

CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)

TEST REPORT

For

Bluetooth Speaker(MINI CAB W / RECHARGEABLE BATTERY AND BT)

MODEL NUMBER: FRFR-GO, HC03, HC03XXXXXX, FRFR-GOXXXXXXXX (X can be "0-9", "a-z", "A-Z", blank, "-", "+" or any character, symbol, alphanumeric)

REPORT NUMBER: E04A24041131F00202

ISSUE DATE: August 7, 2024

FCC ID: Y4O-HC03

IC: 11215A-HC03

Prepared for

INMUSIC BRANDS INC 200 SCENIC VIEW DRIVE, SUITE 201, CUMBERLAND, Rhode Island, United States, 02864

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	August 7, 2024	Initial Issue	

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c) RSS-GEN Clause 6.8	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2	FCC Part 15.207 RSS-GEN Clause 8.8	Pass
Conducted Output Power	ANSI C63.10-2013, Clause 11.9.1.3	FCC Part 15.247 (b)(3) RSS-247 Clause 5.4 (d)	Pass
6dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013, Clause 11.8.1	FCC Part 15.247 (a)(2) RSS-247 Clause 5.2 (a) ISED RSS-Gen Clause 6.7	Pass
Power Spectral Density	ANSI C63.10-2013, Clause 11.10.2	FCC Part 15.247 (e) RSS-247 Clause 5.2 (b)	Pass
Conducted Band edge and spurious emission	ANSI C63.10-2013, Clause 11.11	FCC Part 15.247(d) RSS-247 Clause 5.5	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013, Clause 11.11 & Clause 11.12	FCC Part 15.247 (d) FCC Part 15.205/15.209 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Pass
Duty Cycle	ANSI C63.10-2013, Clause 11.6	None; for reporting purposes only.	Pass

Summary of Test Results

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	.5			
2.	TEST N	IETHODOLOGY	.6			
3.	FACILI	TIES AND ACCREDITATION	.6			
4.	CALIBI	RATION AND UNCERTAINTY	.7			
4	4.1.	MEASURING INSTRUMENT CALIBRATION	.7			
4	4.2.	MEASUREMENT UNCERTAINTY	.7			
5.	EQUIP	MENT UNDER TEST	.8			
5	5.1.	DESCRIPTION OF EUT	.8			
5	5.2.	CHANNEL LIST	. 8			
5	5.3.	MAXIMUM PEAK OUTPUT POWER	.9			
5	5.4.	TEST CHANNEL CONFIGURATION	.9			
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	.9			
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	.9			
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	.9			
5	5.8.	SETUP DIAGRAM	10			
6.	MEASU	IRING EQUIPMENT AND SOFTWARE USED1	1			
7.	ANTEN	NA PORT TEST RESULTS1	3			
7	' .1.	Conducted Output Power	13			
7	.2.	6dB Bandwidth and 99% Occupied Bandwidth1	14			
7	7.3.	Power Spectral Density	16			
7	.4.	Conducted Band edge and spurious emission	17			
7	' .5.	Duty Cycle 1	19			
8.	RADIA	TED TEST RESULTS	20			
8	8.1.	Radiated Band edge and Spurious Emission2	26			
9.	ANTEN	NA REQUIREMENT	38			
10.		AC POWER LINE CONDUCTED EMISSION4	10			
11.	. TEST DATA - Appendix A43					
۸D		PHOTOGRAPHS OF TEST CONFIGURATION	55			

1. ATTESTATION OF TEST RESULTS

Applicant Information Company Name: INMUSIC BRANDS INC Address: 200 SCENIC VIEW DRIVE, SUITE 201, CUMBERLAND, Rhode Island, United States, 02864 **Manufacturer Information** Company Name: INMUSIC BRANDS INC Address: 200 SCENIC VIEW DRIVE, SUITE 201, CUMBERLAND, Rhode Island, United States, 02864 **Factory Information INMUSIC BRANDS INC** Company Name: Address: 200 SCENIC VIEW DRIVE, SUITE 201, CUMBERLAND, Rhode Island, United States, 02864 **EUT Information Product Description:** Bluetooth Speaker(MINI CAB W / RECHARGEABLE BATTERY AND BT) FRFR-GO, HC03, HC03XXXXXX, FRFR-GOXXXXXXXX (X can Model: be "0-9", "a-z", "A-Z", blank, "-", "+" or any character, symbol, alphanumeric) Brand: HEADRUSH Sample Received Date: June 28, 2024 Sample Status: Normal Sample ID: A24041131 001 Date of Tested: June 28, 2024 to August 7, 2024

APPLICABLE STANDARDS

STANDARD CFR 47 FCC PART 15 SUBPART C,

TEST RESULTS

ISED RSS-247 ISSUE 3 (DTS)

Pass

Prepared By:

Shawn Wen Laboratory Manager Checked By:

lan the

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C, ISED RSS-247 ISSUE 3 (DTS)

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01) Guangdong Global Testing Technology Co., Ltd.				
	has been assessed and proved to be in compliance with A2LA.				
	FCC (FCC Designation No.: CN1343)				
	Guangdong Global Testing Technology Co., Ltd.				
	has been recognized to perform compliance testing on equipment				
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and				
	Certification rules				
	ISED (Company No.: 30714)				
	Guangdong Global Testing Technology Co., Ltd.				
	has been registered and fully described in a report filed with ISED.				
	The Company Number is 30714 and the test lab Conformity				
	Assessment Body Identifier (CABID) is CN0148.				
loto: All tosts moasuromo	Note: All tests measurement facilities use to collect the measurement data are located at				

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty				
DTS Bandwidth	1.96	±9.2 PPM				
20dB Emission Bandwidth	1.96	±9.2 PPM				
Carrier Frequency Separation	1.96	±9.2 PPM				
Time of Occupancy	1.96	±0.57%				
Conducted Output Power	1.96	±1.5 dB				
Power Spectral Density Level	1.96	±1.9 dB				
Second conducted Spurious Emission 1.96 9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB						
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.						

Test Item	Measurement Frequency Range	К	U(dB)			
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37			
Radiated emissions	9 kHz ~ 30 MHz	2	4.16			
Radiated emissions	30 MHz ~ 1 GHz	2	3.79			
Radiated emissions	1 GHz ~ 18 GHz	2	5.62			
Radiated emissions18 GHz ~ 40 GHz25.54						
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.						

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Bluetooth Speaker(MINI CAB W / RECHARGEABLE BATTERY AND BT)		
Model		FRFR-GO		
Series Model		HC03, HC03XXXXXX, FRFR-GOXXXXXXXX (X can be "0-9", "a-z", "A-Z", blank, "-", "+" or any character, symbol, alphanumeric)		
Hardware Version		V1.0		
Software Version		V1.0		
Ratings		100-240V~ 60/50Hz 45W		
Battery Ratings		XKD 18650 2000mAh 11.1V 22.2Wh		
Power Supply	AC	120V/60Hz		
	Battery	11.1V		

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	5.3
Type of Modulation:	GFSK
Number of Channels:	40
Channel Separation:	2 MHz
Maximum Peak Power:	2.73 dBm
Antenna Type:	Internal antenna
Antenna Gain:	3.2 dBi
EUT Test software:	FCC_assist
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460	/	/
8	2418	19	2440	30	2462	/	/
9	2420	20	2442	31	2464	/	/

TRF No.: 04-E001-0B

Global Testing , Great Quality.

