

	-6
Report Reference No	
Date Of Issue	March 07, 2024
Testing Laboratory Name	
Address	101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China
Testing Location/ Procedure	Full application of Harmonised standards
	Partial application of Harmonised standards \Box
	Other standard testing method \Box
Applicant's Name	Shenzhen Moorechip Technologies Co.,Ltd 5th Floor, Education Industry Building, Zone 71, Xingdon Community, Xin'an Street, Bao'an District, Shenzhen, China
Test Specification:	
Standard	FCC 47CFR §2.1093, ANSI/IEEE C95.1-2019, IEEE 1528-2013
Test Report Form No	LCSEMC-1.0
TRF Originator	Shenzhen LCS Compliance Testing Laboratory Ltd.
Master TRF	Dated 2014-09
This publication may be reproduced	ting Laboratory Ltd. All rights reserved. in whole or in part for non-commercial purposes as long as the Shenzh
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's	in whole or in part for non-commercial purposes as long as the Shenzhy Ltd. is acknowledged as copyright owner and source of the material Laboratory Ltd. takes noresponsibility for and will not assume liability finterpretation of the reproduced material due to its placement and context
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing	in whole or in part for non-commercial purposes as long as the Shenzhy Ltd. is acknowledged as copyright owner and source of the material Laboratory Ltd. takes noresponsibility for and will not assume liability interpretation of the reproduced material due to its placement and context Retroid pocket
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's Test Item Description Trade Mark	in whole or in part for non-commercial purposes as long as the Shenzhy Ltd. is acknowledged as copyright owner and source of the material Laboratory Ltd. takes noresponsibility for and will not assume liability finterpretation of the reproduced material due to its placement and context Retroid pocket N/A
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's Test Item Description Trade Mark Model/Type Reference Ratings	in whole or in part for non-commercial purposes as long as the Shenzhy y Ltd. is acknowledged as copyright owner and source of the materi Laboratory Ltd. takes noresponsibility for and will not assume liability f interpretation of the reproduced material due to its placement and context Retroid pocket N/A Retroid Pocket 4 pro Input QC 5V=3A/PD 9V=2A DC 3.8V by Rechargeable Li-ion Battery, 5000mAh
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's Test Item Description Trade Mark Model/Type Reference	in whole or in part for non-commercial purposes as long as the Shenzhy y Ltd. is acknowledged as copyright owner and source of the materi Laboratory Ltd. takes noresponsibility for and will not assume liability f interpretation of the reproduced material due to its placement and context Retroid pocket N/A Retroid Pocket 4 pro Input QC 5V=3A/PD 9V=2A
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's Test Item Description Trade Mark Model/Type Reference Ratings	in whole or in part for non-commercial purposes as long as the Shenzhy y Ltd. is acknowledged as copyright owner and source of the materi Laboratory Ltd. takes noresponsibility for and will not assume liability f interpretation of the reproduced material due to its placement and context Retroid pocket N/A Retroid Pocket 4 pro Input QC 5V=3A/PD 9V=2A DC 3.8V by Rechargeable Li-ion Battery, 5000mAh
This publication may be reproduced LCS Compliance Testing Laborator Shenzhen LCS Compliance Testing damages resulting from the reader's Test Item Description Trade Mark Model/Type Reference Ratings Result	in whole or in part for non-commercial purposes as long as the Shenzhy y Ltd. is acknowledged as copyright owner and source of the materi Laboratory Ltd. takes noresponsibility for and will not assume liability f interpretation of the reproduced material due to its placement and context Retroid pocket N/A Retroid Pocket 4 pro Input QC 5V=3A/PD 9V=2A DC 3.8V by Rechargeable Li-ion Battery, 5000mAh Positive

i讯检测股份 CSTesting Lab	SAR TEST REF	CORTAN
Test Report No. :	LCSA02194080EB	March 07, 2024 Date of issue
EUT	: Retroid pocket	
Type/Model	: Retroid Pocket 4 pro	
Applicant Address Telephone Fax	: 5th Floor, Education Industr Community, Xin'an Street, E : /	hnologies Co.,Ltd y Building, Zone 71, Xingdong Bao'an District, Shenzhen, China
Manufacturer	: Shenzhen Moorechip Tecl	hnologies Co.,Ltd
Address Telephone Fax	Community, Xin'an Street, E	y Building, Zone 71, Xingdong 3ao'an District, Shenzhen, China
Factory	: Room 202, Building 1, No. 8,	ics Co., Ltd Chashan Section, Boyan Road, ity, Guangdong Province, China
Telephone Fax		The co

15	立訊检测股份 Lics Testing Lab	KS 立讯检测器的	History Ksi cs Testing Lab	KST LCS Testin	g化的 g Lab
	Revision	Issue Date	Revision Content	Revised By	
	000	March 07, 2024	Initial Issue		

立讯检测股份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

立讯检测展份 LCS Testing Lab

上式 並訊检測股份 LCS Testing Lab

立涡检测展份 LCS Testing Lab

上CS Testing Lab

在新检测股份 LCS Testing Lab

	一绘测股份	TABLE OF CONTENTS	一会测股份
1 TES	T STANDARDS AND TEST DESCR	IPTION.	T itlnsting La
		101101	- 109
1.1.			
1.2.			
1.3.			
1.4. 1.5.			
1.5. 1.6.			
1.6.			
1.7.			
1.8. 1.9.			
2. SAR	MEASUREMENTS SYSTEM CON	FIGURATION	
2.1.	SAR MEASUREMENT SYSTEM	The Les Lesting Leb	上田检测 ^{B2} Lab 13
2.2.	ISOTROPIC E-FIELD PROBE EX3DV4	I Testing	15
2.3	DATA ACOUISITION ELECTRONICS (DA	AE)	16
2.4.			
2.5.			
2.6.			
2.7.			
3. SAR	MEASUREMENT VARIABILITY	AND UNCERTAINTY	
3.1.	SAR MEASUREMENT VARIABILITY		23
3.2.			
4. DES	CRIPTION OF TEST POSITION	-243	
4.1.	TEST POSITIONS CONFIGURATION	会测度"	
1 Cat	EXCEPTION VEDIELON TION PROCE	DURE	Title Testing La
5. SAK	SYSTEM VERIFICATION PROCE	DURE	
5.1.	TISSUE SIMULATE LIQUID	The co	
5.2.	SAR SYSTEM CHECK		
6. SAR	MEASUREMENT PROCEDURE		
6.1.	CONDUCTED POWER MEASUREMENT		29
6.2.			
6.3.			
6.4.			
7. IES	I CONDITIONS AND RESULTS	- 113	- 113
7.1.	CONDUCTED POWER RESULTS	「 「 「 「 「 」 に S Testing Lab	
7.2.	STAND-ALONE SAR TEST EVALUATION	This the suma Law	
7.3.	SAR MEASUREMENT RESULTS	ST LCS 10	
7.4.	MULTIPLE TRANSMITTER EVALUATION	J	
APPEN	NDIX A: DETAILED SYSTEM CHE	CK RESULTS	
APPEN	NDIX B: DETAILED TEST RESULT	`S	41
		САТЕ	
APPEN	NDIX D. PHOTOCRAPHS		63
738 B 191			

立讯检测股份 LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

The maximum of results of SAR found during testing for Retroid Pocket 4 pro are follows:

<Highest Reported standalone SAR Summary>

Classment Class	Frequency Band	Body (Report SAR1-g (W/kg)
01035	Danu	(Separation Distance 0mm)
DTS esting Lab	WIFI2.4G-ANT1	0.535 mar Lab
LCSTesting	WIFI2.4G-ANT2	0.633

Note

1) This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47CFR §2.1093 and IEEE Std C95.1, 2019, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013.

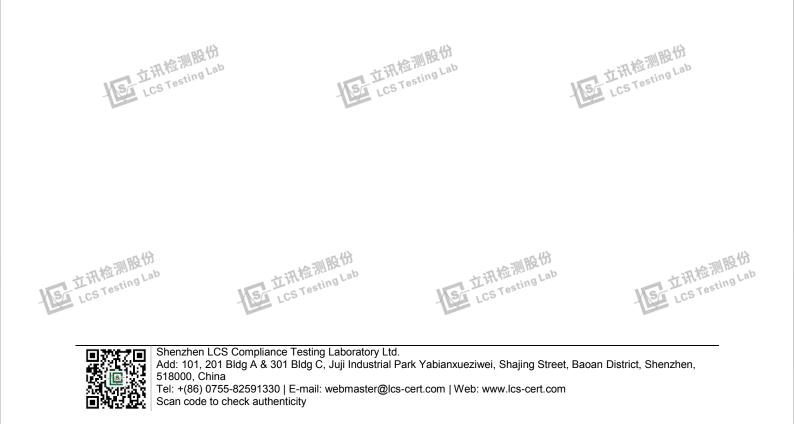
<Highest Reported simultaneous SAR Summary>

Exposure Position	Classment Class	Body (Report SAR1-g (W/kg)	Highest Reported Simultaneous Transmission SAR1-g (W/kg)
Pody	DTS	0.535	1.168
Body	DTS	0.633	1.100

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com Scan code to check authenticity

FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. Test Firm Registration Number: 254912.

1.4. Test Laboratory Environment


Page 7 of 66

A TIM BE DI	人而川月之下	A THIRD IN	A TIM BE TOJ
Temperature	THAT Ing Lab	Min. = 18°C, Max. = 25 °C	30%, Max. = 70% Solution Ω Solution 050mbar ce with requirement of standards.
Relative humidity	ST LCS TO	Min. = 30%, Max. = 70%	ST LCS TE
Ground system resistance		Min. = 30%, Max. = 70%< 0.5Ω 950-1050mbarand in compliance with requirement of standards.	
Atmospheric pressure:	ative humidityMin. = 30%, Max. = 70%und system resistance< 0.5Ω		
	2	• •	

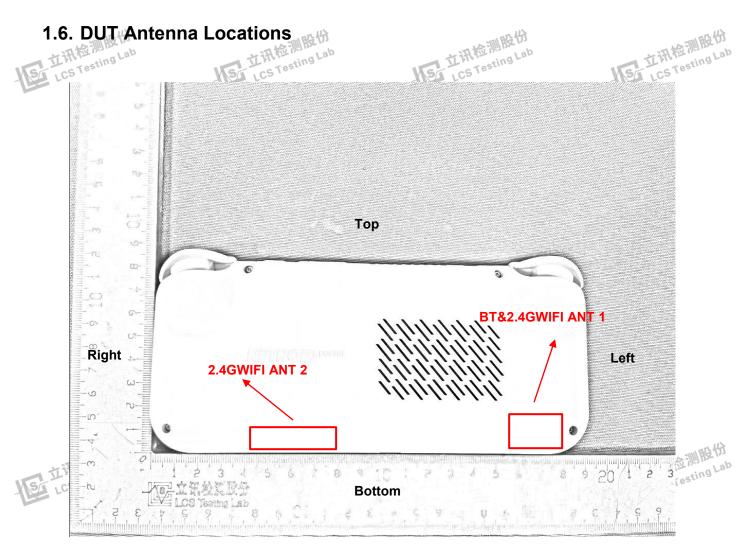
- 112

~ 112

objects is minimized and in compliance with requirement Reflection of surrounding

