Shenzhen Global Test Service Co.,Ltd. No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

FCC PART 15 SUBPART C TEST REPORT

Report Reference No...... GTS20210605013-1-1 FCC ID....... 2AONA-WX06610-A

Compiled by

(position+printed name+signature)..: File administrators Jimmy Wang

Supervised by

(position+printed name+signature)..: Test Engineer Aaron Tan

Approved by

(position+printed name+signature)..: Manager Jason Hu

Date of issue...... June 17, 2021

Representative Laboratory Name .: Shenzhen Global Test Service Co., Ltd.

Pinghu Street, Longgang District, Shenzhen, Guangdong

Applicant's name...... Shenzhen Pilot Technology Co., Ltd

Test specification:

Standard FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2013

TRF Originator...... Shenzhen Global Test Service Co.,Ltd.

Master TRF...... Dated 2014-12

Shenzhen Global Test Service Co.,Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purpses as long as the Shenzhen Global Test Service Co.,Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Global Test Service Co.,Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Input: DC 5V 2A, 9V 2A

Test item description Magnetic wireless charger

Trade Mark: N/A

Manufacturer Shenzhen Pilot Technology Co., Ltd

Model/Type reference.....: WX06610-A

Listed Models WX06610-C,WX08610-A,WX08610-C

Modulation Type: ASK

Operation Frequency...... From 110KHz~205KHz

Result..... PASS

Report No.: GTS20210605013-1-1 Page 2 of 23

TEST REPORT

Test Report No. :	GTS20210605013-1-1	June 17, 2021
rest Report No. :	G1320210003013-1-1	Date of issue

Equipment under Test : Magnetic wireless charger

Model /Type : WX06610-A

Listed Models : WX06610-C,WX08610-A,WX08610-C

Applicant : Shenzhen Pilot Technology Co., Ltd

Address : 101 A1 Industrial Park, building a1, No.7, Shankeng Road, Shanxia

Community, Pinghu Street, Longgang District, Shenzhen City China

Manufacturer : Shenzhen Pilot Technology Co., Ltd

Address : 101 A1 Industrial Park, building a1, No.7, Shankeng Road, Shanxia

Community, Pinghu Street, Longgang District, Shenzhen City China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

	TEST STANDARDS	<u> 4</u>
	SUMMARY	5
1	General Remarks	5
2	Product Description	5
}	Description of the test mode	5
	Special Accessories	6
,	Modifications	6
	TEST ENVIRONMENT	7
	Address of the test laboratory	7
	Test Facility	7
	Environmental conditions	7
	Summary of measurement results	8
	Statement of the measurement uncertainty	8
	Equipments Used during the Test	8
	TEST CONDITIONS AND RESULTS	10
	AC Power Conducted Emission	10
	Radiated Emission	13
	Occupied Bandwidth	17
	Antenna Requirement	18
	TEST SETUP PHOTOS OF THE EUT	19
	PHOTOS OF THE EUT	20

Report No.: GTS20210605013-1-1 Page 4 of 23

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules and Regulations Part 15 Subpart C (Section 15.207):</u> Conducted limits. <u>FCC Rules and Regulations Part 15 Subpart C (Section 15.209):</u> Radiated emission limits; general requirements.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: GTS20210605013-1-1 Page 5 of 23

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	June 05, 2021
Testing commenced on	:	June 06, 2021
Testing concluded on	:	June 16, 2021

2.2 Product Description

Product Name:	Magnetic wireless charger
Model/Type reference:	WX06610-A
Hardware version:	N-JX-WX06610-A-V1.1
Software version:	V1.0
Test samples ID:	GTS20210605013-1-1#
Power supply:	DC 9V/2A or 5V/2A
Operation frequency:	110KHz - 205KHz
Modulation type:	ASK
Antenna type:	Loop coil antenna

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions: Charging and communication mode