REPORT NO.: E04A24041131F00202 Page 9 of 67

4.0	0.400	.					,
10	2422	21	2444	32	2468	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	Maximum EIRP (dBm)
LE 1Mbps	2402 ~ 2480	0-39[40]	2.73	5.93

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
LE 1Mbps	CH 0(Low Channel), CH 19(MID Channel), CH 39(High Channel)	2402 MHz, 2440 MHz, 2480 MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

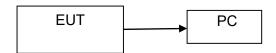
The	The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band				
Test Software Version FCC_assist					
Modulation Transmit	Test Software setting value				
Туре	Antenna Number	CH 0	CH 19	CH 39	
GFSK(1Mbps)	1	default	default	default	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

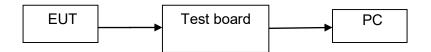
Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	Internal antenna	3.2

Test Mode	Transmit and Receive Mode	Description
LE 1Mbps	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. SUPPORT UNITS FOR SYSTEM TEST


No.	Equipment	Manufacturer	Model No.	Serial No.
1	PC	Lenovo	T14	/
2	Test board	1	/	/

5.8. SETUP DIAGRAM


AC conducted emission :

Radiated Emission:

RF conducted:

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

	Test Equipment of Radiated emissions below 1GHz				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

	Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date	
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17	
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17	
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17	
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10	
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17	

TRF No.: 04-E001-0B

Global Testing , Great Quality.

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

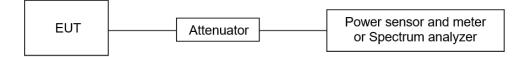
7. ANTENNA PORT TEST RESULTS 7.1. CONDUCTED OUTPUT POWER

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3					
Section Test Item Limit Frequency Range (MHz)					
CFR 47 FCC 15.247(b)(3) ISED RSS-247 5.4 (d)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5		

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.9.1.


Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	≥DTS bandwidth
VBW	≥3×RBW
Span	≥3×RBW
Trace	Max hold
Sweep time	Auto

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.2. 6DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC 15.247(a)(2) ISED RSS-247 5.2 (a)	2400-2483.5			
ISED RSS-Gen Clause 6.799 % Occupied BandwidthFor reporting purposes only.2400-2483.5				

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.8 for DTS bandwidth and clause 6.9 for Occupied Bandwidth.

Center Frequency	The center frequency of the channel under test	
Frequency Span	For 6 dB Bandwidth: Enough to capture all products of the modulation carrier emission For 99 % Occupied Bandwidth: Between 1.5 times and 5.0 times the OBW	
Detector	Peak	
IRB///	For 6 dB Bandwidth: 100 kHz For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth	
N/B/W	For 6 dB Bandwidth: ≥3 × RBW For 99 % Occupied Bandwidth: ≥3 × RBW	
Trace	Max hold	
Sweep	Auto couple	

Connect the EUT to the spectrum analyser and use the following settings:

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

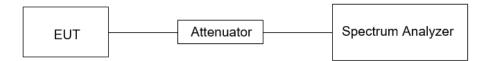
7.3. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3				
Section Test Item Limit Frequency Range (MHz)				
CFR 47 FCC §15.247 (e) ISED RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.10.


Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Detector	PEAK	
RBW	$3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$	
VBW	≥3 × RBW	
Span	1.5 x DTS bandwidth	
Trace	Max hold	
Sweep time	Auto couple	

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.4. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

LIMITS

CFR 47 FCC Part15 (15.247) Subpart C ISED RSS-247 ISSUE 3			
Section Test Item Limit			
CFR 47 FCC §15.247 (d) ISED RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.11 and 11.13.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

ISnan	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2 ℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. DUTY CYCLE

<u>LIMITS</u>

None; for reporting purposes only.

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 11.6 Zero – Span Spectrum Analyzer method.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.2℃	Relative Humidity	54%
Atmosphere Pressure	100kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

<u>LIMITS</u>

Please refer to CFR 47 FCC §15.205 and §15.209.

Please refer to ISED RSS-GEN Clause 8.9 and Clause 8.10.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz					
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m			
		Quasi-Peak			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			
Above 1000	500	Peak	Average		
	300	74	54		

FCC Emissions radiated outside of the specified frequency bands below 30 MHz				
Frequency (MHz) Field strength (microvolts/meter) Measurement distance (meters)				
0.009-0.490 2400/F(kHz)		300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz				
Frequency Magnetic field strength (H-Field) (μA/m) Measurement distance (m)				
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300		
490 - 1705 kHz	63.7/F (F in kHz)	30		
1.705 - 30 MHz	0.08	30		

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands please refer to ISED RSS-GEN Clause 8.10

z	MHz	GHz
90 - 0.110	149.9 - 150.05	9.0 - 9.2
95 - 0.505	158.52475 - 158.52525	9.3 - 9.5
735 - 2.1905	158.7 - 156.9	10.6 - 12.7
20 - 3.026	162.0125 - 167.17	13.25 - 13.4
25 - 4.128	167.72 - 173.2	14.47 - 14.5
7725 - 4.17775	240 - 285	15.35 - 18.2
0725 - 4.20775	322 - 335.4	17.7 - 21.4
77 - 5.683	399.9 - 410	22.01 - 23.12
15 - 6.218	608 - 614	23.6 - 24.0
8775 - 6.26825	960 - 1427	31.2 - 31.8
1175 - 8.31225	1435 - 1626.5	36.43 - 36.5
91 - 8.294	1845.5 - 1848.5	Above 38.6
82 - 8.366	1660 - 1710	
7625 - 8.38675	1718.8 - 1722.2	
1425 - 8.41475	2200 - 2300	
29 - 12.293	2310 - 2390	
51975 - 12.52025	2483.5 - 2500	
57675 - 12.57725	2655 - 2900	
36 - 13.41	3260 - 3267	
42 - 16.423	3332 - 3339	
89475 - 16.69525	3345.8 - 3358	
80425 - 16.80475	3500 - 4400	
5 - 25.67	4500 - 5150	
5 - 38.25	5350 - 5460	
- 74.6	7250 - 7750	
8 - 75.2	8025 - 8500	
- 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TEST PROCEDURE

Below 30 MHz

TRF No.: 04-E001-0B

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high

pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

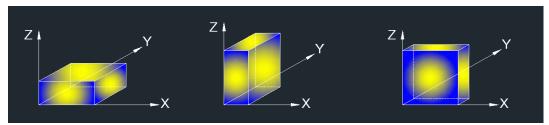
Above 1G

The setting of the spectrum analyser

RBW	MHz	
NRW	PEAK: 3 MHz AVG: see note 6	
Sweep	uto	
Detector	Peak	
Trace	/lax hold	

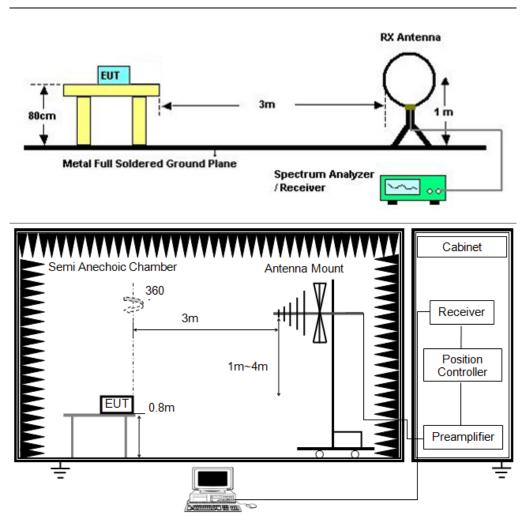
1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

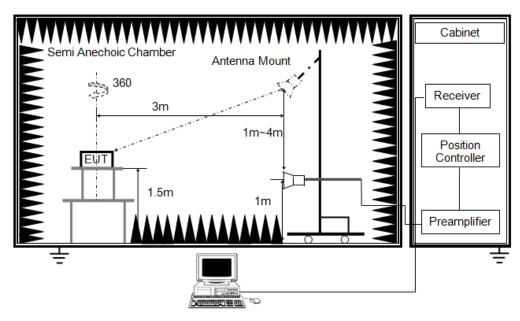
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.


3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

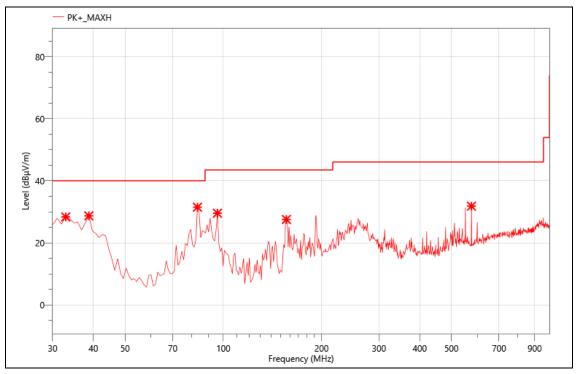
5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.