立讯检测股份 立讯检测股份 ting Lab sting Lab 立讯检测 Lab The Shenzhen Moorechip Technologies Co.,Ltd 's Model: Retroid Pocket 4 pro or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

EUT Test Model Additional Model No. Model Declaration Power Supply Hardware Version Software Version Bluetooth	 Retroid pocket Retroid Pocket 4 pro Retroid Pocket 4, HQ-M8,HQ-M8P PCB board, structure and internal of these model(s) are the same, So no additional models were tested Input QC 5V=3A/PD 9V=2A DC 3.8V by Rechargeable Li-ion Battery, 5000mAh V1.2 V1.0.016
Bidotootii	
Frequency Range Channel Number	 : 2402MHz~2480MHz : 79 channels for Bluetooth V5.0(DSS) 40 channels for Bluetooth V5.0 (DTS)
Channel Spacing	: 1MHz for Bluetooth V5.0 (DSS) 2MHz for Bluetooth V5.0 (DTS)
Modulation Type	: GFSK, π/4-DQPSK, 8-DPSK for Bluetooth V5.0(DSS) GFSK for Bluetooth V5.0 (DTS)
Bluetooth Version Antenna Description	
WIFI(2.4G Band)	: PIFA Antenna, 2.0dBi(Max.)
Frequency Range	: 2412MHz~2462MHz
Channel Number	 24 12MH2~2402MH2 11 Channels for 20MHz bandwidth (2412~2462MHz) 7 Channels for 40MHz bandwidth (2422~2452MHz)
Channel Spacing	: 5MHz
Modulation Type	: IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Antenna Description	: Antenna0: PIFA Antenna, 2.0dBi(Max.) Antenna1: PIFA Antenna, 2.0dBi(Max.)
Exposure category	: Uncontrolled Environment General Population
Exposure category	: Uncontrolled Environment General Population



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Rear view

According to the WIFI&BT antennas we can draw the conclusion that:

EUT Sides for SAR Testing							
Mode	Exposure Condition	Front	Back	Left	Right	Тор	Bottom
WIFI 2.4G /BT Ant0	Body 1g SAR	Yes	Yes	Yes	No LC	No	Yes
WIFI 2.4G Ant1	Body 1g SAR	Yes	Yes	No	Yes	No	Yes

EUT Sides for SAR Testing Note:

When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

LCS Testing Lab

Identity	Document Title
FCC 47CFR §2.1093	Radiofrequency Radiation Exposure Evaluation: Portable Devices
ANSI/IEEE C95.1-2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.
IEEE 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
KDB 248227 D01 A 12 Miles Lab	SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r02
KDB 447498 D01	General RF Exposure Guidance v06
KDB 865664 D01	SAR Measurement 100 MHz to 6 GHz v01r04
KDB 865664 D02	RF Exposure Reporting v01r02
KDB 690783 D01	SAR Listings on Grants v01r03

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

1.8. RF exposure limits

1.8. RF exposure limits	· · · · · · · · · · · · · · · · · · ·	设份
Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain*Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g
lotes:	+ HI I ALab	+ in the Man Lab

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

** The Spatial Average value of the SAR averaged over the whole body.

*** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation.)

上 立讯检测股份 LCS Testing Lab

上CS Testing Lab

正示Testing Lab

1.9. Equipment list

Test	t Platform	SPEA	G DASY5 Profes	sional	THIRE	Lap	TLIR HE IN	h
	cription		est System (Free		0MHz-6GHz)		ST LCS Test	
Soft	ware Reference	DASY	52; SEMCAD X					
			Harc	ware Reference	e			
	Equipment		Manufacturer	Model	Serial Number	Calibration Date	Due date of calibration	
\boxtimes	PC		Lenovo	NA	NA	NA	NA	
\boxtimes	Twin Phantom		SPEAG	SAM V5.0	1850	NCR	NCR	
\boxtimes	ELI Phantom		SPEAG	ELI V6.0	2010	NCR	NCR	
\boxtimes	DAE	uх	SPEAG	DAE3	373	2024/1/3	2025/1/2	
\boxtimes	E-Field Probe	rsp D	SPEAG	EX3DV4	ab 3805	2023/11/23	2024/11/22	Ì
\boxtimes	Validation Kits		SPEAG 👔	D2450V2	808	2023/10/23	2026/10/22	Ì
\boxtimes	Agilent Network Ana	alyzer	Agilent	8753E	SU38432944	2023/6/9	2024/6/8	Ì
\boxtimes	Dielectric Probe	Kit	SPEAG	DAK3.5	1425	NCR	NCR	
\bowtie	Universal Radio Communication Te		R&S	CMW500	42115	2023/10/29	2024/10/28	
\boxtimes	Directional Coup	ler	MCLI/USA	4426-20	03746	2023/6/9	2024/6/8	Ì
\boxtimes	Power meter		Agilent	E4419B	MY45104493	2023/10/29	2024/10/28	l
\boxtimes	Power meter		Agilent	E4419B	MY45100308	2023/10/29	2024/10/28	l
\boxtimes	Power sensor		Agilent	E9301H	MY41495616	2023/10/29	2024/10/28	
\boxtimes	Power sensor		Agilent	ь E9301H	MY41495234	2023/10/29	2024/10/28	9
\boxtimes	Signal Generato	or 📢	Agilent	E4438C	MY49072627	2023/6/9	2024/6/8	10
\boxtimes	Broadband Preamp	lifier	1	BP-01M18G	P190501	2023/6/15	2024/6/14	1
\boxtimes	DC POWER SUPP	ΡLΥ	I-SHENG	SP-504	NA	NCR	NCR	1
\triangleleft	Speed reading thermometer		HTC-1	NA	LCS-E-138	2023/6/13	2024/6/12	1

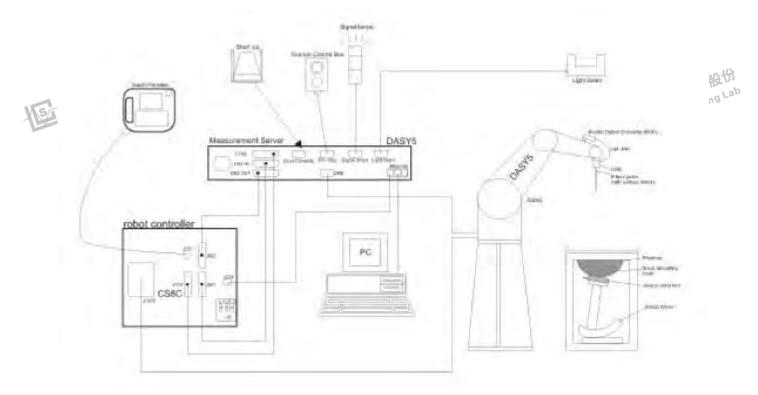
Note: All the equipments are within the valid period when the tests are performed.

上CS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

2.1. SAR Measurement System


LCS Testing Lab 2.1. SAR Measurement System This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= ζ (|Ei|2)/ ρ where ζ and ρ are the conductivity and mass density of the tissue-Simulate.

The DASY5 system for performing compliance tests consists of the following items: A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. 则股份 股份

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.

F-1. SAR Measurement System Configuration

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. 在前检测度份 LCS Testing Lab

A probe alignment unit which improves the (absolute) accuracy of the probe positioning. ST LCS Testing

A computer operating Windows 7.cs Testing

DASY5 software.

- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system. .

上云 立 讯 检测 股份

上的 LCS Testing Lab

在近天检测股份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

在新检测股份 LCS Testing Lab

品份

品份

2.2. Isotropic E-field Probe EX3DV4

	一, 他, 那, 他, 他,	· · · · · · · · · · · · · · · · · · ·
Contraction of the second		Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
	Calibration	ISO/IEC 17025 <u>calibration service</u> available.
	Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
	Directivity	± 0.3 dB in TSL (rotation around probe axis) ± 0.5 dB in TSL (rotation normal to probe axis)
	Dynamic Range	10 μW/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
	Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
	Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Per	Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

2.3. Data Acquisition Electronics (DAE)

	2.3. Data Acquis	sition Electronics (DAE)	· 你测股份
S	Model	DAES LOS Testing Lab	s sting Lab
	Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
	Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)	
	Input Offset Voltage	s< 5μV (with auto zero)	
	Input Bias Current	< 50 f A	
	Dimensions	60 x 60 x 68 mm	

2.4. SAM Twin Phantom

Material	Vinylester, glass fiber reinforced (VE- GF)	P	
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)		则服份
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	I IIIII	sting Lab
Dimensions (incl. Wooden Support)	Length: 1000 mm Width: 500 mm Height: adjustable feet		
Filling Volume	approx. 25 liters	-	
Wooden Support	SPEAG standard phantom table		
The shell corresponds	to the specifications of the Specific Anthro	nomorphic Mannaquin (SAM) phantom	

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions ting Lab and measurement grids by teaching three points with the robot. 立计作

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

2.5. ELI Phantom

测股份
tingL
1

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.

F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

正訊检测股份 LCS Testing Lab 立讯检测股份 LCS Testing Lab 正立讯检测股份 LCS Testing Lab 正式和检测股份 LCS Testing Lab 上CS Testing Lab 医立流检测股份 LCS Testing Lab 医拉诺检测股份 LCS Testing Lab Shenzhen LCS Compliance Testing Laboratory Ltd.

2.7. Measurement procedure 2.7.1. Scanning procedure

上了LCS Testing Lab

Step 1: Power reference measurement

The "reference" and "driff" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure.

Step 2: Area scan

The SAR distribution at the exposed side of the head was measured at a distance of 4mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm*15mm or 12mm*12mm or 10mm*10mm.Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Zoom scan

Around this point, a volume of 32mm*32mm*30mm (f≤2GHz), 30mm*30mm*30mm (f for 2-3GHz) and 24mm*24mm*22mm (f for 5-6GHz) was assessed by measuring 5x5x7 points (f≤2GHz), 7x7x7 points (f for 2-3GHz) and 7x7x12 points (f for 5-6GHz). On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the centre of the dipoles is 2.0mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification). The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The volume was integrated with the trapezoidal algorithm. One thousand points were interpolated to calculate the average. All neighbouring volumes were evaluated until no neighboring volume with a higher average value was found.

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the postprocessing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std. 1528-2013.