Test Mo	Test Modes:				
Mode 1	AC/DC Adapter (9V/2A) + EUT + Wireless charger tester (Load 10W)	Recorded			
Mode 2	AC/DC Adapter (9V/2A) + EUT + Wireless charger tester (Load 7.5W)	Pre-tested			
Mode 3	AC/DC Adapter (9V/2A) + EUT + Wireless charger tester (Load 5W)	Pre-tested			
Mode 4	AC/DC Adapter (5V/2A) + EUT + Wireless charger tester (Load 10W)	Pre-tested			
Mode 5	AC/DC Adapter (5V/2A) + EUT + Wireless charger tester (Load 7.5W)	Pre-tested			
Mode 6	AC/DC Adapter (5V/2A) + EUT + Wireless charger tester (Load 5W)	Pre-tested			
Note: All	test modes were pre-tested, but we only recorded the worst case in this report.	·			

Report No.: GTS20210605013-1-1 Page 6 of 23

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Adapter	UGREEN	CD137	Input: 100-240V~, 50/60Hz, 0.5A Output: 5V===2A / 9V===2A / 12V===2A	CE/FCC	laboratory
Wireless charger tester	1	SW-MK- 89898	Full Protocol Wireless Chager Tester, 5W / 7.5W / 10W / 15W four gear switchable	CE/FCC	laboratory
/	/	/	/	/	/
/	/	/	/	/	/

2.5 Modifications

No modifications were implemented to meet testing criteria.

Report No.: GTS20210605013-1-1 Page 7 of 23

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C		
Humidity:	30-60 %		
Atmospheric pressure:	950-1050mbar		

Report No.: GTS20210605013-1-1 Page 8 of 23

3.4 Summary of measurement results

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods — Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

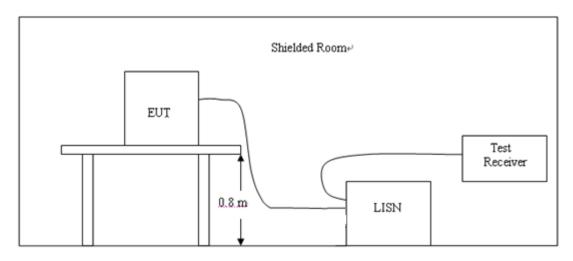
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	3560.6550.08	2020/09/19	2021/09/18
LISN	R&S	ESH2-Z5	893606/008	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESPI3	101841-cd	2020/09/19	2021/09/18
EMI Test Receiver	R&S	ESCI7	101102	2020/09/19	2021/09/18
Spectrum Analyzer	Agilent	N9020A	MY48010425	2020/09/19	2021/09/18
Spectrum Analyzer	R&S	FSV40	100019	2020/09/19	2021/09/18
Vector Signal generator	Agilent	N5181A	MY49060502	2020/09/19	2021/09/18
Signal generator	Agilent	E4421B	3610AO1069	2020/09/19	2021/09/18
Climate Chamber	ESPEC	EL-10KA	A20120523	2020/09/19	2021/09/18
Controller	EM Electronics	Controller EM 1000	N/A	N/A	N/A
Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2020/09/19	2021/09/18
Active Loop Antenna	Beijing Da Ze Technology Co.,Ltd.	ZN30900C	15006	2020/10/11	2021/10/10
Bilog Antenna	Schwarzbeck	VULB9163	000976	2021/05/25	2022/05/24
Broadband Horn Antenna	SCHWARZBECK	BBHA 9170	791	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV 9743	#202	2020/09/19	2021/09/18
Amplifier	Schwarzbeck	BBV9179	9719-025	2020/09/19	2021/09/18
Amplifier	EMCI	EMC051845B	980355	2020/09/19	2021/09/18
Temperature/Humidi	Gangxing	CTH-608	02	2020/09/19	2021/09/18