6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

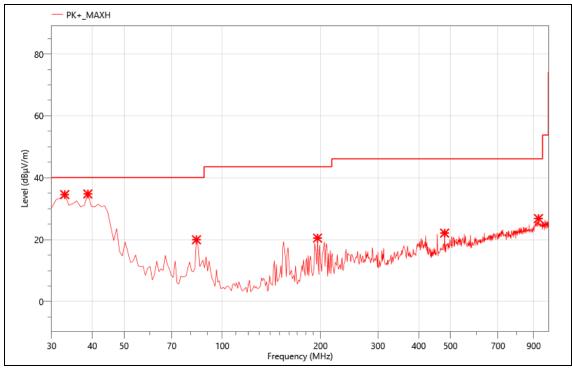
TEST SETUP


TEST ENVIRONMENT

Temperature	23.3 ℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TEST RESULTS

8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION


Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

Critical_Freqs

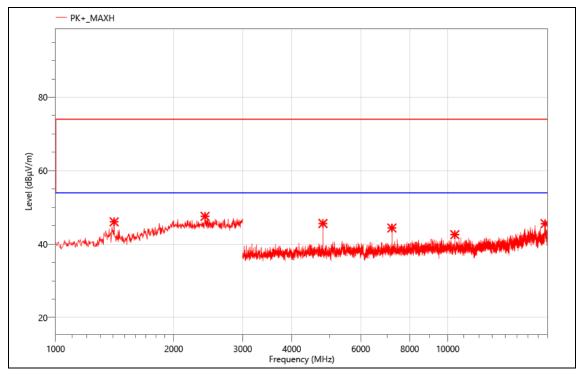
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	32.910	44.27	-15.91	28.36	40.00	11.64	PK+	Н
2	38.730	48.03	-19.31	28.72	40.00	11.28	PK+	Н
3	83.350	57.09	-25.59	31.50	40.00	8.50	PK+	Н
4	95.960	54.05	-24.49	29.56	43.50	13.94	PK+	Н
5	156.100	48.78	-21.24	27.54	43.50	15.96	PK+	Н
6	576.110	42.52	-10.69	31.83	46.00	14.17	PK+	Н

Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	32.910	50.47	-15.91	34.56	40.00	5.44	PK+	V
2	38.730	54.07	-19.31	34.76	40.00	5.24	PK+	V
3	83.350	45.55	-25.59	19.96	40.00	20.04	PK+	V
4	195.870	42.80	-22.3	20.50	43.50	23.00	PK+	V
5	480.080	35.12	-13.01	22.11	46.00	23.89	PK+	V
6	931.130	29.78	-2.97	26.81	46.00	19.19	PK+	V

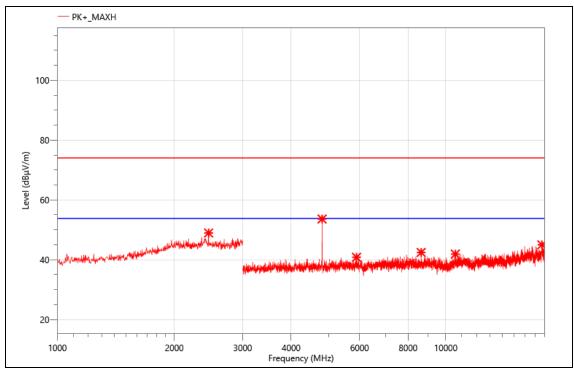
Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

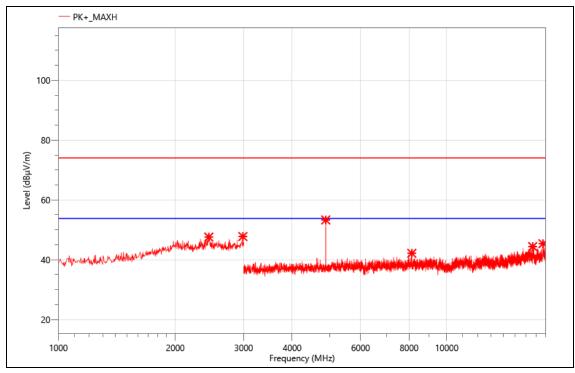

1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

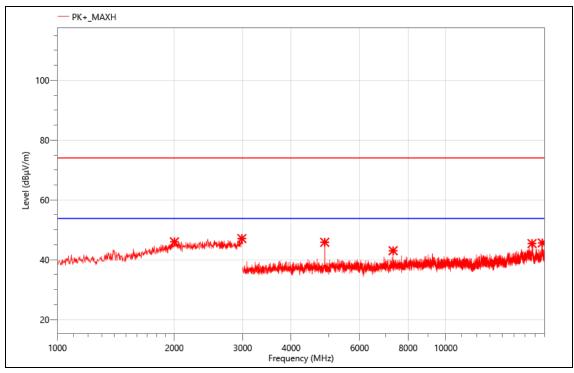
3. Peak: Peak detector.


4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

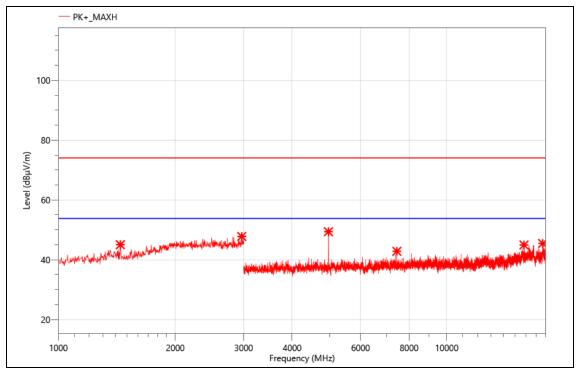
Mode:	BLE1M-2402
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq.	Reading	Corr.	Meas.	Limit	Margin	Det.	Pol.
140.	(MHz)	$(dB\mu V)$	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Det.	1 01.
1	1410.000	60.16	-14.1	46.06	74.00	27.94	PK+	V
2	2404.000	56.08	-8.52	47.56	74.00	26.44	PK+	V
3	4804.500	56.95	-11.34	45.61	74.00	28.39	PK+	V
4	7204.500	52.41	-8.02	44.39	74.00	29.61	PK+	V
5	10420.500	48.17	-5.6	42.57	74.00	31.43	PK+	V
6	17703.000	45.45	0.11	45.56	74.00	28.44	PK+	V

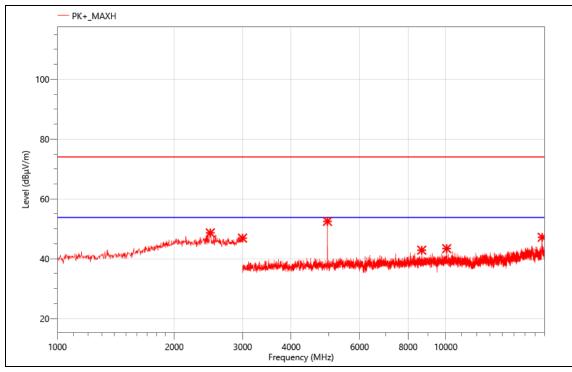
Mode:	BLE1M-2402
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2452.000	57.43	-8.47	48.96	74.00	25.04	PK+	Н
2	4804.500	64.96	-11.34	53.62	74.00	20.38	PK+	Н
3	5892.000	49.83	-8.99	40.84	74.00	33.16	PK+	Н
4	8644.500	50.56	-8.12	42.44	74.00	31.56	PK+	Н
5	10585.500	47.16	-5.26	41.90	74.00	32.10	PK+	Н
6	17680.500	44.72	0.29	45.01	74.00	28.99	PK+	Н