在现在测度份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

上CS Testing Lab

上CS Testing Lab

Report No.: LCSA02194080EB

				\leq 3 GHz	> 3 GHz			
				Maximum distance from closest measurement point geometric center of probe sensors) to phantom surface		$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	立讯检测度份 LCS Testing Lab
1	Maximum probe angle surface normal at the n			30°±1°	20°±1°	LCSTestins		
				$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ $2 - 3 \text{ GHz:} \leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 12 \text{ mm} \\ 4-6 \text{ GHz:} \leq 10 \text{ mm} \end{array}$			
	Maximum area scan sp	atial resolu	ution: Δx_{Area} , Δy_{Area}	When the x or y dimension o measurement plane orientation the measurement resolution r x or y dimension of the test d measurement point on the test	on, is smaller than the above, nust be ≤ the corresponding levice with at least one			
	Maximum zoom scan s	aximum zoom scan spatial resolution: Δx_{zoom} , Δy_{zoom}		$ \le 2 \text{ GHz:} \le 8 \text{ mm} \qquad 3 - 4 \text{ GHz:} \le 5 \text{ mm}^* \\ 2 - 3 \text{ GHz:} \le 5 \text{ mm}^* \qquad 4 - 6 \text{ GHz:} \le 4 \text{ mm}^* $		股份 ng Lab		
		uniform grid: $\Delta z_{Zoom}(n)$		$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \ \text{GHz:} \leq 4 \ \text{mm} \\ 4-5 \ \text{GHz:} \leq 3 \ \text{mm} \\ 5-6 \ \text{GHz:} \leq 2 \ \text{mm} \end{array}$	<i>ug ~</i> .		
	Maximum zoom scan spatial resolution, normal to phantom surface	graded	$\Delta z_{Z_{000m}}(1)$: between 1 st two points closest to phantom surface	$\leq 4 \text{ mm}$	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm			
	grid ∆z _{Zoom} (n>1): between subsequent points		<u>≤</u> 1.5·∆z					
1	Minimum zoom scan volume	x, y, z		\geq 30 mm	$3 - 4 \text{ GHz} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz} \ge 22 \text{ mm}$	L立讯检测股份 LCS Testing Lab		

Step 4: Power reference measurement (drift)

The Power Drift Measurement job measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %

2.7.2. Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [m W/g], [m W/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

2.7.3. Data Evaluation by SEMCAD 讯检测股份

口讯检测股份 讯检测股份 口检测 Lab Lab Lab The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensiti	vity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi	
- Diode compression point	Dcpi	
Device parameters: - Freque	ency	f
- Crest factor	cf	
Media parameters: - Condu	ctivity	3
- Density	ρ	

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DCtransmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

 $V_i = U_i + U_i^2 \cdot c f / d c p_i$

 $V_i = U_i + U_i \cdot c f / a c p_i$ With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_{i} = (V_{i} / Norm_{i} \cdot ConvF)^{1/2}$

正式和检测股份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

医立闭检测股份 LCS Testing Lab

在京和检测股份 LCS Testing Lab

H-field probes: 正式和检测股份 LCS Testing Lab (i = x, y, z) 工计社会制度优于 LCS Testing Lat $H_{i} = (V_{i})^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^{2})/f$ With Vi = compensated signal of channel i Normi = sensor sensitivity of channel I (i = x, y, z) (i = x, y, z) [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution aij = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$ The primary field data are used to calculate the derived field units. LCS Testi

$SAR = (Etot^2 \cdot \sigma) / (\varepsilon \cdot 1000)$

Htot = total magnetic field strength in A/m

SAR = local specific absorption rate in mW/g with Etot = total field strength in V/m ζ = conductivity in [mho/m] or [Siemens/m] ε= equivalent tissue density in g/cm3

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

与立闭检测度份 LCS Testing Lab $P_{pwe} = E_{tot}^{2} / 3770 \text{ or } P_{pwe} = H_{tot}^{2} \cdot 37.7$ 立讯检测股份 LCSTestingLab with Ppwe = equivalent power density of a plane wave in mW/cm2 Etot = total electric field strength in V/m

医立闭检测股份 LCS Testing Lab 写立讯检测股份 LCS Testing Lab 正式讯检测股份 LCS Testing Lab

SAR measurement variability and uncertainty 3. 立讯检测股份

3.1. SAR measurement variability

立讯检测股份 esting Lab 3.1. SAR measurement variability Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4)

do not apply. 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

3.2. SAR measurement uncertainty

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Description of Test Position 4.1. Test Positions Configuration

立讯检测股份 立讯检测股份 sting Lab esting Lab Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations.

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a estingLab resting Lab 立讯检 headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

Scan code to check authenticity

纷 Lab

Report No.: LCSA02194080EB

SAR System Verification Procedure 这一位讯检测股份 LCS Testing Lab

5.1. Tissue Simulate Liquid

5.

5.1.1. Recipes for Tissue Simulate Liquid

上CS Testing Lab The bellowing tables give the recipes for tissue simulating liquids to be used in different frequency bands:

Ingredients	Frequency (MHz)							
(% by weight)	450	700-900	1750-2000	2300-2500	2500-2700			
Water	38.56	40.30	55.24	55.00	54.92			
Salt (NaCI)	3.95	1.38	0.31	0.2	0.23			
Sucrose	56.32	57.90	0	0	0			
HEC	0.98	0.24	0	0	0			
Bactericide	0.19	0.18	0	0	0			
Tween	0	0	44.45	44.80	44.85			
Salt: 99*% Pure Sodium ChlorideSucrose: 98*% Pure SucroseWater: De-ionized, 16 MΩ* resistivityHEC: Hydroxyethyl CelluloseTween: Polyoxyethylene (20) sorbitan monolaurateHEC: Hydroxyethyl Cellulose								
HSL5GHz is com	posed of the follow	ving ingredients:						
Water: 50-65%								
Mineral oil: 10-30%								
Emulsifiers: 8-25%								
Sodium salt: 0-1	.5%							

Table 1: Recipe of Tissue Simulate Liquid

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

5.1.2. Measurement for Tissue Simulate Liquid

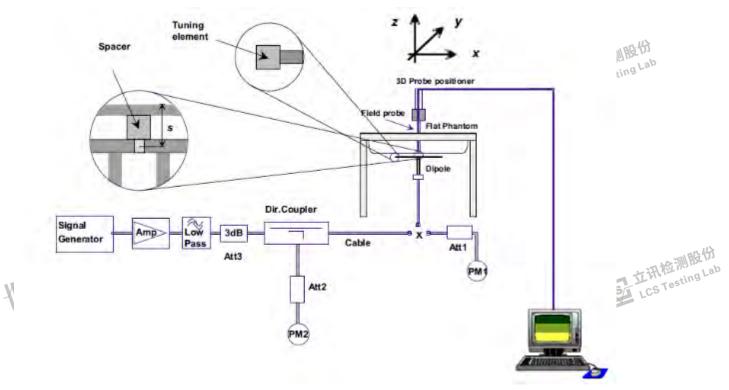
测股份 则股份 The dielectric properties for this Tissue Simulate Liquids were measured by using the DAKS. The Conductivity (ζ) and Permittivity (p) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2°C.

	Measured	Target Tissue (±5%)		Measured Tissue		Liquid	Measured	
Tissue Type	Frequency (MHz)	٤ _r	σ(S/m)	٤ _r	σ(S/m)	Temp. (℃)	Date	
2450 Head	2450	39.2 (37.24~41.16)	1.8 (1.71~1.89)	39.563	1.836	22.6	March 06, 2024	

Table 2: Measurement result of Tissue electric parameters

正式和检测股份 LCS Testing Lab

上CS Testing Lab



Page 27 of 66

立讯检测股份 立讯检测股份 sting Lab ting Lab The microwave circuit arrangement for system Check is sketched in F-1. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

F-1. the microwave circuit arrangement used for SAR system check

5.2.1. Justification for Extended SAR Dipole Calibrations

1) Referring to KDB865664 D01 requirements for dipole calibration, instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.

- a) There is no physical damage on the dipole;
- System check with specific dipole is within 10% of calibrated value; b)
- Return-loss is within 20% of calibrated measurement; C)

Scan code to check authenticity

Impedance is within 5Ω from the previous measurement. d)

2) Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

立讯检测股份 LCS Testing Lab

5.2.2 Summary System Check Result(s)

5.2.2. Summary System Check Result(s)						milE	设份		一服份
Validation Kit		Measured SAR			Measured SAR	Target SAR (normalized			
		250mW 250mW		(normalized to 1W)	(normalized to 1W)	to 1W) (±10%)	to 1W (±10%)	Temp. (℃)	Measured Date
		1g (W/kg)	10g (W/kg)	1g (W/kg)	10g (W/kg)	1-g(W/kg)	10-g(W/kg)		
D2450V2	Head	12.90	5.91	51.60	23.64	53.5 (48.15~58.85)	24.8 (22.32~27.28)	22.6	March 06, 2024

Table 3: Please see the Appendx A

立讯检测股份 LCS Testing Lab

上CS Testing Lab

位于立讯检测股份 LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

上立讯检测股份

SAR measurement procedure

The measurement procedures are as follows:

6.1. Conducted power measurement

15 立洲检测股份 ICS Testing Lab LCS Testing Lab a. For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously Transmission, at maximum RF power in each supported wireless interface and frequency band. b. Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power.

6.2. WIFI Test Configuration

For WiFi SAR testing, a communication link is set up with the testing software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Per KDB 248227D01, a minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The repotted SAR must be scaled to 100% transmission duty factor to determine LCS Testing ST LCS Testing compliance at the maximum tune-up tolerance limit.

LCS

6.2.1. Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or IJMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated(peak) SAR is used as the initial test position. When reported SAR for the <u>initial test position</u> is ≤ 0.4 W/kg, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is ≤ 0.8W/kg or all test position are measured. For all positions/configurations tested using the initial test position and subsequent test positions, when the repotted SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the 立讯检测股份 subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required LCS Testing Lab LCS Testing Lab LCS Testing Lab 立讯检 channels are tested. ST LCS Tes

6.2.2. Initial Test Configuration Procedure

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth. modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration. For next to the ear, hotspot mode and CIMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the repotted SAR is ≤ 1.2 W/kg or all required channels are tested.

6.2.3. Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802 11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.

When the highest reported SAR for the initial test configuration, according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test <u>configuration</u> specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration. LCS Testing Lab LCS Testing Lab LCS Testing Lab 立讯检测

LCSTE

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

6.2.4. WiFi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements. DSSS SAR procedure applies to fixed LCS Testing Lab DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

a) 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KD8 248227D01) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel, is all channels require testing. LCS Testing Lab LCSTesting IN third channel; i.e., all channels require testing. Th **KS**A S

b) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KD8 248227D01 SAR is not required for the following 2.4 GHz OFDM conditions.

1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.

2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

c) SAR Test Requirements for OFDM configurations

是立讯检测股份 股份 frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-I and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFOM SAR requirements. If the highest repotted SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.

2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.

3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power cetified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

6.2.6. U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47-5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. when Terminal Doppler Weather Radar (TOWR) restriction applies, the channels at 5.60-5.65 GHz in U-NII-2C band must be disabled with acceptable mechanisms and documented in the equipment certification to avoid SAR requirements. 10 TOWR restriction does not apply under the new rules; all channels that operate at 5.60-5.65 GHz must be included to apply the SAR test reduction and measurement procedures.

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the bower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47-5.85 GHz), which requires a mihimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to support SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

FCC ID: 2BFEN-HQ-M8P

LCS Testing Lab

6.2.7. OFDM Transmission Mode SAR Test Channel Selection Requirements

For 2.4 GHz and 5 GHz bands, When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations(for example 802.11a, 802.11n and 802.11ac, or 802.11g and 802.11n, with the same channel bandwidth, modulation, and data rate, etc), the lower order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac, or 802.11g is chosen over 802.11n) is used for SAR measurement.

When the maximum output power are the same for multiple test channel, either according to the default or additional power measurement requirement, SAR is measured using the channel closest to the middle of the frequency band or aggregted band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

6.3. Power Reduction

The product without any power reduction.

6.4. Power Drift

To control the output power stability during the SAR test, SAR system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. This ensures that the power drift during one measurement is within 5%.

正況检测股份 LCS Testing Lab

TEST CONDITIONS AND RESULTS

7.1. Conducted Power Results

7.