ty Meter					
High-Pass Filter	K&L	9SH10- 2700/X12750- O/O	KL142031	2020/09/19	2021/09/18
High-Pass Filter	K&L	41H10- 1375/U12750- O/O	KL142032	2020/09/19	2021/09/18
RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	RE01	2020/09/19	2021/09/18
RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	RE02	2020/09/19	2021/09/18
Data acquisition card	Agilent	WX06610-A531A	TW53323507	2020/09/19	2021/09/18
Power Sensor	Agilent	WX06610- A021XA	MY5365004	2020/09/19	2021/09/18
Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/19	2021/06/18
Automated filter bank	Tonscend	JS0806-F	19F8060177	2020/06/19	2021/06/18
EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	/	/
EMI Test Software	Tonscend	JS1120-3	Ver 2.5.77.0418	/	/
EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	/
EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	/	/


Note: The Cal.Interval was one year.

Report No.: GTS20210605013-1-1 Page 10 of 23

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

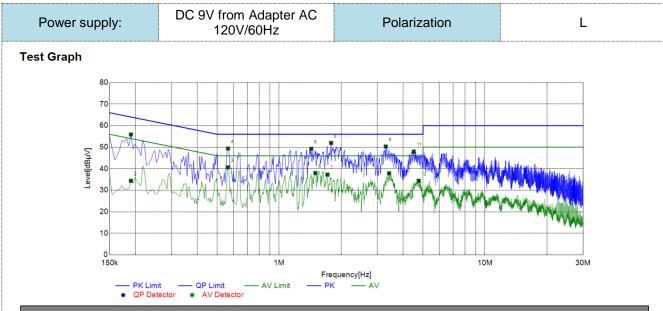
TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

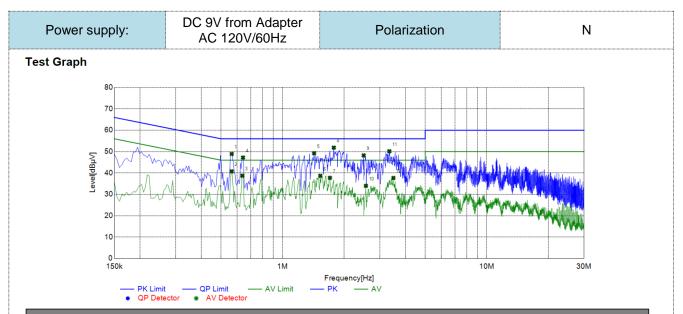
Frequency range (MHz)	Limit (dBuV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequency.						


Report No.: GTS20210605013-1-1 Page 11 of 23

TEST RESULTS

1. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

2. All test modes descripted in section 2.3 has been tested, only the worst result of Mode 1 is recorted.


Temperature	22.8℃	Humidity	56%
Test Engineer	Moon Tan	Test mode	TM1

Sus	uspected List								
NO.	Frequency [MHz]	Reading [dBµV]	Factor [dB]	Result [dBµV]	Limit [dBµV]	Margin [dB]	Detector	Line	Remark
1	0.1905	45.84	10.06	55.90	64.01	8.11	PK	L1	PASS
2	0.1905	24.32	10.06	34.38	54.01	19.63	AV	L1	PASS
3	0.5640	30.57	10.06	40.63	46.00	5.37	AV	L1	PASS
4	0.5640	39.31	10.06	49.37	56.00	6.63	PK	L1	PASS
5	1.4325	39.12	10.10	49.22	56.00	6.78	PK	L1	PASS
6	1.5000	27.90	10.11	38.01	46.00	7.99	AV	L1	PASS
7	1.7160	27.11	10.13	37.24	46.00	8.76	AV	L1	PASS
8	1.7880	41.87	10.13	52.00	56.00	4.00	PK	L1	PASS
9	3.2955	40.01	10.32	50.33	56.00	5.67	PK	L1	PASS
10	3.4215	27.56	10.33	37.89	46.00	8.11	AV	L1	PASS
11	4.5060	37.51	10.45	47.96	56.00	8.04	PK	L1	PASS
12	4.7625	23.96	10.46	34.42	46.00	11.58	AV	L1	PASS