Mode:	BLE1M-2440
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2440.000	56.07	-8.48	47.59	74.00	26.41	PK+	Н
2	2986.000	54.74	-6.97	47.77	74.00	26.23	PK+	Н
3	4879.500	64.45	-11.14	53.31	74.00	20.69	PK+	Н
4	8130.000	50.28	-8.12	42.16	74.00	31.84	PK+	Н
5	16645.500	45.31	-0.91	44.40	74.00	29.60	PK+	Н
6	17691.000	45.13	0.23	45.36	74.00	28.64	PK+	Н

Mode:	BLE1M-2440
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2002.000	55.11	-9.11	46.00	74.00	28.00	PK+	V
2	2986.000	54.06	-6.97	47.09	74.00	26.91	PK+	V
3	4879.500	56.98	-11.14	45.84	74.00	28.16	PK+	V
4	7320.000	50.89	-7.87	43.02	74.00	30.98	PK+	V
5	16683.000	45.91	-0.49	45.42	74.00	28.58	PK+	V
6	17727.000	45.99	-0.36	45.63	74.00	28.37	PK+	V

Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1444.000	58.84	-13.79	45.05	74.00	28.95	PK+	V
2	2966.000	55.02	-7.23	47.79	74.00	26.21	PK+	V
3	4959.000	60.74	-11.35	49.39	74.00	24.61	PK+	V
4	7440.000	50.78	-7.96	42.82	74.00	31.18	PK+	V
5	15805.500	47.21	-2.26	44.95	74.00	29.05	PK+	V
6	17656.500	45.38	0.07	45.45	74.00	28.55	PK+	V

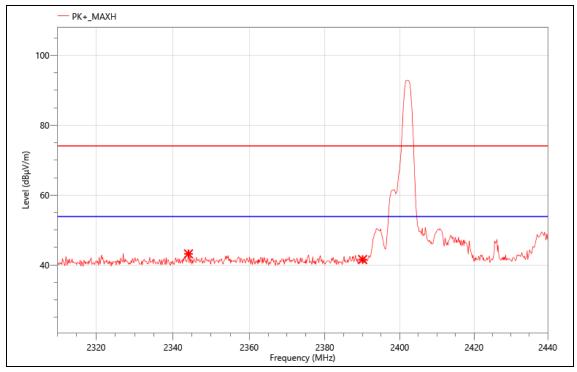
Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2476.000	57.08	-8.44	48.64	74.00	25.36	PK+	Н
2	2998.000	53.91	-7.01	46.90	74.00	27.10	PK+	Н
3	4960.500	63.83	-11.34	52.49	74.00	21.51	PK+	Н
4	8673.000	51.12	-8.25	42.87	74.00	31.13	PK+	Н
5	10056.000	49.68	-6.28	43.40	74.00	30.60	PK+	Н
6	17715.000	47.31	-0.14	47.17	74.00	26.83	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

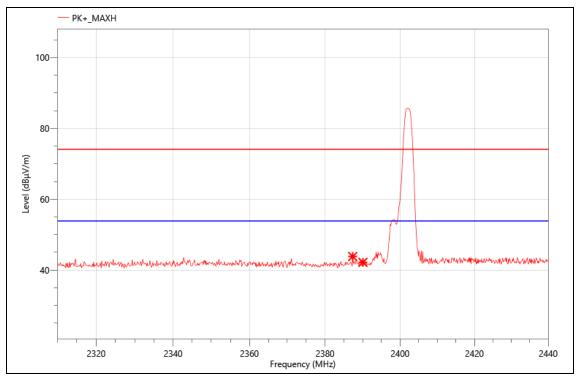
Note:

1. Measurement = Reading Level + Correct Factor.

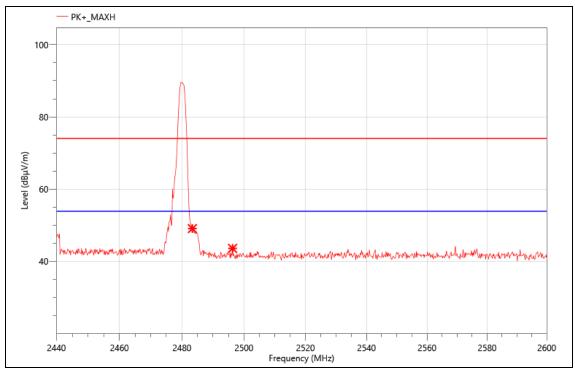

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

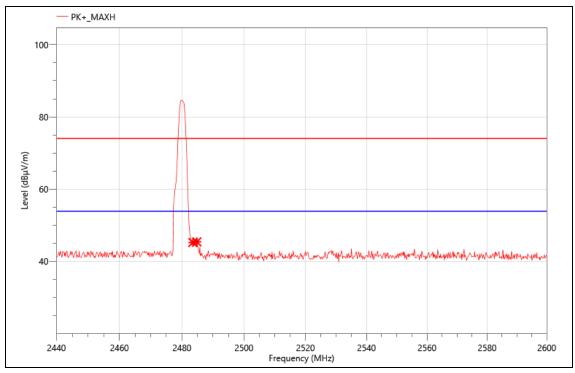
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.


For the frequency above 18 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

Mode:	BLE1M-2402
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2344.060	20.49	22.69	43.18	74.00	30.82	PK+	Н
2	2390.080	18.84	22.72	41.56	74.00	32.44	PK+	Н

Mode:	BLE1M-2402
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2387.350	21.15	22.67	43.82	74.00	30.18	PK+	V
2	2390.080	19.46	22.72	42.18	74.00	31.82	PK+	V

Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

	No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
F	1	2483.360	25.89	23.15	49.04	74.00	24.96	PK+	Н
	2	2496.320	20.43	23.12	43.55	74.00	30.45	PK+	Н
									•

Mode:	BLE1M-2480
Power:	Battery 11.1V
TE:	Big
Date	2024/8/7
T/A/P	23.3℃/55%/101Kpa

Critical_Freqs

	No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
	1	2483.520	22.02	23.15	45.17	74.00	28.83	PK+	V
	2	2484.800	22.21	23.15	45.36	74.00	28.64	PK+	V
-				_	<u> </u>				·

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

1. Measurement = Reading Level + Correct Factor.

2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Standard	Requirement
RSS-Gen issue 5 6.8.	The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list. For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below). When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer. The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested. For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location: This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dRi) and the required impedance for each antenna type
dBi) and the required impedance for each antenna type.

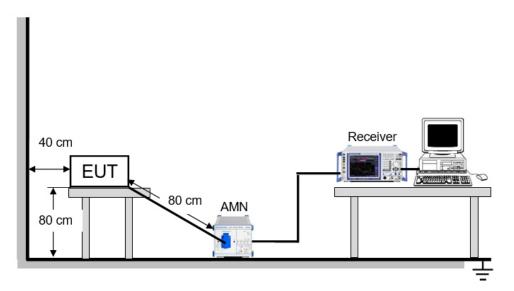
DESCRIPTION

Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

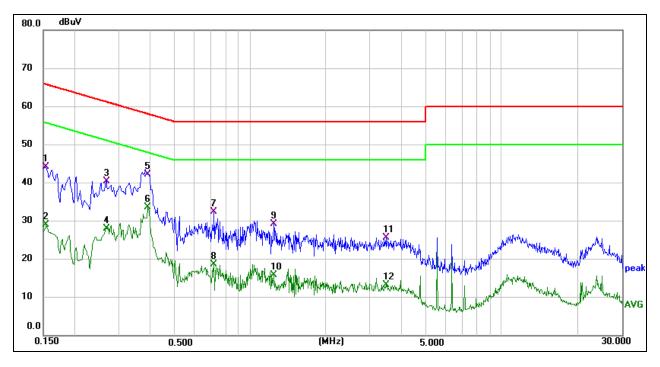
Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8


FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

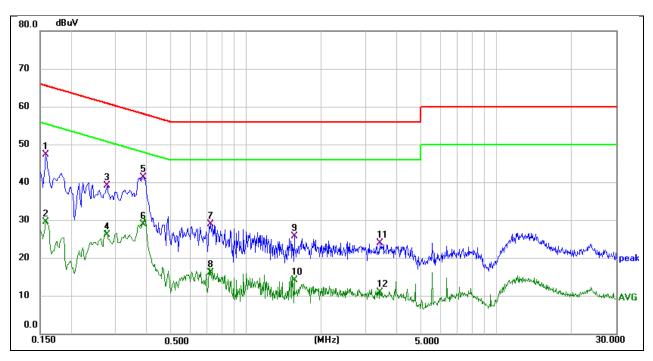
TEST PROCEDURE

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.


