet 22.68 dim Offer 2 uttiview * Spectrum uttiview * Spectrum ut	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge, 1 signal uttiview * Spectrum eff keet 22.68 dim Offer 2 uttiview * Spectrum uttiview * Spectrum ut	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge 1 signal band edge 1 signal spectrum flored 27.66 dim Offer 1 brit Occi dim Offer 1 dim Offe	, level = AGC Thre	shold + 3 to FFT			SGL
band edge, 1 signal ultiView Spectrum of Level 27,86 dBm Offset 3 purious Emissions	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		SGL
band edge , 1 signal uttiView Spectrum terki 2756 dim. Offer J unit Occi dim. Spectrum dim.	, level = AGC Thre	shold + 3 to FFT			SGL
band edge ; 1 signal band edge ; 1 signal utilView Spectrum Ilview 2756 dim offer J Dmit Deal Band Band Spectrum Illian dim dim dim dim dim dim	, level = AGC Thre	shold + 3 to FFT			SGL
band edge ; 1 signal utilView Spectrum Linit Ceel 2756 dim. Offer J unit Ceel 2756 dim. Offer J unit Ceel 2756 dim. Offer J unit Ceel 2756 dim. Offer J dim. dim. dim. dim. dim. dim. dim. dim.	, level = AGC Thre	shold + 3 to FFT			SGL
Aband edge, 1 signal AttView - Spectrum Umit Cetes 2736 dim. Offer J Umit Cetes 2736 dim. Offer J Umit Cetes 2736 dim. Offer Umit Cetes 2746 dim. Umit Cetes 2746 dim. Bin dim. dim. dim. dim. dim. dim. dim. dim.	, level = AGC Thre	shold + 3 to FFT	2.2000 GHz		
band edge 1 signal band edge 1 signal spectrum flored 27.66 dim Offer 1 brit Occi dim Offer 1 dim Offe	, level = AGC Thre	ahold + 3			SGL

8.5.6 Test data - conducted spurious emissions:

8.5.6.1 Operating frequency band: Band 70: 1995 – 2020 MHz

Input signal = **lowest channel** within the frequency block; **narrowband**:

Ref Level 37.00 dBm Offset 30.0	10 dB Mode Auto S	weep			SGL Count 2
Spurious Emissions					
Limit Check		PASS			
30 dBM SPURIOUS LINE ABS 0	°	PASS			
20 dBm					
10 dBerr					
) dBm					
SPURIOUS_LINE_ABS_002					
20 d8m					
30 dBm					
40.dBm					
50 dBm					
60 dBm					
0.1 GHz		25250 pts	1.01	GHz/	20.2
Result Summary					
Range Low 10,100 GHz	Range Up 20.200 GHz	RBW 1.000 MHz	Frequency 17,209 40 GH	Power A -34,66 d	lbs ΔUmit Bm -21.66 dB
10.100 GHz	20.200 GHz	1,000 Minz	17.203 40 GH		Ready

SGL Count 20/20

5.63 dB

SGL Count 20/20

10.1 GHz

40mit 13.25 dB

Input signal = middle channel within the frequency block; narrowband:

25250 pts

RBW 1.000 MHz

10.1 GH

1.01 GHz/

Power Al 34.64 dB

Frequency 17.126 20 GHz 20.2 GHz

21.64 dB

SGL Count 20/20

ällmit 5.06 dB

> SGL Count 20/20

> > 10.1 GHz

-13.33 dB

Input signal = highest channel within the frequency block; narrowband:

25250 pts

RBW 1.000 MHz

10.1 GH

1.01 GHz/

Power Al 34.76 dB

Frequency 17.176 60 GHz 20.2 GHz

-21.76 dB

Input signal = lowest channel within the frequency block; broadband:

25250 pts

RBW 1.000 MHz

10.1 GH

1.01 GHz/

Power Al 34.92 dB

21.92 dB

Frequency 17.217 40 GHz

Input signal = middle channel within the frequency block; broadband:

1.01 GHz/

Power Al 34.82 dB

Frequency 17.128 20 GHz

25250 pts

RBW 1.000 MHz

10.1 GH

20.2 GHz

-21.82 dB

SGL Count 20/20

AUmit 5.41 dB

> SGL Count 20/20

> > 10.1 GHz

40mit 13.26 dB

Input signal = highest channel within the frequency block; broadband:

25250 pts

RBW 1.000 MHz

10.1 GH

1.01 GHz/

Power / 34.77 d


Frequency 17.183 80 GHz 20.2 GHz

21.77 dB

8.5.6.2 Operating frequency band: Band 66: 2110 – 2200 MHz

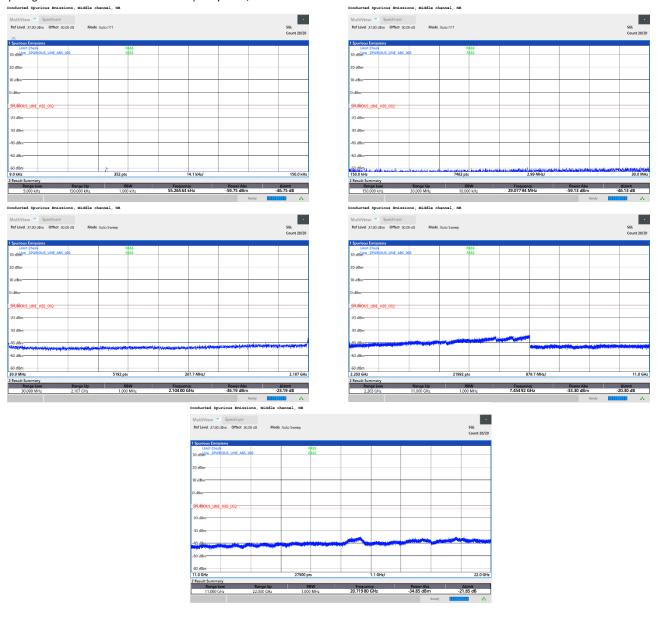
Input signal = lowest channel within the frequency block; narrowband:

27500 pts

RBW 1.000 MHz

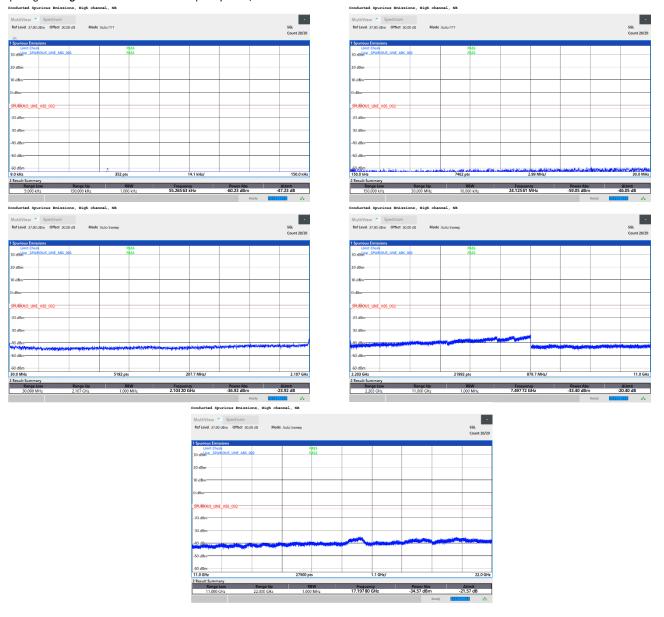
1.0 GH

1.1 GHz/


Power / 34.43 d

Frequency 17.083 40 GHz 22.0 GHz

21.43 dB



Input signal = middle channel within the frequency block; narrowband:

Input signal = highest channel within the frequency block; narrowband:

SGL Count 20/20

30.0 MH

SGL Count 20/20

11.0 GHz

-20.42 dB

45.87 dB

2.99 MHz

879.7 MHz/

22.0 GHz

Power Ab 58.87 dBi

Power Abs -33.42 dBm

Input signal = **lowest channel** within the frequency block; **broadband**:

20 dBn

11.0 GHa

27500 pts

1.1 GHz/

Frequency 17.187 80 GHz