Note:1. Result $(dB\mu V)$ = Reading $(dB\mu V)$ + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Sus	Suspected List								
NO.	Frequency [MHz]	Reading [dBµV]	Factor [dB]	Result [dBµV]	Limit [dBµV]	Margin [dB]	Detector	Line	Remark
1	0.5640	38.84	10.06	48.90	56.00	7.10	PK	N	PASS
2	0.5640	30.70	10.06	40.76	46.00	5.24	AV	Ν	PASS
3	0.6360	28.66	10.06	38.72	46.00	7.28	AV	Ν	PASS
4	0.6405	37.16	10.06	47.22	56.00	8.78	PK	Ν	PASS
5	1.4280	39.17	10.10	49.27	56.00	6.73	PK	Ν	PASS
6	1.5315	28.57	10.11	38.68	46.00	7.32	AV	Ν	PASS
7	1.7070	27.60	10.13	37.73	46.00	8.27	AV	Ν	PASS
8	1.7835	41.73	10.13	51.86	56.00	4.14	PK	Ν	PASS
9	2.4990	38.01	10.22	48.23	56.00	7.77	PK	Ν	PASS
10	2.5620	23.76	10.23	33.99	46.00	12.01	AV	Ν	PASS
11	3.3360	39.82	10.33	50.15	56.00	5.85	PK	N	PASS
12	3.4935	27.34	10.34	37.68	46.00	8.32	AV	N	PASS

Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

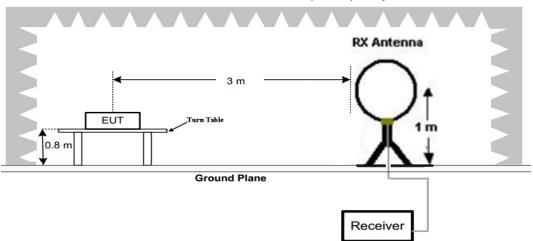
2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).

Report No.: GTS20210605013-1-1 Page 13 of 23

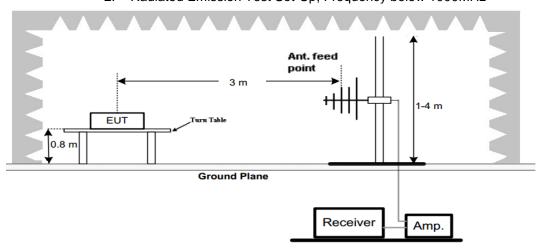
4.2 Radiated Emission

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Radiated emission limits


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST CONFIGURATION

1. Radiated Emission Test Set-Up, Frequency Below 30MHz

2. Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: GTS20210605013-1-1 Page 14 of 23

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0℃ to 360℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

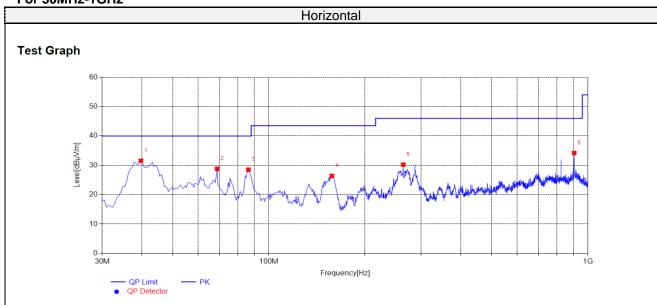
7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP

TEST RESULTS

Temperature	22.8℃	Humidity	56%
Test Engineer	Moon Tan	Test mode	TM1

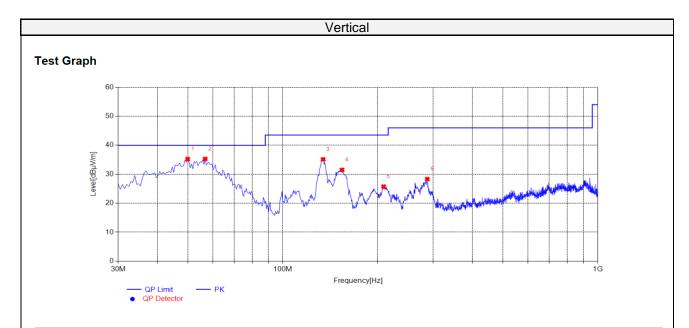
For 9 KHz-30MHz


WORST-CASE RADIATED EMISSION BELOW 30 MHz

Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.1235(F)	66.57	Loop	23.64	0.01	90.22	105.77	15.55	PK
0.1235(F)	57.90	Loop	23.64	0.01	81.55	85.77	4.22	AV
0.110	56.66	Loop	23.55	0.01	80.22	106.78	26.56	PK
0.110	56.86	Loop	23.55	0.01	80.42	86.78	6.36	AV
0.247	37.64	Loop	25.07	-0.17	62.54	99.75	37.21	QP
0.371	28.50	Loop	27.12	-0.25	55.37	96.22	40.85	QP
0.618	29.02	Loop	23.91	-0.24	52.69	71.78	19.09	QP

Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) = Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

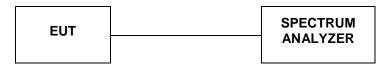

For 30MHz-1GHz

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	39.7000	39.38	-7.81	31.57	40.00	8.43	100	276	PK	Horizonta	PASS
2	68.8000	38.62	-9.80	28.82	40.00	11.18	100	25	PK	Horizonta	PASS
3	86.2600	39.60	-11.07	28.53	40.00	11.47	100	360	PK	Horizonta	PASS
4	157.5550	38.54	-12.13	26.41	43.50	17.09	100	276	PK	Horizonta	PASS
5	263.7700	38.26	-8.02	30.24	46.00	15.76	100	85	PK	Horizonta	PASS
6	905.9100	30.95	3.25	34.20	46.00	11.80	100	276	PK	Horizonta	PASS

Note:1. Result (dB μ V/m) = Reading(dB μ V/m) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Susp	Suspected List										
NO.	Frequency [MHz]	Reading [dBµV/m]	Factor [dB]	Result [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Detector	Polarity	Remark
1	49.8850	41.81	-6.60	35.21	40.00	4.79	100	25	PK	Vertical	PASS
2	56.6750	42.38	-7.10	35.28	40.00	4.72	100	174	PK	Vertical	PASS
3	134.2750	47.47	-12.35	35.12	43.50	8.38	100	358	PK	Vertical	PASS
4	154.1600	43.72	-12.21	31.51	43.50	11.99	100	278	PK	Vertical	PASS
5	208.9650	34.87	-9.15	25.72	43.50	17.78	100	119	PK	Vertical	PASS
6	287.5350	35.81	-7.48	28.33	46.00	17.67	100	66	PK	Vertical	PASS


Note:1. Result ($dB\mu V/m$) = Reading($dB\mu V/m$) + Factor (dB) .

2. Factor (dB) = Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB).

Report No.: GTS20210605013-1-1 Page 17 of 23

4.3 Occupied Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Test mode	TM1

Mode	Freq (KHz)	20dB Bandwidth (KHz)	99% OBW (KHz)	Conclusion
Tx Mode	123.5	3.122	2.312	PASS