TEST SETUP

TEST ENVIRONMENT


Temperature	22.5 ℃	Relative Humidity	52%
Atmosphere Pressure	101kPa		

TEST RESULTS

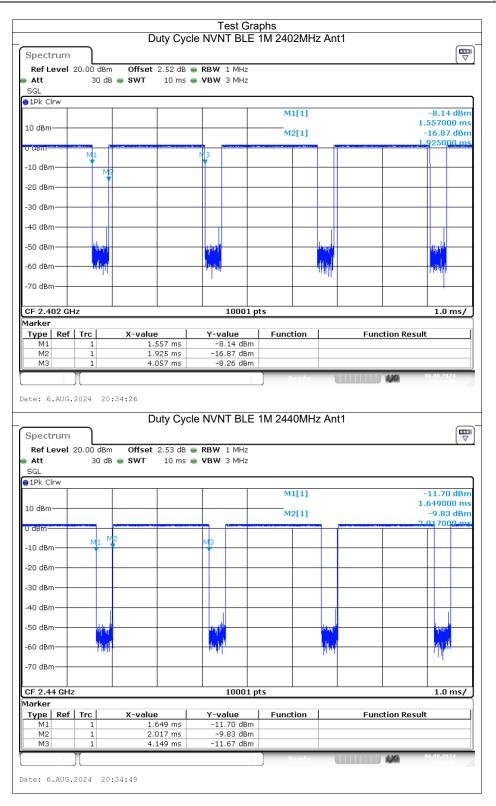
Phase: L1 Mode: BLE 1M 2480MHz

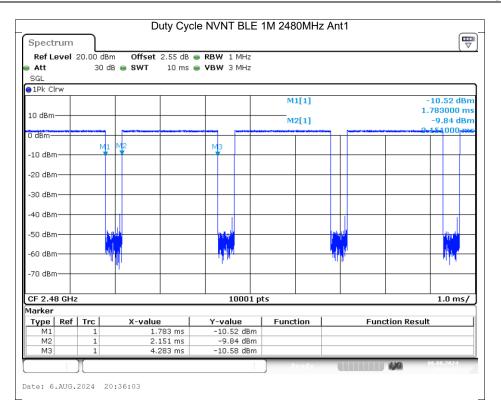
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1539	34.29	9.87	44.16	65.79	-21.63	QP
2	0.1539	19.09	9.87	28.96	55.79	-26.83	AVG
3	0.2660	30.31	10.10	40.41	61.24	-20.83	QP
4	0.2660	18.02	10.10	28.12	51.24	-23.12	AVG
5	0.3899	31.79	10.31	42.10	58.07	-15.97	QP
6 *	0.3899	23.36	10.31	33.67	48.07	-14.40	AVG
7	0.7180	21.43	10.94	32.37	56.00	-23.63	QP
8	0.7180	7.81	10.94	18.75	46.00	-27.25	AVG
9	1.2380	19.66	9.51	29.17	56.00	-26.83	QP
10	1.2380	6.39	9.51	15.90	46.00	-30.10	AVG
11	3.4580	16.18	9.54	25.72	56.00	-30.28	QP
12	3.4580	3.70	9.54	13.24	46.00	-32.76	AVG

Phase: N	Mode: BLE 1M 2480MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1580	37.45	9.89	47.34	65.57	-18.23	QP
2	0.1580	19.79	9.89	29.68	55.57	-25.89	AVG
3	0.2779	29.12	10.12	39.24	60.88	-21.64	QP
4	0.2779	16.13	10.12	26.25	50.88	-24.63	AVG
5 *	0.3860	31.04	10.31	41.35	58.15	-16.80	QP
6	0.3860	18.73	10.31	29.04	48.15	-19.11	AVG
7	0.7220	18.08	10.94	29.02	56.00	-26.98	QP
8	0.7220	5.36	10.94	16.30	46.00	-29.70	AVG
9	1.5580	16.29	9.52	25.81	56.00	-30.19	QP
10	1.5580	4.84	9.52	14.36	46.00	-31.64	AVG
11	3.4180	14.51	9.54	24.05	56.00	-31.95	QP
12	3.4180	1.59	9.54	11.13	46.00	-34.87	AVG

Note: 1. Result = Reading + Correct Factor.


- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.


Note: All the modes have been tested, only the worst data was recorded in the report.

11. TEST DATA - Appendix A

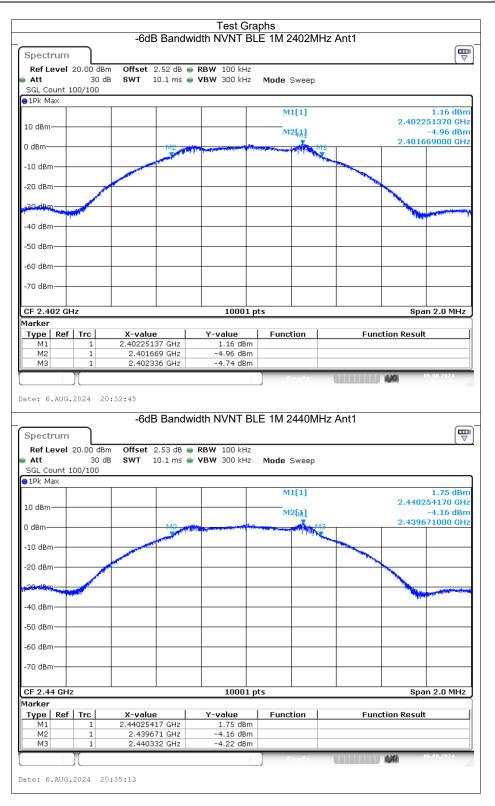
Duty Cycle

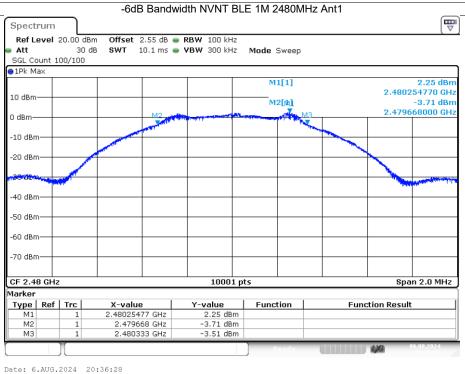
Condition	Mode	Frequency	Antenna	On Time	Period	Duty	Correction	1/T
		(MHz)		(ms)	(ms)	Cycle (%)	Factor (dB)	(kHz)
NVNT	BLE 1M	2402	Ant1	2.13	2.5	85.2	0.7	0.47
NVNT	BLE 1M	2440	Ant1	2.13	2.5	85.2	0.7	0.47
NVNT	BLE 1M	2480	Ant1	2.13	2.5	85.2	0.7	0.47

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	1.65	30	Pass
NVNT	BLE 1M	2440	Ant1	2.21	30	Pass
NVNT	BLE 1M	2480	Ant1	2.73	30	Pass