立讯检测股份 立讯检测股份 sting Lab stingLab According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1 2) states that "Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement, such as FRS and certain Part 15 transmitters with built-in integral antennas, the maximum output power allowed for production units should be used to determine RF exposure test exclusion and compliance."

7.1.1. Conducted Power Measurement Results(WIFI 2.4G)

	THINK	份	而服伤	A lime and	设份
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	b	2412	Ant1	15.34	16.00
NVNT	b	2437	Ant1	14.51	15.00
NVNT	b	2462	Ant1	14.49	15.00
NVNT	g	2412	Ant1	14.68	15.00
NVNT	g	2437	Ant1	14.65	15.00
NVNT	g	2462	Ant1	14.25	15.00
NVNT	n20	2412	Ant1	13.29	14.00
NVNT	n20	2437	Ant1	13.76	14.50
NVNT	🕅 n20	2462	Ant1	13.12	13.50
NVNT	Lab n40	2422 Aurosting Lab	Ant1	12.98	13.50 g Lab
NVNT	n40	2437	Ant1	13.02	LCS 13.50
NVNT	n40	2452	Ant1	13.17	13.50

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
NVNT	b	2412	Ant2	15.14	15.50
NVNT	b	2437	Ant2	15.85	16.50
NVNT	b	2462	Ant2	15.39	16.00
NVNT	g	2412	Ant2	14.28	15.00
NVNT	g mill	2437	Ant2	14.11	份 14.50
NVNT	LIA g ting	Lab 2462	THAnt2 10	b 13.73 古讯位 / · · · · · · · · · · · · · · · · · ·	14.00 JLab
NVNT	CSn20	2412	Ant2	13.55 ST LCS Testin	14.00
NVNT	n20	2437	Ant2	13.15	13.50
NVNT	n20	2462	Ant2	12.92	13.50
NVNT	n40	2422	Ant2	12.78	13.50
NVNT	n40	2437	Ant2	12.04	12.50
NVNT	n40	2452	Ant2	12.70	13.00

正式和检测股份 LCS Testing Lab

正式很检测股份 LCS Testing Lab

医在前检测股份 LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

MIMO

Condition	Mode			Tune up		
	wode	Frequency (MHz)	ANT1	ANT2	ANT1+ANT2	rune up
NVNT	n20	2412	13.29	13.55	16.43	17.00
NVNT	n20	2437	13.76	13.15	16.48	17.00
NVNT	n20	2462	13.12	12.92	16.03	16.50
NVNT	n40	2422	12.98	12.78	15.89	16.50
NVNT	n40	2437	13.02	12.04	15.57	16.00
NVNT	n40	2452	13.17	12.70	15.95	16.50

Note:

a) Power must be measured at each transmit antenna port according to the DSSS and OFDM transmission configurations in each standalone and aggregated frequency band.

b) Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units.

1) When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.

2) When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

c) For each transmission mode configuration, power must be measured for the highest and lowest channels; and at the mid-band channel(s) when there are at least 3 channels. For configurations with multiple mid-band channels, due to an even number of channels, both channels should be measured.

WIFI 2.4G (802.11b):

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

7.1.2. Conducted Power Measurement Results(Bluetooth)

1.2. Conducted Power M		easurement Results(Bluetooth)	古田检测服		
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up	
NVNT	1-DH5	2402	Ant1	0.50	1.00	
NVNT	1-DH5	2441	Ant1	0.49	1.00	
NVNT	1-DH5	2480	Ant1	0.55	1.00	
NVNT	2-DH5	2402	Ant1	-0.20	0.50	
NVNT	2-DH5	2441	Ant1	0.30	1.00	
NVNT	2-DH5	2480	Ant1	0.34	1.00	
NVNT	3-DH5	2402	·····································	-0.17	股份 0.50	
NVNT	3-DH5	2441	sting Lab Ant1	0.38	ing Lab 1.00	
NVNT	3-DH5	2480	Ant1	0.41 LCS	1.00	

BI F

TestMode	Antenna	Frequency (MHz)	Antenna	Conducted Power (dBm)	Tune up
		2402	Ant1	-0.11	0.50
BLE 1M	Ant1	2440	Ant1	0.36	1.00
可检测股份		2480	Ant1	0.09	0.50
ST LCS Testing Lat	NG.	2402	Ant1 IL MILESTest	ing Lan -1.12	1-0.50 sting La
BLE 2M	Ant1	2440	Ant1	-1.98	-1.50
-		2480	Ant1	-1.60	-1.00

立讯检测股份 LCS Testing Lab

立讯检测股份 LCS Testing Lab

7.2. Stand-alone SAR test evaluation 立讯检测 立讯检测

立讯检测股份 立讯检测股份 Testing Lab stingLab sting Lab Unless specifically required by the published RF exposure KDB procedures, standalone 1-g head or body and Product specific 10g SAR evaluation for general population exposure conditions, by measurement or numerical simulation, is not required when the corresponding SAR Test Exclusion Threshold condition is satisfied. These test exclusion conditions are based on source-based time-averaged maximum conducted output power of the RF channel requiring evaluation, adjusted for tune-up tolerance, and the minimum test separation distance required for the exposure conditions.

Freq. Band	Frequency (GHz)	Position	Average Power		Test Separation (mm)	Calculate Value	Exclusion Threshold	Exclusion (Y/N)
Ballu	(612)		dBm	mW	(1111)	value	Theshold	(1/N)
Bluetooth	2.48	Body	1.0	1.26	5	0.397	3	Y
14·测度[7]						(T)		

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: cs 1 CS ST LCS T

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f}(GHz)] \le 3.0$ for 1g SAR and \leq 7.5 for 10-g extremity SAR, where

• f(GHz) is the RF channel transmit frequency in GHz

· Power and distance are rounded to the nearest mW and mm before calculation

• The result is rounded to one decimal place for comparison

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

LCS Testing Lab

7.3. SAR Measurement Results

The calculated SAR is obtained by the following formula:

LCS

Reported SAR=Measured SAR*10^{(Ptarget-Pmeasured))/10} Scaling factor=10^{(Ptarget-Pmeasured))/10} Reported SAR= Mac

Reported SAR= Measured SAR* Scaling factor

Where

P_{target} is the power of manufacturing upper limit;

P_{measured} is the measured power;

Measured SAR is measured SAR at measured power which including power drift) Reported SAR which including Power Drift and Scaling factor

7.3.1. SAR Results [WIFI 2.4G]

			S	AR Values [W	IFI 2.4G]-ANT1				
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR₁-g res	ults(W/kg)
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported
			measured / rep	orted SAR nun	nbers - Body (di	istance 0mm)			
1/2412	802.11b	Front side	1.004	15.34	16.00	0.09	1.164	0.201	0.235
1/2412	802.11b	Rear side	1.004	15.34	16.00	0.03	1.164	0.458	0.535
1/2412	802.11b	Left side	1.004	15.34	16.00	-0.15	1.164	0.114	0.133
1/2412	802.11b	Bottom side	1.004	15.34	16.00	0.12	1.164	0.298	0.348

			S	AR Values [WI	FI 2.4G]-ANT2				
Ch/	Channel	Test	Duty Cycle	Conducted	Maximum Allowed	PowerDrift	Scaling	SAR _{1-g} res	ults(W/kg)
Freq. (MHz)	Туре	Position	Factor	Power (dBm)	Power (dBm)	(%)	Factor	Measured	Reported
			measured / rep	orted SAR num	nbers - Body (di	istance 0mm)			
6/2437	802.11b	Front side	1.004	15.85	16.50	0.14	1.161	0.242	0.282
6/2437	802.11b	Rear side	1.004	15.85	16.50	-0.18	1.161	0.543	0.633
6/2437	802.11b	Right side	1.004	15.85	16.50	0.00	1.161	0.015	0.017
6/2437	802.11b	Bottom side	1.004	15.85	16.50	0.10	1.161	0.418	0.487

Note:

The maximum Scaled SAR value is marked in bold. Graph results refer to Appendix B. 1)

2) When the highest reported SAR for the initial test configuration is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR test for the other 802.11 modes are not required. LCS Testing Lab

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

7.4. Multiple Transmitter Evaluation

7.4.1. Simultaneous SAR SAR test evaluation

	Itiple Transmitter Evaluation	立派检测股份
NO.	Simultaneous Tx Combination	Handheld
1	WiFi 2.4G Ant0+WiFi 2.4G Ant1	Yes
2	WiFi 2.4G Ant1+ Bluetooth Ant0	Yes

Note:

1) Wi-Fi 2.4G Ant0 and Bluetooth share the same Tx antenna and can't transmit simultaneously.

7.4.2. Estimated SAR

检测股份 When the standalone SAR test exclusion is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion:

 (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances \leq 50 mm;

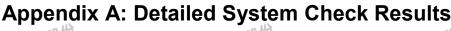
Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. **Estimated SAR Result**

		max. power	max. power		Estimated
Freq. Band	Frequency (GHz)	(dBm)	(mw)	Test Separation (mm)	1g SAR (W/kg)
Bluetooth	2.48	HATO BELAD	1.26	去 语意则的 A	0.053
LCS Testin		LCS Testing	S	LCS Testing	ST LCS Testing

7.4.3. Simultaneous Transmission SAR Summation Scenario

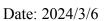
			SARmax (W/kg)	l .	Summed 1	g SARmax
Test	position	1	2	3	(W/	kg)
1001	poolaon	WLAN 2.4G Ant1	WLAN 2.4G Ant2	BT	1+2	2+3
	Front side	0.235	0.282	0.053	0.517	0.335
	Back side	0.535	0.633	0.053	1.168	0.686
Body	Left side	0.133	/	0.053	0.133	0.053
	Right side	ing Lab	0.015	Lift A Lab	0.015	0.015
1	Bottom side	0.348	0.487	LCS T0.053	0.835	LCS Test 0.540



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

在 此 LCS Testing Lab

在新检测股份 LCS Testing Lab


1. System Performance Check System Performance Check 2450 MHz Head

立讯检测股份

LCS Testing Lab

自立讯检测度份 LCS Testing Lab

DUT: D2450V2; Type: D2450V2; Serial: 808

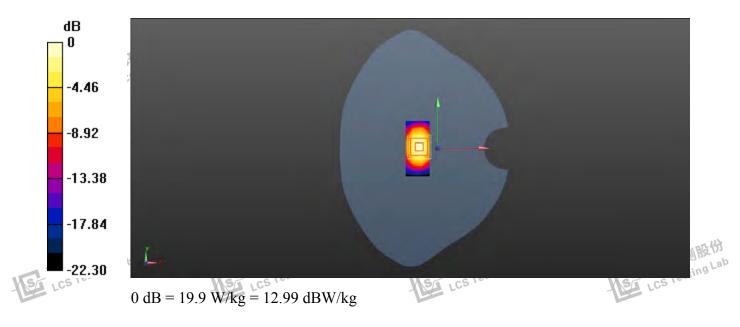
Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.836 \text{ S/m}$; $\varepsilon_r = 39.563$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section

DASY Configuration:

- 立讯 Mang Lab
- 立讯检测股份 Testing Lab Probe: EX3DV4 - SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: 2023/11/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated: 2024/1/3 •
- Phantom: SAM v5.0; Type: SAM; Serial: 1850
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

