Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D2450V2-929_Nov19 # **CALIBRATION CERTIFICATE** Object D2450V2 - SN:929 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: November 21, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 29-May-19 (No. EX3-7349_May19) | May-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Claudio Leubler | Laboratory Technician | | | Approved by: | Katja Pokovic | Technical Manager | BRAC | Issued: November 25, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-929_Nov19 Page 1 of 7 # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A not a Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.2 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-929_Nov19 Page 3 of 7 # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $52.6 \Omega + 5.2 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.9 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.161 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D2450V2-929_Nov19 # **DASY5 Validation Report for Head TSL** Date: 21.11.2019 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:929 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.84 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.9, 7.9, 7.9) @ 2450 MHz; Calibrated: 29.05.2019 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.04.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 117.5 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 26.8 W/kg ### SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.24 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.9% Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg # Impedance Measurement Plot for Head TSL # Appendix: Transfer Calibration at Four Validation Locations on SAM Head¹ ## **Evaluation Condition** | Phantom | SAM Head Phantom | For usage with cSAR3D V2 -R/L | |---------|------------------|--------------------------------------| # SAR result with SAM Head (Top \cong C0) | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 56.6 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 26.3 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Mouth \cong F90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 57.7 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 27.6 W/kg ± 16.9 % (k=2) | ## SAR result with SAM Head (Neck \cong H0) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 54.4 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 16.9 % (k=2) | # SAR result with SAM Head (Ear \cong D90) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 34.8 W/kg ± 17.5 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | 1 Additional assessments outside the current scope of SCS 0108 # D2450V2, serial no. 929 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 2450 ∀2 – serial no. 929 | | | | | | | |--|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | | 2450MHZ | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 11.21.2019
(Cal. Report) | -24.926 | | 52.569 | | 5.2271 | | | 11.20.2020
(extended) | -26.971 | 8.20 | 50.932 | -1.637 | 4.4757 | -0.7514 | | 11.19.2021
(extended) | -23.805 | -4.50 | 50.843 | -1.726 | 5.6695 | 0.4424 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.20.2020) 2450 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D2450 V2, serial no. 929 (Data of Measurement : 11.19.2021) 2450 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1006 Sep21 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1006 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 15, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | 0 | Î | _ , | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | | | | | | Offin | | Approved by: | Katja Pokovic | Technical Manager | all all | | 1 | | | | Issued: September 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1006_Sep21 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1006_Sep21 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DAOVIV | | 00THM2D00H 44575597 90 | |------------------------------|--|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 4.0 mm$, $dz = 1.4 mm$ | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1006_Sep21 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1006_Sep21 Page 4 of 8 # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 54.8 Ω - 8.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.3 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.3 Ω - 7.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.8 dB | # Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $60.1 \Omega + 3.3 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 20.3 dB | | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.199 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D5GHzV2-1006_Sep21 ### DASY5 Validation Report for Head TSL Date: 15.09.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³ , Medium parameters used: f = 5600 MHz; σ = 4.86 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³ , Medium parameters used: f = 5750 MHz; σ = 5.01 S/m; ϵ_r = 34; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.78 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.6% Maximum value of SAR (measured) = 18.5 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.99 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 20.0 W/kg Certificate No: D5GHzV2-1006_Sep21 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.50 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg # Impedance Measurement Plot for Head TSL # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D6.5GHzV2-1003 Sep21 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object D6.5GHzV2 - SN:1003 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 24, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Power sensor R&S NRP33T | SN: 100967 | 08-Apr-21 (No. 217-03293) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7405 | 30-Dec-20 (No. EX3-7405_Dec20) | Dec-21 | | DAE4 | SN: 908 | 24-Jun-21 (No. DAE4-908_Jun21) | Jun-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator Anapico APSIN20G | SN: 669 | 28-Mar-17 (in house check Dec-18) | In house check: Dec-21 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-19) | In house check: Oct-22 | Calibrated by: Approved by: Name Function Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Issued: September 27, 2021 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D6.5GHzV2-1003_Sep21 Page 1 of 6 # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. #### Additional Documentation: b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 6 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.0 | |------------------------------|----------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 3.4$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.6 ± 6 % | 6.