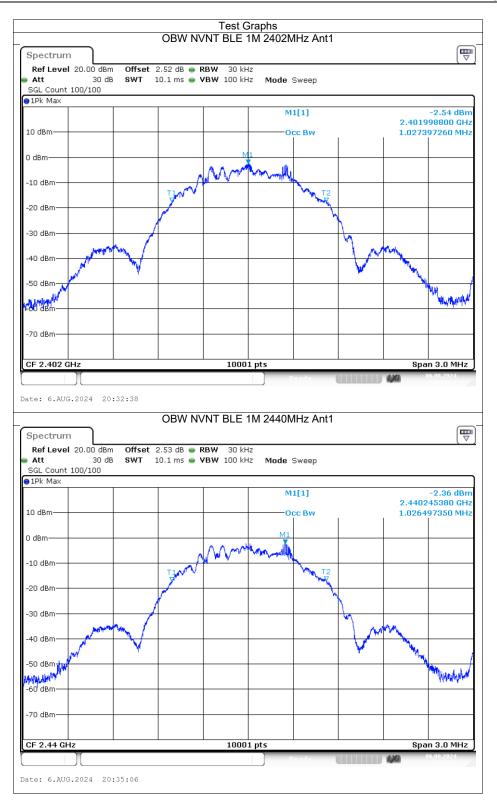
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Antenna Gain (dBi)	E.i.r.p (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	1.65	3.2	4.85	36.02	Pass
NVNT	BLE 1M	2440	Ant1	2.21	3.2	5.41	36.02	Pass
NVNT	BLE 1M	2480	Ant1	2.73	3.2	5.93	36.02	Pass

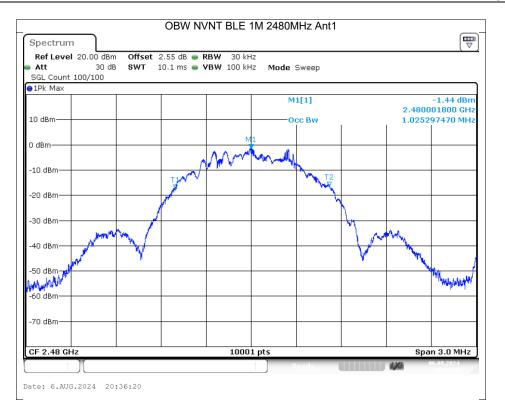

	Р	Test Gr ower NVNT BLE 1	M 2402MHz Ant1			_
Spectrum						
Ref Level 20.00 d		2 dB 👄 RBW 3 MHz				
Att 30 GGL Count 100/100		1 ms 👄 VBW 10 MHz	Mode Sweep			
1Pk Max						
			M1[1]			1.65 dBi
0 dBm					2.40171	2000 GH
o ubin		M1				
dBm						
10 dBm	+					
20-08m						$\overline{}$
30 dBm						
30 uBm						
40 dBm						
50 dBm						
60 dBm						
70 dBm						
		10001	nte		Span 1	0.0 MH
		ower NVNT BLE 1	Ready		4,X4 06	.08.2024
te: 6.AUG.2024			Ready		aya ^{ne}	08.2024
te: 6.AUG.2024 Spectrum Ref Level 20.00 d	P IBm Offset 2.5	OWER NVNT BLE 1	Prode M 2440MHz Ant1		1.)(1) ¹¹⁵	.08.2024
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1	Prode M 2440MHz Ant1		<i>uja</i> **	08.2024
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	OWER NVNT BLE 1	Prode M 2440MHz Ant1		44 06	08.2024
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	OWER NVNT BLE 1	Prode M 2440MHz Ant1			2.21 dB
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max	P Bm Offset 2.5 dB SWT 10.	OWER NVNT BLE 1	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max	P Bm Offset 2.5 dB SWT 10.	OWER NVNT BLE 1	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
Cpectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Ref Level 20.00 d Att 30 GGL Count 100/100 1Pk Max 0 dBm dBm 10 dBm 20 dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Ref Level 20.00 d Att 30 GGL Count 100/100 1Pk Max 0 dBm dBm 10 dBm 20 dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024 Spectrum Ref Level 20.00 d	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prodv M 2440MHz Ant1 Mode Sweep			2.21 dB
te: 6.AUG.2024	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1	Prestv M 2440MHz Ant1 Mode Sweep M1[1]		2.43974	2.21 dB 5000 Gł
te: 6.AUG.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 0 dBm dBm dBm 0 dBm 40 dBm 30 dBm 50 dBm 50 dBm	P Bm Offset 2.5 dB SWT 10.	ower NVNT BLE 1 3 dB • RBW 3 MHz 1 ms • VBW 10 MHz	Prestv M 2440MHz Ant1 Mode Sweep M1[1]		2.43974	2.21 dB


Spectrum				
	2.55 dB 👄 RBW 3 MHz .0.1 ms 👄 VBW 10 MHz	Mode Sweep		
1Pk Max				
		M1[1]	2.479	2.73 dBn 716000 GH:
10 dBm	M1			1
D dBm	· · · ·			
-10 dBm				
20 dBm				
-30 dBm				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
CF 2.48 GHz	10001	pts	Spar	n 10.0 MHz
		Ready	4,40	06.08.2024

•••=						
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.67	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.66	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.67	0.5	Pass

-6dB Bandwidth


TRF No.: 04-E001-0B



Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.027
NVNT	BLE 1M	2440	Ant1	1.026
NVNT	BLE 1M	2480	Ant1	1.025

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	Ant1	-15.23	8	Pass
NVNT	BLE 1M	2440	Ant1	-14.75	8	Pass
NVNT	BLE 1M	2480	Ant1	-14.43	8	Pass

Maximum Power Spectral Density Level

REPORT NO.: E04A24041131F00202 Page 56 of 67

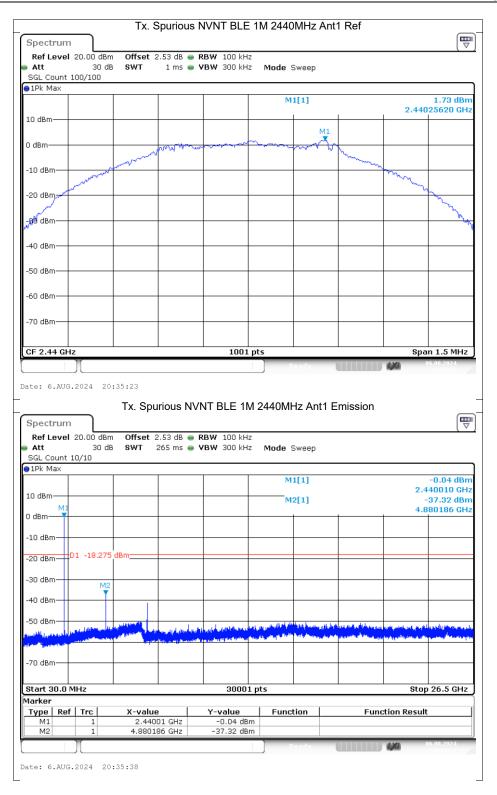
	PS	Test Grap D NVNT BLE 1M 2	hs 402MHz Ant1	
Spectrum				
Ref Level 20.00 a			-d- owner	()
SGL Count 10/10	dB SWT 11.2 m	ms 👄 VBW 10 kHz 🛛 M	ode Sweep	
●1Pk Max			M1[1]	-15.23 dBm
				2.40198690 GHz
10 dBm				
0 dBm				
-10 dBm				
10 dbiii		~ may month me		
-20 dBm	Werk Margan	V W MA Durchamon a	man hollockaller and	manyaling a
ւհՁզը գթա				annow Mary Marine Ma
-40 dBm				
-50 dBm				
60 JD-				
-60 dBm				
-70 dBm				
CF 2.402 GHz		1001 pts		Span 1.005 MHz
	PS	D NVNT BLE 1M 2	440MHz Ant1	
Spectrum Ref Level 20.00 o	dBm Offset 2.53 (dB 🖷 RBW 3 kHz		
Ref Level 20.00 d	dBm Offset 2.53 (dB 🖷 RBW 3 kHz	440MHz Ant1 ode Sweep	
Ref Level 20.00 a	dBm Offset 2.53 (dB 🖷 RBW 3 kHz	ode Sweep	
Ref Level 20.00 c Att 30 SGL Count 10/10 1Pk Max	dBm Offset 2.53 (dB 🖷 RBW 3 kHz		-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10	dBm Offset 2.53 (dB 🖷 RBW 3 kHz	ode Sweep	-14.75 dBm
Ref Level 20.00 c Att 30 SGL Count 10/10 1Pk Max	dBm Offset 2.53 (dB 🖷 RBW 3 kHz	ode Sweep	-14.75 dBm
Ref Level 20.00 c Att 30 SGL Count 10/10 IPK Max 10 dBm 0 dBm	iBm Offset 2.53 dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	ode Sweep	-14.75 dBm
Ref Level 20.00 C Att 30 SGL Count 10/10 1Pk Max 10 dBm 0 dBm -10 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPK Max 10 dBm 0 dBm -10 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	ode Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPK Max 10 dBm 0 dBm -10 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 d Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPK Max 10 dBm 0 dBm -10 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 d Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 d Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -40 dBm -50 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	dBm Offset 2.53 d dB SWT 11 r	B ● RBW 3 kHz ns ● VBW 10 kHz M	0de Sweep M1[1]	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 I Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm	dBm Offset 2.53 d dB SWT 11 r	dB RBW 3 kHz ns VBW 10 kHz M	ode Sweep	-14.75 dBm 2.439833850 GHz
Ref Level 20.00 c Att 30 SGL Count 10/10 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm	IBm Offset 2.53 (dB SWT 11 r	B ● RBW 3 kHz ns ● VBW 10 kHz M	ode Sweep	-14.75 dBm 2.439833850 GHz