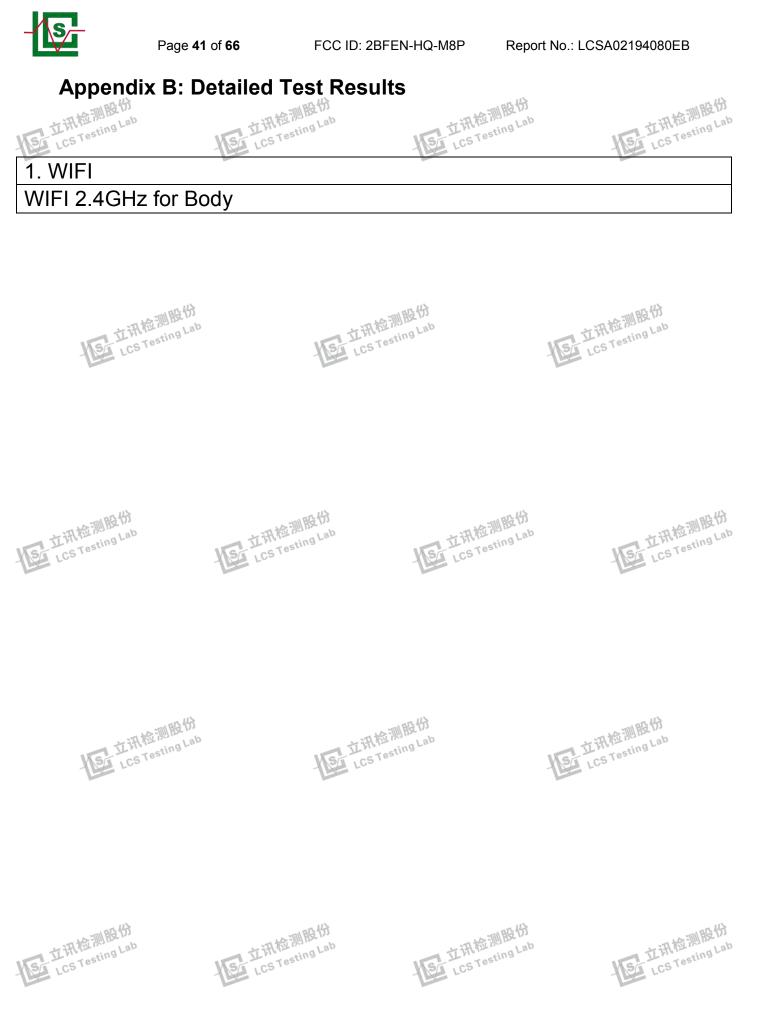
Configuration/Unnamed procedure/Area Scan (4x8x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 17.5 W/kg立讯和 立讯和


立讯检测股份 Testing Lab Testing Lab Testing La Testing Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.94 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 26.8 W/kg


SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.91 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

立讯检测股份

LCS Testing Lab

Date: 2024/3/6

DUT: Retroid Pocket 4 pro; Type: Retroid pocket; Serial: A240125032-1

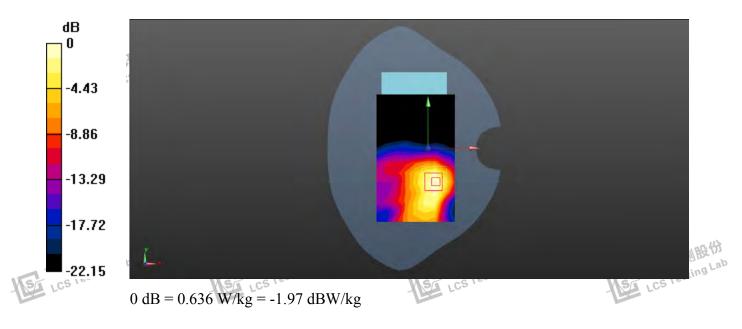
Communication System: UID 0, WIFI 2.4GHz (0); Frequency: 2412 MHz; Duty Cycle: 1:1.004 Medium parameters used: f = 2412 MHz; $\sigma = 1.752$ S/m; $\varepsilon_r = 39.627$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- 立讯检测股份 Testing Lab 立讯 Lab Probe: EX3DV4 - SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: 2023/11/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated: 2024/1/3 •
- Phantom: SAM v5.0; Type: SAM; Serial: 1850
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Unnamed procedure/Area Scan (9x14x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.655 W/kg立讯和


立讯检测股份 Testing Lab Testing Lab Testing Lab 立语和 Lab Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.131 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.848 W/kg

SAR(1 g) = 0.458 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.636 W/kg

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

立讯检测股份

LCS Testing Lab

Date: 2024/3/6

DUT: Retroid Pocket 4 pro; Type: Retroid pocket; Serial: A240125032-1

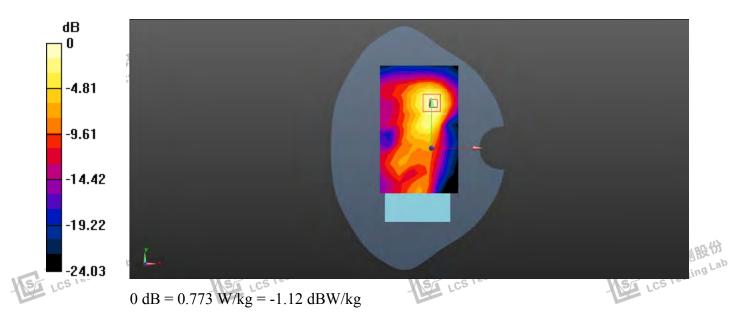
Communication System: UID 0, WIFI 2.4GHz (0); Frequency: 2437 MHz; Duty Cycle: 1:1.004 Medium parameters used: f = 2437 MHz; $\sigma = 1.82$ S/m; $\varepsilon_r = 39.468$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY Configuration:

- 立讯检测股份 Testing Lab 1 Till Pating Lab Probe: EX3DV4 - SN3805; ConvF(7.42, 7.42, 7.42); Calibrated: 2023/11/23;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn373; Calibrated: 2024/1/3 •
- Phantom: SAM v5.0; Type: SAM; Serial: 1850
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Configuration/Unnamed procedure/Area Scan (9x14x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.646 W/kg


立讯检测股份 Testing Lab Testing Lab TestingLab 立讯和 立语和 Lab Configuration/Unnamed procedure/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

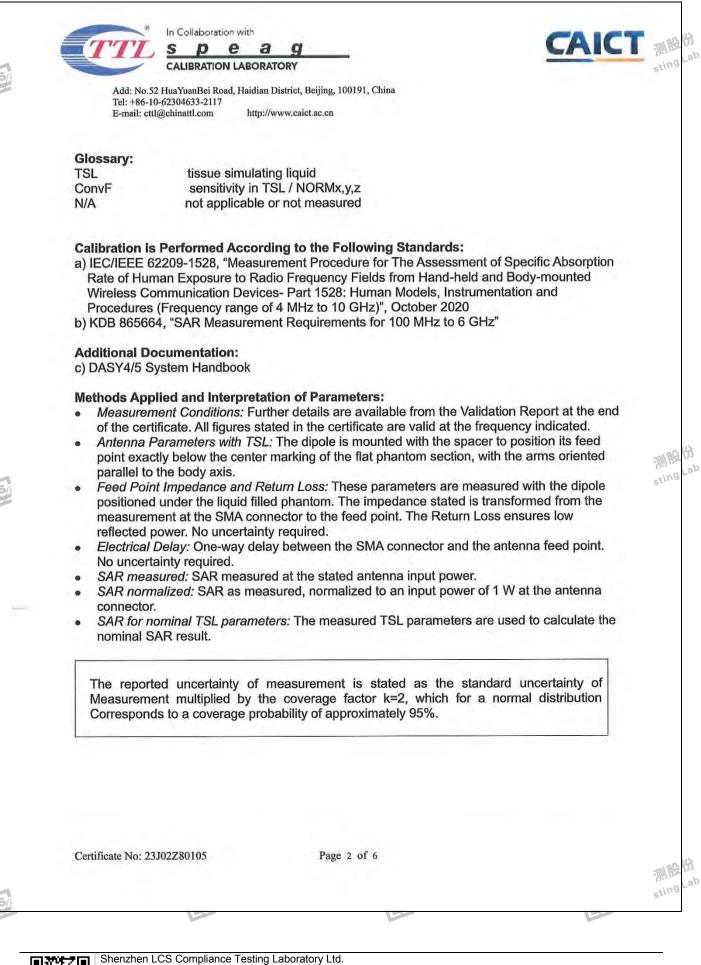
Reference Value = 7.214 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.543 W/kg; SAR(10 g) = 0.285 W/kg

Maximum value of SAR (measured) = 0.773 W/kg

反立讯检测股份 LCS Testing Lab


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Add: No.52 HuaYuanBei Ro Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com Client SHEN	http://www.cai	ct.ac.cn	J02Z80105
CALIBRATION CE	ERTIFICAT	Е	
Object	D2450	/2 - SN: 808	
Calibration Procedure(s)		-003-01 tion Procedures for dipole validation kits	
Calibration date:	Octobe	r 23, 2023	
All calibrations have been humidity<70%. Calibration Equipment used		he closed laboratory facility: environment or calibration)	temperature (22±3)°C and
Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2 Power sensor NRP6A Reference Probe EX3DV4 DAE4	106276 101369 SN 3617 SN 1556	15-May-23 (CTTL, No.J23X04183) 15-May-23 (CTTL, No.J23X04183) 31-Mar-23(CTTL-SPEAG,No.Z23-60161) 11-Jan-23(CTTL-SPEAG,No.Z23-60034)	May-24 May-24 Mar-24 Jan-24
Secondary Standards Signal Generator E4438C NetworkAnalyzer E5071C	ID # MY49071430 MY46110673	Cal Date (Calibrated by, Certificate No.) 05-Jan-23 (CTTL, No. J23X00107) 10-Jan-23 (CTTL, No. J23X00104)	Scheduled Calibration Jan-24 Jan-24
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	A M
Reviewed by:	Lin Hao	SAR Test Engineer	TAKAS
Approved by:	Qi Dianyuan	SAR Project Leader	The of
This calibration certificate sh	nall not be repro	Issued: Octo duced except in full without written approval o	

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

s

In Collaboration with

e

CALIBRATION LABORATORY

p

TTL

测服

sting

测版 sting ab

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

а

g

Measurement Conditions

 DASY system configuration, as far as not given on page 1.