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 292 W/kg ± 24.7 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.8 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1003_Sep21 ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4 Ω - 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | # **APD (Absorbed Power Density)** | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 292 W/m² | | APD measured | normalized to 1W | 2920 W/m ² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 132 W/m ² | | APD measured | normalized to 1W | 1320 W/m ² ± 28.9 % (k=2) | # **General Antenna Parameters and Design** After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| # **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz) | Device under Test Propertie | |-----------------------------| |-----------------------------| | Name, Manufa | acturer Di | mensions | [mm] | IMEI | DUT Ty | pe | | |--|--------------------------------------|--------------------|---------------|--------------------|----------------------|--------------------|---------------------| | D6.5GHz | 16 | 16.0 x 6.0 x 300.0 | | SN: 1003 | SN: 1003 - | | | | Exposure Cond
Phantom
Section, TSL | ditions Position, Test Distance [mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.75 | 6.11 | 33.6 | #### **Hardware Setup** | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 | #### Scan Setup | Scan Setup | | | | |---------------------|-----------------------------|---------------------|------------------| | | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2021-09-24, 9:30 | | Grid Steps [mm] | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg] | 29.4 | | Sensor Surface [mm] | 1.4 | psSAR10g [W/Kg] | 5.42 | | Graded Grid | Yes | Power Drift [dB] | -0.02 | | Grading Ratio | 1.4 | Power Scaling | Disabled | | MAIA | N/A | Scaling Factor [dB] | | | Surface Detection | VMS + 6p | TSL Correction | No correction | | Scan Method | Measured | M2/M1 [%] | 55.6 | | | | Dist 3dB Peak [mm] | 4.6 | # Impedance Measurement Plot for Head TSL >1 511 Smith (R+jX) Scale 1.000 U [F1] >1 6.5000000 GHz 54.414 Ω -1.8621 Ω 13.149 pF # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: 5G-Veri10-1020_Jan21 # CALIBRATION CERTIFICATE Object 5G Verification Source 10 GHz - SN: 1020 Calibration procedure(s) **QA CAL-45.v3** Calibration procedure for sources in air above 6 GHz Calibration date: January 18, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------|----------|------------------------------------|-----------------------| | Reference Probe EummWV3 | SN: 9374 | 30-Dec-20 (No. EUmmWV3-9374_Dec20) | Dec-21 | | DAE4ip | SN: 1602 | 11-Aug-20 (No. DAE4ip-1602_Aug20) | Aug-21 | | Secondary Standards | L1D.# | Charle Data (in house) | Sahadulad Chaele | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | Name Function Signatur Calibrated by: Michael Weber Laboratory Technician ///...1 Approved by: Katja Pokovic Technical Manager Issued: January 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: 5G-Veri10-1020 Jan21 Page 1 of 7 # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### **Glossary** CW Continuous wave ### Calibration is Performed According to the Following Standards - Internal procedure QA CAL-45-5Gsources - IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018 #### **Methods Applied and Interpretation of Parameters** - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The forward power to the horn antenna is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by far-field measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. #### **Calibrated Quantity** Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: 5G-Veri10-1020_Jan21 Page 2 of 7 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | cDASY6 Module mmWave | V2.2 | |--------------------------------|----------------------|------| | Phantom | 5G Phantom | | | Distance Horn Aperture - plane | 10 mm | | | XY Scan Resolution | dx, dy = 7.5 mm | - | | Number of measured planes | 2 (10mm, 10mm + λ/4) | | | Frequency | 10 GHz ± 10 MHz | | # **Calibration Parameters, 10 GHz** ## **Circular Averaging** | Distance Horn Aperture | Prad¹ | Max E-field | Uncertainty | Avg Power Density | | Uncertainty | |------------------------|-------|-------------|-------------|-------------------|-------------------|-------------| | to Measured Plane | (mW) | (V/m) | (k = 2) | Avg (psPDn+, psi | PDtot+, psPDmod+) | (k = 2) | | | | | · | (W. | /m²) | | | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 74.0 | 134 | 1.27 dB | 45.1 | 42.2 | 1.28 dB | # **Square Averaging** | Distance Horn Aperture | Prad ¹ | Max E-field | Uncertainty | Avg Power Density | | Uncertainty | |------------------------|-------------------|-------------|-------------|-------------------|--------------------------|-------------| | to Measured Plane | (mW) | (V/m) | (k = 2) | Avg (psPDn+, psF | PDtot+, psPDmod+) | (k = 2) | | | | | | (W | /m²) | | | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 74.0 | 134 | 1.27 dB | 45.1 | 42.1 | 1.28 dB | Certificate No: 5G-Veri10-1020_Jan21 ¹ Assessed ohmic and mismatch loss: 0.45 dB # **DASY Report** #### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ## **Device under Test Properties** Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** #### **Exposure Conditions** **Phantom Section** Position, Test Distance Rand Group, Frequency [MHz], Channel Number **Conversion Factor** [mm] 10.0 mm Validation band CIAL 5G Scan 10.0 120.0 x 120.0 MAIA not used 0.25 x 0.25 10000.0, 10000 1.0 #### **Hardware Setup** **Phantom** 5G - mmWave Phantom - 1002 Medium Air **Probe, Calibration Date** EUmmWV3 - SN9374_F1-78GHz, 2020-12-30 DAE, Calibration Date DAE4ip Sn1602, 2020-08-11 #### **Scan Setup** Grid Extents [mm] Grid Steps [lambda] Sensor Surface [mm] MAIA #### **Measurement Results** | Date | |------------------------------| | Avg. Area [cm2] | | psPDn+ [W/m ²] | | psPDtot+ [W/m ²] | | psPDmod+ [W/m ²] | | E _{max} [V/m] | | Power Drift [dB] | 5G Scan 2021-01-18, 14:59 1.00 44.9 45.0 45.3 134 0.06