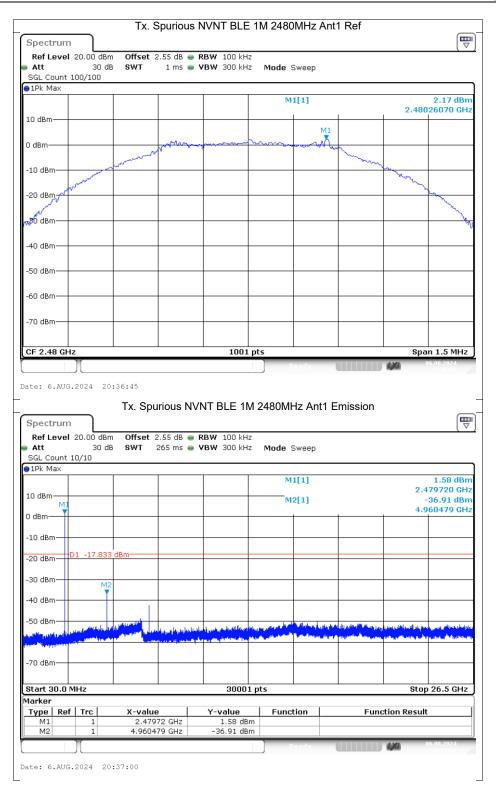
REPORT NO.: E04A24041131F00202 Page 57 of 67

Ref Level 20.00 dBm			e Sweep		```
SGL Count 10/10			0 000p		
IPK Max			M1[1]	2.48	-14.43 dBn 8001510 GH
10 dBm					+
D dBm					
-10 dBm		MI			
-20 dBm	mannan	man have been and the second	and margaren a	unique	_
wow AMM WW WWW C	•··· 1	urhunnymny fynn		a la way	Mangup
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.48 GHz		1001 pts		Span	1.005 MHz

Band	Edge					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-32.01	-20	Pass
NVNT	BLE 1M	2480	Ant1	-46.84	-20	Pass

Spectrum Ref Level : Att SGL Count 1 1Pk Max	20.00 dBm			IVINI BLE	1M 2402	MHz Ant1	Ref		G
Att SGL Count 1	20.00 dBm								
SGL Count 1	20 db			RBW 100 kH:					
1Pk Max	30 dB 00/100	SWT	1 ms 🔲 🕻	/BW 300 kH:	2 Mode 9	Sweep			
					м	1[1]		2 4022	1.01 dBr 5570 GH
10 dBm								2.4022	
					M1				
) dBm				- And	-4				
-10 dBm					<u> </u>				
-20 dBm									
-30 dBm		Λ							
M			\int	-J	l	γ			
-40 dBm						10	Л	n	
-50 dBm	h	d W	\mathcal{P}^{-}				WWW Dow	hand	han ha
-60 dBm	hymle	Vr1						- Andre	Ŵ
-70 dBm									
CF 2.402 GH	13			1001	nto				8.0 MHz
5F 2.402 GF				1001	prs			awa	.08.2024
Spectrum				NT BLE 1M		lz Ant1 Er	nission		E V
Ref Level 3 Att	30 dB			RBW 100 kH: /BW 300 kH:		Sweep			
SGL Count 1 1Pk Max	00/100								
					м	1[1]			0.53 dBr
10 dBm					M	2[1]			:5000 GH :2.37, dBr
D dBm						~[+]			0000 GH
-10 dBm									
-20 dBm - D	1 -18.991	dBm=							
-30 dBm									M3M2
.40 dBm									
								Π.,	1114
-50 dBm								<u>,</u> MI.	/// ^{**}
Chat hand	entruturdjin kriebte	an and think and the	andiologiphicit	ulanan latura Musi	ng mangan-g Kalini	handlethangahart	heryaan talkadhadhadhadh	Waamur M	
				1001	pts			Stop 2	.406 GHz
-70 dBm	GHz								
-70 dBm					1 -		_		
-70 dBm Start 2.306 Iarker Type Ref	Trc	X-value 2.4022		Y-value 0.53 dBr	Func m	tion	Func	tion Result	
-70 dBm		2.4022 2.			m m	tion	Func	tion Result	