 DASY Version
 DASY52

 Extrapolation
 Advanced Extrapolation

 Phantom
 Triple Flat Phantom 5.1C

 Distance Dipole Center - TSL
 10 mm
 with Spacer

 Zoom Scan Resolution
 dx, dy, dz = 5 mm
 Frequency

 2450 MHz ± 1 MHz
 2450 MHz ± 1 MHz
 10 MHz

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.6 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

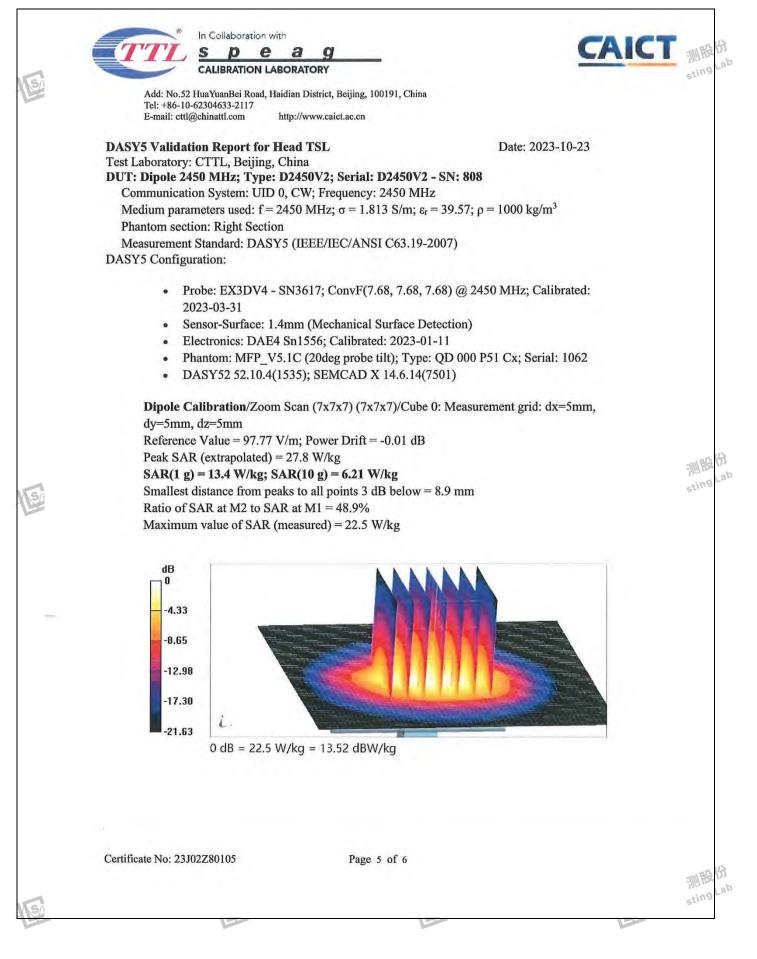
SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.5 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.21 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 18.7 % (k=2)

Certificate No: 23J02Z80105

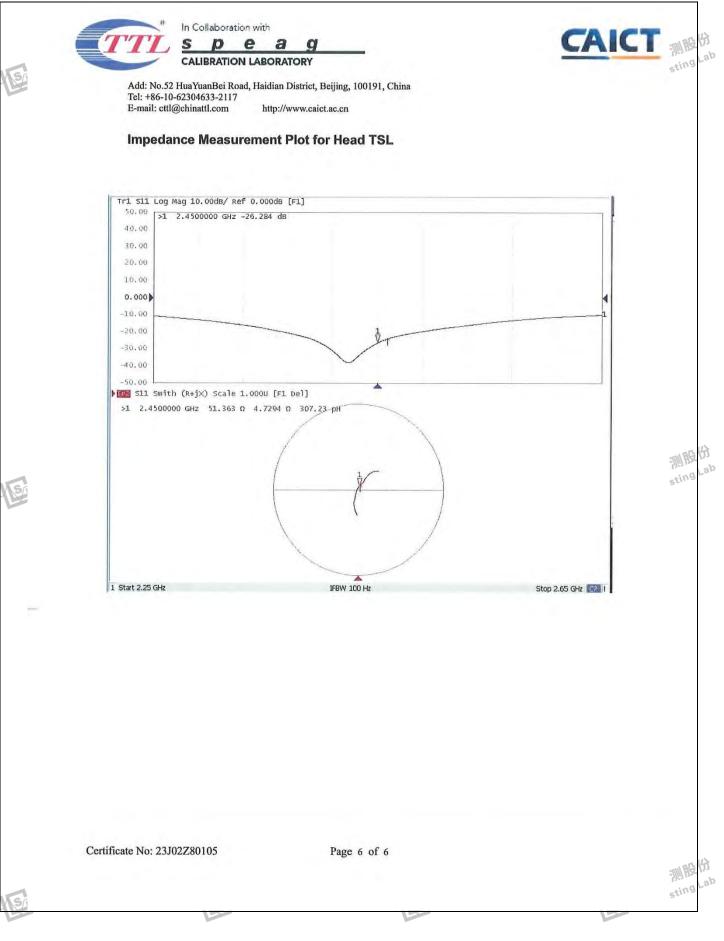
Page 3 of 6

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com



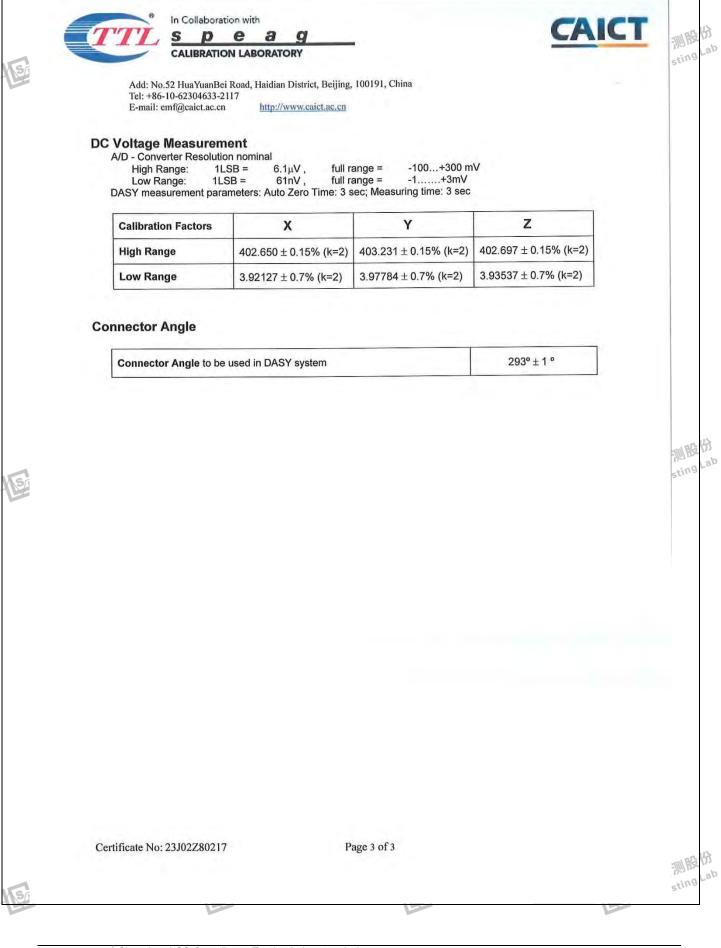
1

Add: No.52 HandYamaBei Rood, Haldian District, Beijing, 100191, China Primai: etti@elhinattl.com http://www.cnict.ac.en Antenna Parameters with Head TSL <u>Impedance, transformed to feed point</u> <u>51.40+4.73/0</u> <u>76.33/B</u> <u>Metance, transformed to feed point</u> <u>76.4000000000000000000000000000000000000</u>	CALIBRATION LABORATORY	
Antenna Parameters with Head TSL impedance, transformed to feed point 51.4Ω+ 4.73jΩ keturn Loss -26.3dB Chercal Antenna Parameters and Design impedance (tricked Delay (one direction) 1.061 ns After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. Additional EUT Data	Tel: +86-10-62304633-2117	
Impedance, transformed to feed point 51.40+4.73j0 Return Loss -26.3dB General Antenna Parameters and Design	Appendix (Additional assessments out	tside the scope of CNAS L0570)
Return Loss -26.3dB General Antenna Parameters and Design Electrical Delay (one direction) 1.061 ns After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. Additional EUT Data	Antenna Parameters with Head TSL	
General Antenna Parameters and Design Electrical Delay (one direction) 1.061 ns After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. Additional EUT Data	Impedance, transformed to feed point	51.4Ω+ 4.73jΩ
Electrical Delay (one direction) 1.061 ns After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. Additional EUT Data	Return Loss	- 26.3dB
After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.	General Antenna Parameters and Desig	gn
be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. Additional EUT Data	Electrical Delay (one direction)	1.061 ns
be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. Additional EUT Data		
	The dipole is made of standard semirigid coaxia	al cable. The center conductor of the feeding line is directly
	connected to the second arm of the dipole. The of the dipoles, small end caps are added to the according to the position as explained in the "M affected by this change. The overall dipole leng No excessive force must be applied to the dipol connections near the feed-point may be damage	e antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded leasurement Conditions" paragraph. The SAR data are not (th is still according to the Standard. le arms, because they might bend or the soldered
	connected to the second arm of the dipole. The of the dipoles, small end caps are added to the according to the position as explained in the "M affected by this change. The overall dipole lengi No excessive force must be applied to the dipol connections near the feed-point may be damage Additional EUT Data	antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded leasurement Conditions" paragraph. The SAR data are not th is still according to the Standard. le arms, because they might bend or the soldered led.
	connected to the second arm of the dipole. The of the dipoles, small end caps are added to the according to the position as explained in the "Ma affected by this change. The overall dipole lengi No excessive force must be applied to the dipol connections near the feed-point may be damage Additional EUT Data Manufactured by	antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded leasurement Conditions" paragraph. The SAR data are not th is still according to the Standard. le arms, because they might bend or the soldered led.
	connected to the second arm of the dipole. The of the dipoles, small end caps are added to the according to the position as explained in the "Ma affected by this change. The overall dipole lengi No excessive force must be applied to the dipol connections near the feed-point may be damage Additional EUT Data Manufactured by	antenna is therefore short-circuited for DC-signals. On some dipole arms in order to improve matching when loaded leasurement Conditions" paragraph. The SAR data are not this still according to the Standard. le arms, because they might bend or the soldered led.



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

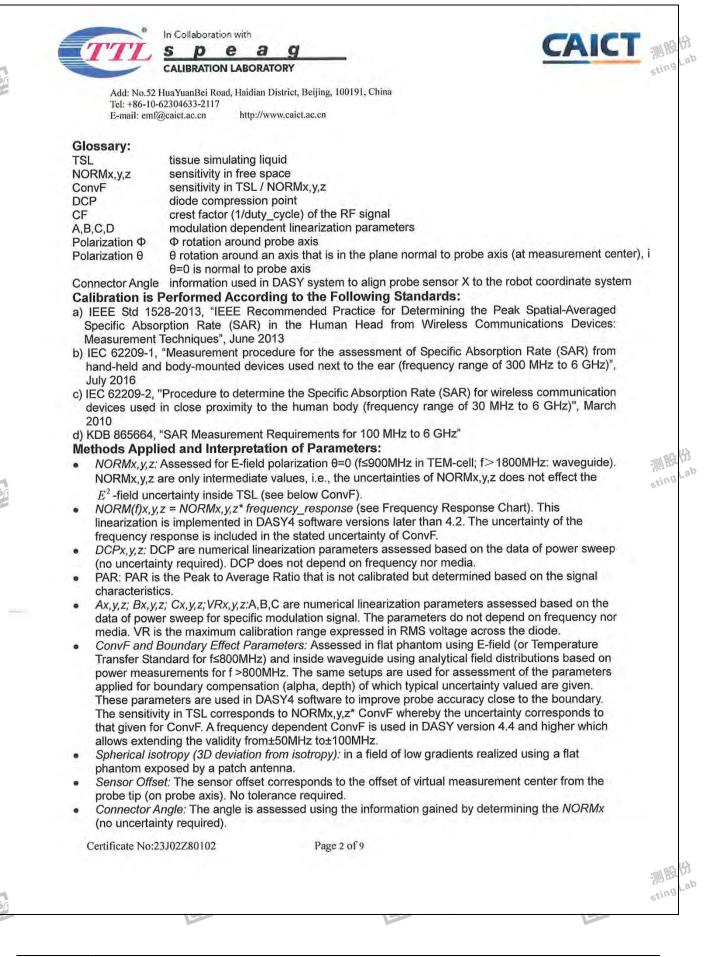
Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com