Report No.: GTS20210605013-1-1 Page 18 of 23

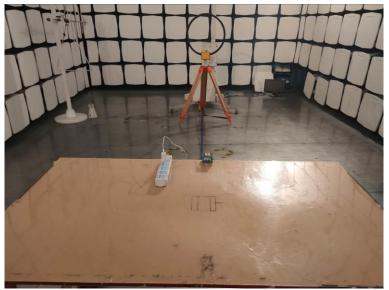
4.4 Antenna Requirement

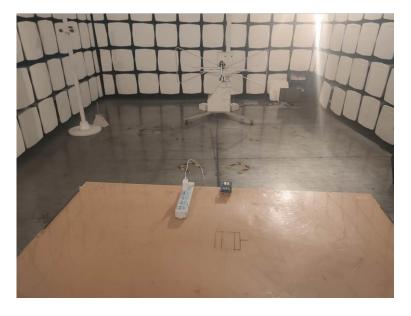
Standard Applicable

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

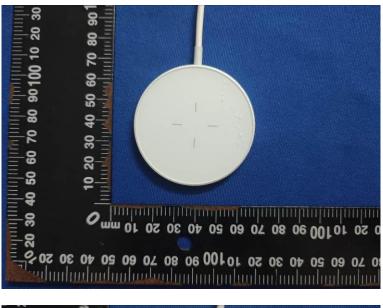
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


Antenna Information


The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

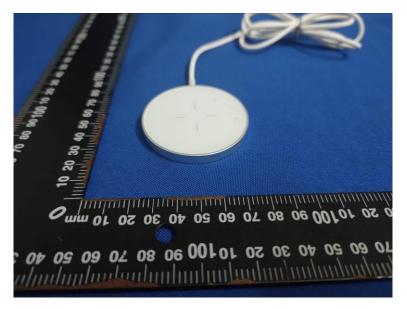
Report No.: GTS20210605013-1-1 Page 19 of 23

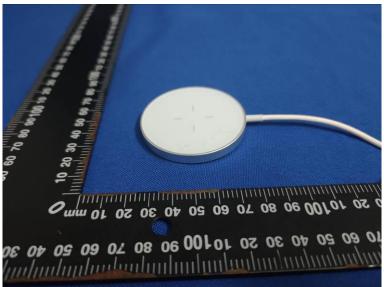
5 Test Setup Photos of the EUT

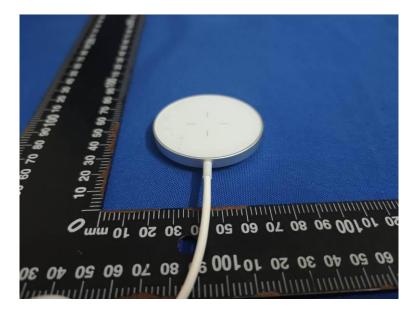


Report No.: GTS20210605013-1-1 Page 20 of 23

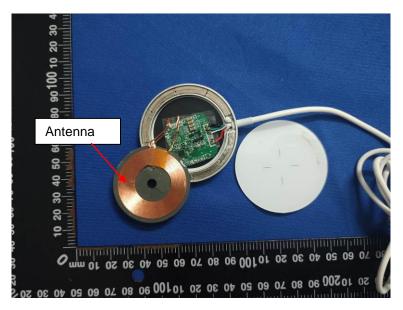
6 PHOTOS OF THE EUT

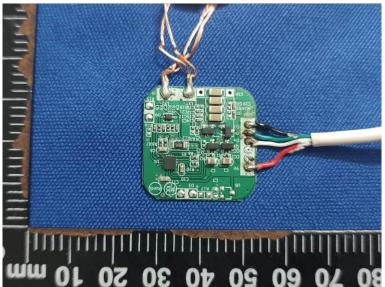

External photos

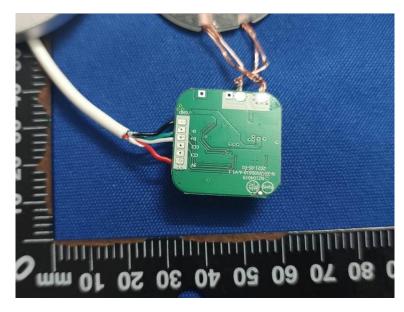





Report No.: GTS20210605013-1-1 Page 21 of 23






Report No.: GTS20210605013-1-1 Page 22 of 23

Internal Photos