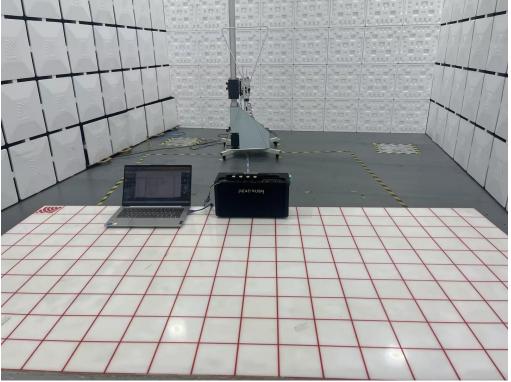

Spectrum			0	IVNT BLE					Ē
Spectrum Ref Level 20	L.00 dBm	Offset 🤉	.55 dB 👄 I	RBW 100 kH	z				7]
Att	30 dB 3	SWT		VBW 300 kH		Sweep			
SGL Count 100 1Pk Max)/100								
					М	1[1]			1.76 dBi
10 dBm						I	I	2.48	027170 GH
					M1				
) dBm				~~~	\sim $$				
				المر ا	\				
10 dBm									
20 dBm									
20 uBm				1					
30ndBm		$A \rightarrow$				N.			
λ				Y		r h			
40 dBm									
	A A	/ YI.				W	mm	n.	m
50 dBm	www	· "U1	(V).					mary	W
60 dBm									
70 dBm									+
CF 2.48 GHz				1001	pts			Spa	an 8.0 MHz
Spectrum		Band E				Iz Ant1 E	mission		
Spectrum Ref Level 20 Att	1.00 dBm 30 dB	Band E	.55 dB 😑 I	NT BLE 1M RBW 100 kH VBW 300 kH	z		mission		Ţ
Spectrum Ref Level 20 Att SGL Count 100	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Sweep	mission		T T
Spectrum Ref Level 20 Att SGL Count 100 1Pk Max	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s		mission	2.48	2.26 dBi
Spectrum Ref Level 20 Att SGL Count 100 1Pk Max	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Sweep	mission		2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 1Pk Max	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]	mission		2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 11Pk Max 10 dBm M1 0 dBm	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]	mission		2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 DIPk Max 10 dBm 10 dBm	1.00 dBm 1 30 dB 30 dB 30/100	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]	mission		2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 DIPk Max 10 dBm 10 dBm	1.00 dBm 30 dB	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]			2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 DIPk Max 10 dBm 10 dBm	1.00 dBm 1 30 dB 30 dB 30/100	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]			2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 10C 11PK Max M1 0 dBm 10 dBm 20 cBm D1	1.00 dBm 1 30 dB 30 dB 30/100	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]			2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 I1PK Max I0 dBm 10 dBm 20 dBm 10	1.00 dBm 1 30 dB 30 dB 30/100	Band E	.55 dB 😑 I	RBW 100 kH	z z Mode s	Gweep 1[1]			2.26 dBi 025000 GH -47.66 dBi
Spectrum Ref Level 20 Att SGL Count 100 10 HP Max 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 40 dBm 50 dBm	-18.238 dBr	Band E	.55 dB	RBW 100 kH	Z Mode S	Sweep 1[1] 2[1]		2.48	2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 10 HP Max 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 40 dBm 50 dBm	-18.238 dBr	Band E	.55 dB	RBW 100 kH	Z Mode S	Sweep 1[1] 2[1]		2.48	2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 1000 10 HR Max 0 dBm 10 dBm 20 cBm 10 dBm 20 cBm 10 dBm 20 cBm 9 dBm 40 dBm 50 dBm 60 dBm	-18.238 dBr	Band E	.55 dB	RBW 100 kH	Z Mode S	Sweep 1[1] 2[1]		2.48	2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 J1Pk Max 10 dBm 10 dBm 20 cBm 10 dBm 20 cBm 40 dBm 50 dBm 50 dBm 70 dBm 70 dBm	-18.238 dBr	Band E	.55 dB	RBW 100 kH	z Mode s M M	Sweep 1[1] 2[1]		2.48	2.26 dB) 025000 GH -47.66 dB 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 1Pk Max 10 dBm 10 dBm 1	-18.238 dBr	Band E	.55 dB	RBW 100 kH	z Mode s M M	Sweep 1[1] 2[1]		2.48	2.26 dB) 025000 GH -47.66 dB 350000 GH
Att SGL Count 100 91Pk Max 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm	-18.238 dBr	Band E		RBW 100 kH	2 Z Mode (M M	Sweep 1[1] 2[1]	erst Hudhaus	2.48	2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 IPR Max 10 dBm 20 dBm 20 dBm 10 dBm 20 dBm 20 dBm 40 dBm 50 dBm 50 dBm 60 dBm 70 dBm	-18.238 dBr	Band E Offset 2 SWT		RBW 100 kH VBW 300 kH	z Mode : M	Sweep 1[1] 2[1]	erst Hudhaus	2.48:	2.26 dBi 025000 GH -47.66 dBi 350000 GH
Spectrum Ref Level 20 Att SGL Count 100 IPK Max 10 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 10 dBm 20 dBm 40 dBm/rs 60 dBm 40 dBm/rs 60 dBm 70 dBm 370 dBm 38tart 2.476 GH Type Ref	-18.238 dBr	Swr Swr Swr Swr Swr Swr Swr Swr		RBW 100 kH	2 Z Mode 3 M M M M S S S S S S S S S S S S S S S	Sweep 1[1] 2[1]	erst Hudhaus	2.48:	2.26 dBi 025000 GH -47.66 dBi 350000 GH

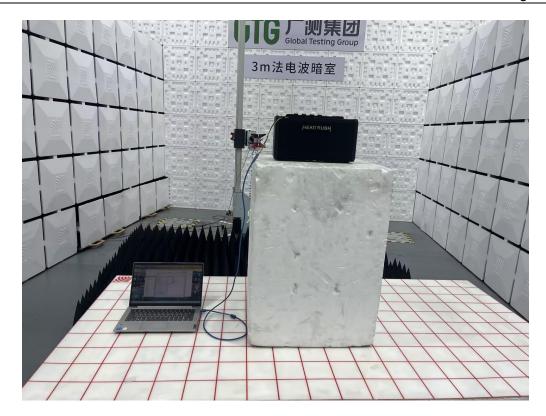

REPORT NO.: E04A24041131F00202 Page 61 of 67

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-38.75	-20	Pass
NVNT	BLE 1M	2440	Ant1	-39.05	-20	Pass
NVNT	BLE 1M	2480	Ant1	-39.08	-20	Pass

				Test	Graphs				
	_	Tx. 8	Spurious	NVNT BLI	= 1M 2402	2MHz Ar	nt1 Ref		_
Spectrum									
Ref Level			2.52 dB 😑	RBW 100 kH	łz				,
Att	30 dB	SWT	1 ms 😑	VBW 300 kH	z Mode	Sweep			
SGL Count 1 1Pk Max	.00/100								
DIPK Max					M	1[1]			1.14 dBn
						1[1]		2.4	1.14 dbh
10 dBm									
						M1			
0 dBm			w war war	- marine la	moren	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		
		mon	1			, in the second s	anno		
-10 dBm								- Marine	
	www.							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim
-20 dBm									- Marco
Ser 1									The second
-3 ^g dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.402 GH	17								pan 1.5 MHz
][]		irious N\	100 /NT BLE 1	1 pts	roady Hz Ant1	Emission	4,40	06.08.2024
ate: 6.AUG.	2024 20:	Tx. Spu		/NT BLE 1	M 2402MI	rody Hz Ant1	Emission	4,40	06.08.2024
	2024 20:	Tx. Spu	2.52 dB 👄		M 2402MH		Emission	4,40	06.08.2024
Spectrum Ref Level	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402MH		Emission	4,40	06.08.2024
Spectrum Ref Level Att SGL Count 1	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł ¹² ¹² Mode s	Sweep	Emission	4,40	06.08.2024
Spectrum Ref Level Att SGL Count 1	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł ¹² ¹² Mode s		Emission		06.08.2024 ₩ -1.21 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH
Spectrum Ref Level Att SGL Count 1 1Pk Max	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep	Emission		06.08.2024 ₩ -1.21 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm	2024 20: 20.00 dBm 30 dB	Tx. Spu	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm -10 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm	2024 20: 20.00 dBm 30 dB 0/10	Tx. Spu Offset 2 SWT	2.52 dB 👄	(NT BLE 1 RBW 100 kH	M 2402Mł łz łz Mode s	Sweep 1[1]	Emission		-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	2024 20: 20.00 dBm 30 dB 0/10	Tx. Spu Offset 2 SWT	2.52 dB	/NT BLE 1 RBW 100 kH VBW 300 kH	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB		M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms		M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms		M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms		M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms		M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn -1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level SGL Count 1 IDK Max ID dBm ID dB	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms	/NT BLE 1	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm Start 30.0 M Marker	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu	2.52 dB 265 ms	/NT BLE 1 RBW 100 kł yBW 300 kł 	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn -1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 M Marker Type Ref	2024 20: 20.00 dBm 30 dB 0/10 91 -18.855 M2 14. July 1Hz	Tx. Spu	2.52 dB • 265 ms • 26	/NT BLE 1 RBW 100 kł VBW 300 kł 	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn -1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 ID dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm Start 30.0 M Marker	2024 20: 20.00 dBm 30 dB .0/10	Tx. Spu Offset 2 SWT	2.52 dB 265 ms	/NT BLE 1 RBW 100 kł yBW 300 kł 	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn -1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH
Spectrum Ref Level Att SGL Count 1 IPk Max IO dBm I	2024 20: 20.00 dBm 30 dB 0/10 01 -18.855 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Tx. Spu Offset 2 SWT	2.52 dB 265 ms 265 m	/NT BLE 1 RBW 100 kH VBW 300 kH 	M 2402MH	Sweep 1[1] 2[1]			-1.21 dBn -1.21 dBn 2.402070 GH -37.61 dBn 4.803423 GH




APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

AC Power Line Conducted Emission

Radiated Band edge and Spurious Emission

END OF REPORT

TRF No.: 04-E001-0B

Global Testing , Great Quality.