E-mail: emf@caict.ac.cn Client : SH	http://www.caict.ac.cn	Certi	ficate No: 23J02Z80217
CALIBRATION		E	
Object	DAE3 - S	SN: 373	
Calibration Procedure(s)	FF-211-	002-01 ion Procedure for the Data	Acquisition Electronics
Calibration date:	January	03, 2024	
measurements(SI). The pages and are part of the	measurements and the certificate.	he uncertainties with confident	ds, which realize the physical units of ce probability are given on the following environment temperature(22±3)°C and
Calibration Equipment u	sed (M&TE critical fo	r calibration)	
	1	r calibration) Date(Calibrated by, Certificate	No.) Scheduled Calibration
Calibration Equipment u	ID# Cal		
Calibration Equipment u Primary Standards	ID# Cal	Date(Calibrated by, Certificate	
Calibration Equipment u Primary Standards	ID # Cal 1971018 1	Date(Calibrated by, Certificate	136) Jun-24
Calibration Equipment u Primary Standards Process Calibrator 753	ID # Cal 1971018 1 Name	Date(Calibrated by, Certificate	136) Jun-24
Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by:	ID # Cal 1971018 1 Name Yu Zongying Lin Jun	Date(Calibrated by, Certificate 12-Jun-23 (CTTL, No.J23X054 Function SAR Test Engineer	136) Jun-24
Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # Cal 1971018 1 Name Yu Zongying Lin Jun Qi Dianyuan	Date(Calibrated by, Certificate 12-Jun-23 (CTTL, No.J23X054 Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-24 Signature Auto MA MA Jun-24
Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # Cal 1971018 1 Name Yu Zongying Lin Jun Qi Dianyuan	Date(Calibrated by, Certificate 12-Jun-23 (CTTL, No.J23X054 Function SAR Test Engineer SAR Test Engineer SAR Project Leader	Jun-24 Signature HA MA COCOL
Calibration Equipment u Primary Standards Process Calibrator 753 Calibrated by: Reviewed by: Approved by:	ID # Cal 1971018 1 Name Yu Zongying Lin Jun Qi Dianyuan	Date(Calibrated by, Certificate 12-Jun-23 (CTTL, No.J23X054 Function SAR Test Engineer SAR Test Engineer SAR Project Leader	I36) Jun-24 Signature Arthough MA MA Sued: January 04, 2024

70 Į,

Page 52 of 66	FCC ID: 2BFEN-HQ-M	8P Report No.: LCSA0219	4080EB
In Collaboration with S P C ALIBRATION LABOR	ATORY		T
Add: No.52 HuaYuanBei Road, Haid Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn <u>http</u>	lian District, Beijing, 100191, China p://www.caict.ac.cn		
Connector angle inform	equisition electronics ation used in DASY syst robot coordinate system.	em to align probe sensor X	
	ent: Calibration Factor as with a calibrated instrume ven corresponds to the f	sessed for use in DASY ent traceable to national	
• Connector angle: The an angle mechanically by a	ngle of the connector is a a tool inserted. Uncertain		
The report provide only performance test results		E, it does not contain other	
			1
			St
	D		
Certificate No: 23J02Z80217	Page 2 of 3		- M

「「「「「「」」



Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

CALIBRATION CERTIFICATE Object EX3DV4 - SN : 3805 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: November 23, 2023	
Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes	
Calibration Procedures for Dosimetric E-field Probes	
Calibration date: November 23, 2023	
This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). T measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration)	
Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration	_
Power Meter NRP2 101919 12-Jun-23(CTTL, No.J23X05435) Jun-24	-
Power sensor NRP-Z91 101547 12-Jun-23(CTTL, No.J23X05435) Jun-24	
Power sensor NRP-Z91 101548 12-Jun-23(CTTL, No.J23X05435) Jun-24	
Reference 10dBAttenuator 18N50W-10dB 19-Jan-23(CTTL, No.J23X00212) Jan-25	
Reference 20dBAttenuator 18N50W-20dB 19-Jan-23(CTTL, No.J23X00211) Jan-25	
Reference Probe EX3DV4 SN 3846 31-May-23(SPEAG, No.EX-3846_May23) May-24	
DAE4 SN 1555 24-Aug-23(SPEAG, No.DAE4-1555_Aug23) Aug-24	
Secondary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration	
SignalGenerator MG3700A 6201052605 12-Jun-23(CTTL, No.J23X05434) Jun-24	
Network Analyzer E5071C MY46110673 10-Jan-23(CTTL, No.J23X00104) Jan-24	
Reference 10dBAttenuator BT0520 11-May-23(CTTL, No.J23X04061) May-25 Deference 20dBAttenuator BT0267 11 May-23(CTTL, No.J23X04062) May-25	
Reference 20dBAttenuator BT0267 11-May-23(CTTL, No.J23X04062) May-25 OCP DAK-3.5 SN 1040 18-Jan-23(SPEAG, No.OCP-DAK3.5-1040_Jan23) Jan-24	
Name Function Signature	-
Calibrated by: Yu Zongying SAR Test Engineer	
Reviewed by: Lin Hao SAR Test Engineer	
Approved by: Qi Dianyuan SAR Project Leader	

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

测服

sting

测的 sting

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.49	0.63	0.45	±10.0%
DCP(mV) ^B	101.4	97.7	101.4	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	cw	X	0.0	0.0	1.0	0.00	169.0	±2.5%
		Y	0.0	0.0	1.0		189.9	
		Z	0.0	0.0	1.0		155.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:23J02Z80102

Page 3 of 9

测服 sting

测胀 sting

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf@caict.ac.cn

а

DASY/EASY – Parameters of Probe: EX3DV4 – SN:3805

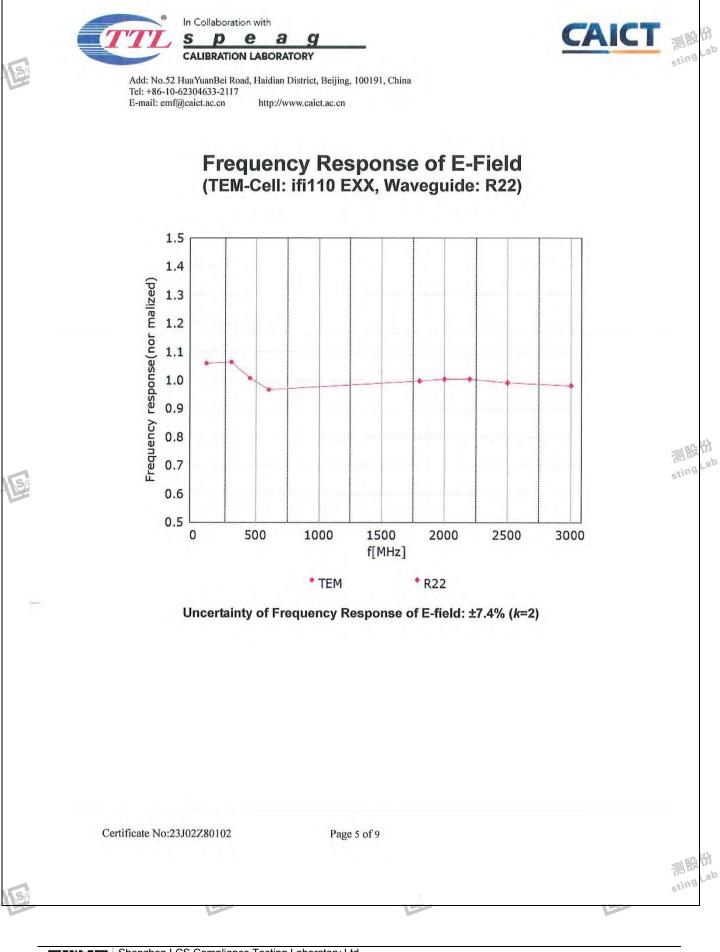
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	9.66	9.66	9.66	0.14	1.30	±12.7%
835	41.5	0.90	9.26	9.26	9.26	0.13	1.43	±12.7%
1750	40.1	1.37	8.16	8.16	8.16	0.23	1.09	±12.7%
1900	40.0	1.40	7.85	7.85	7.85	0.24	1.04	±12.7%
2000	40.0	1.40	7.83	7.83	7.83	0.22	1.13	±12.7%
2300	39.5	1.67	7.66	7.66	7.66	0.40	0.87	±12.7%
2450	39.2	1.80	7.42	7.42	7.42	0.36	0.94	±12.7%
2600	39.0	1.96	7.17	7.17	7.17	0.39	0.97	±12.7%
3300	38.2	2.71	7.01	7.01	7.01	0.47	0.90	±13.9%
3500	37.9	2.91	6.87	6.87	6.87	0.45	1.02	±13.9%
3700	37.7	3.12	6.65	6.65	6.65	0.35	1.25	±13.9%
3900	37.5	3.32	6.60	6.60	6.60	0.40	1.25	±13.9%
4100	37.2	3.53	6.54	6.54	6.54	0.40	1.15	±13.9%
4200	37.1	3.63	6.45	6.45	6.45	0.35	1.35	±13.9%
4400	36.9	3.84	6.36	6.36	6.36	0.40	1.25	±13.9%
4600	36.7	4.04	6.26	6.26	6.26	0.40	1.30	±13.9%
4800	36.4	4.25	6.20	6.20	6.20	0.40	1.38	±13.9%
4950	36.3	4.40	5.95	5.95	5.95	0.40	1.40	±13.9%
5250	35.9	4.71	5.38	5.38	5.38	0.40	1.50	±13.9%
5600	35.5	5.07	4.75	4.75	4.75	0.50	1.30	±13.9%
5750	35.4	5.22	4.88	4.88	4.88	0.45	1.40	±13.9%

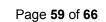
^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

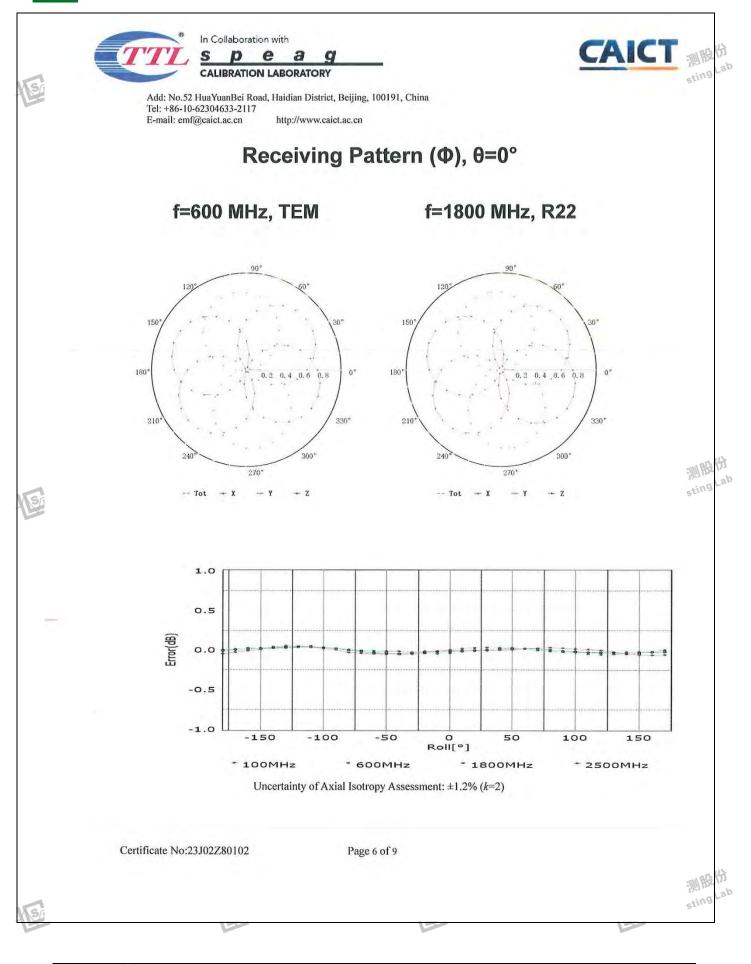
F At frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

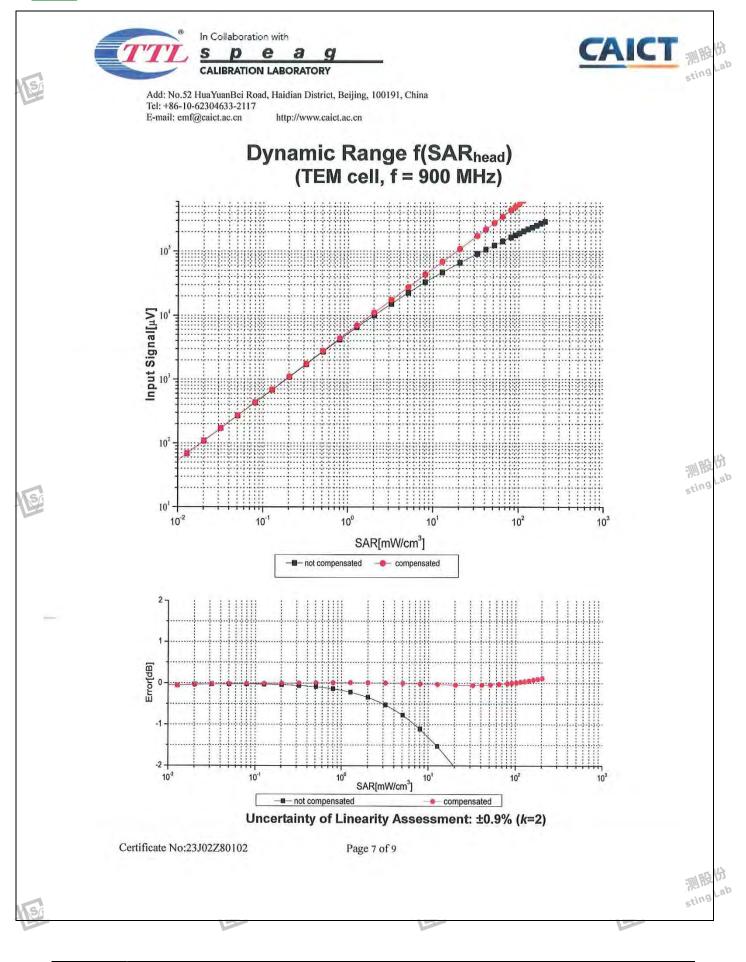

Certificate No:23J02Z80102

Page 4 of 9


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

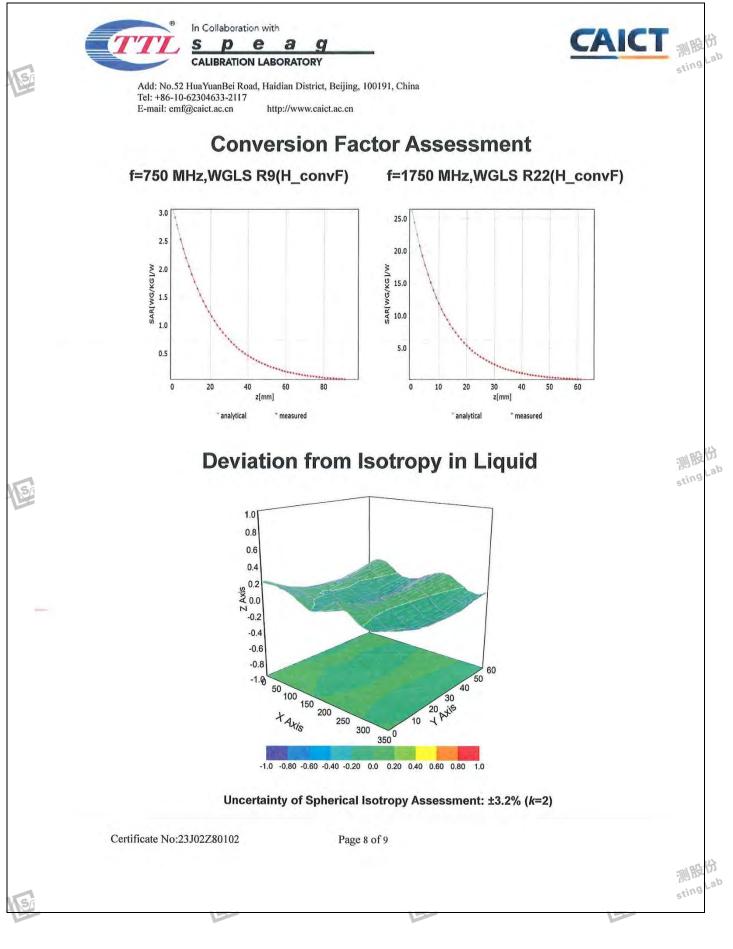


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

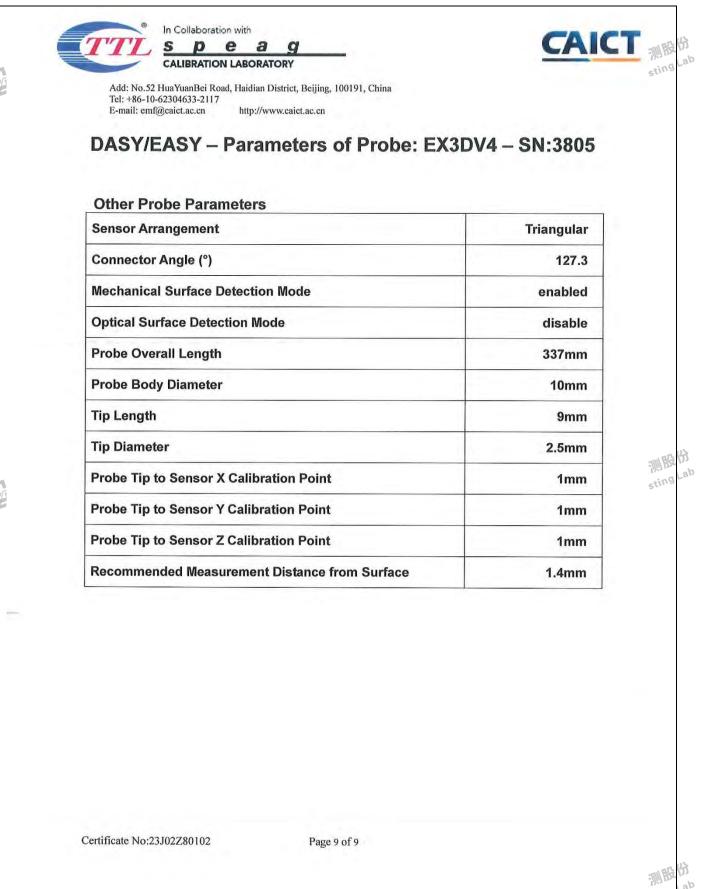


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

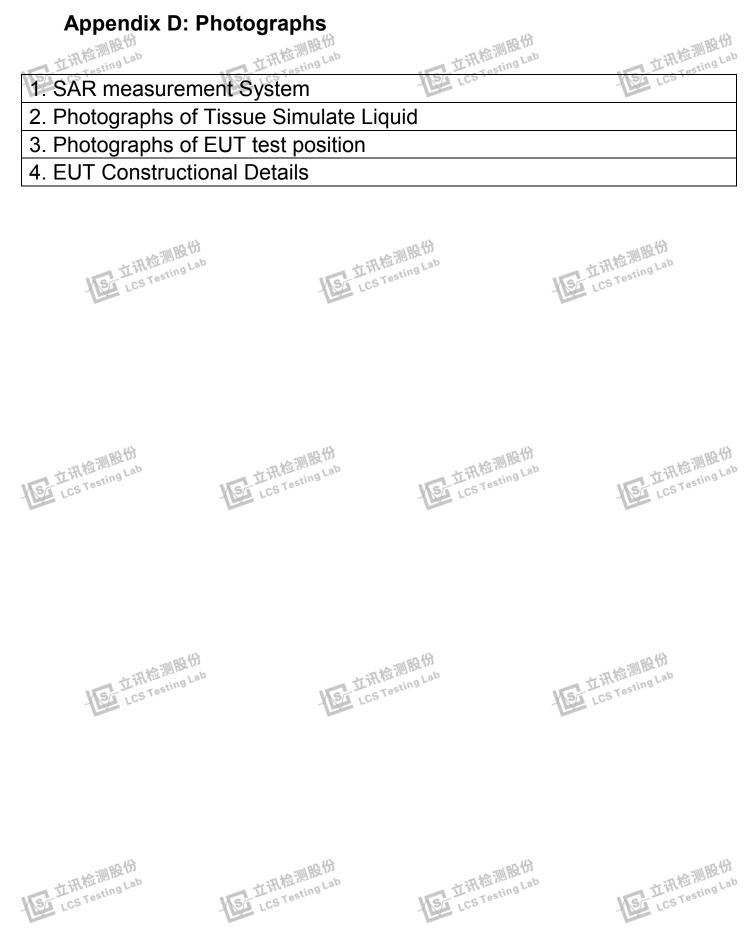
FCC ID: 2BFEN-HQ-M8P


Report No.: LCSA02194080EB

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

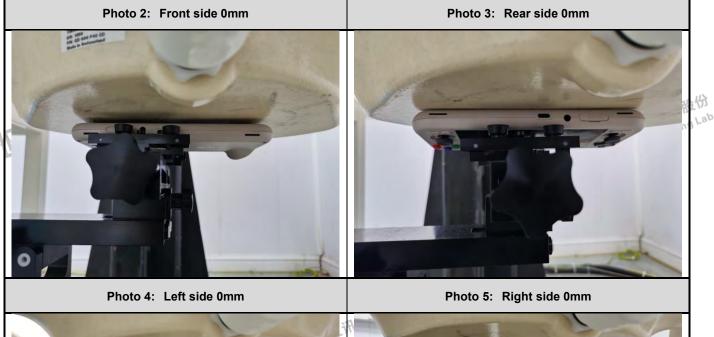


Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China


sting

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

SAR measurement System 1.



2.

Photographs of Tissue Simulate Liquid

3. Photographs of EUT test position

4. EUT Constructional Details

