RF Exposure Report Report No.: SA150826C05 FCC ID: PY315100319 Test Model: R7800 Received Date: Aug. 21, 2015 Test Date: Sep. 04 ~ Oct. 28, 2015 **Issued Date:** Oct. 30, 2015 Applicant: NETGEAR INC. Address: 350 East Plumeria Drive, San Jose, CA 95134, USA Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan, R.O.C. Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN (R.O.C.) This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies. Report No.: SA150826C05 Page No. 1 / 11 Report Format Version: 6.1.1 # **Table of Contents** | R | ease Control Record | 3 | |---|--|---| | 1 | Certificate of Conformity | 4 | | 2 | RF Exposure | 5 | | | .1 Limits for Maximum Permissible Exposure (MPE) | 5 | | 3 | Calculation Result Of Maximum Conducted Power | 6 | ## **Release Control Record** | Issue No. | Description | Date Issued | |-------------|------------------|---------------| | SA150826C05 | Original release | Oct. 30, 2015 | #### 1 Certificate of Conformity Product: Nighthawk X4S AC2600 Smart WiFi Router **Brand: NETGEAR** Test Model: R7800 Sample Status: Engineering sample Applicant: NETGEAR INC. **Test Date:** Sep. 04 ~ Oct. 28, 2015 Standards: FCC Part 2 (Section 2.1091) KDB 447498 D03 **IEEE C95.1** The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report. Propagad by : Oct 20, 2015 Polly Chien / Specialist Approved by : , Date: Oct. 30, 2015 Ken Liu / Senior Manager ## 2 RF Exposure ### 2.1 Limits for Maximum Permissible Exposure (MPE) | Frequency Range
(MHz) | Electric Field
Strength (V/m) | Magnetic Field
Strength (A/m) | Power Density
(mW/cm ²) | Average Time
(minutes) | | | | | | | |--------------------------|---|----------------------------------|--|---------------------------|--|--|--|--|--|--| | | Limits For General Population / Uncontrolled Exposure | | | | | | | | | | | 300-1500 F/1500 30 | | | | | | | | | | | | 1500-100,000 | | | 1.0 | 30 | | | | | | | F = Frequency in MHz #### 2.2 MPE Calculation Formula $Pd = (Pout*G) / (4*pi*r^2)$ where Pd = power density in mW/cm² Pout = output power to antenna in mW G = gain of antenna in linear scale Pi = 3.1416 R = distance between observation point and center of the radiator in cm #### 2.3 Classification The antenna of this product, under normal use condition, is at least 29cm away from the body of the user. So, this device is classified as **Mobile Device**. ## 3 Calculation Result Of Maximum Conducted Power | Band | Modulatio | on type | Frequ
Char
(MF | nnel | Max
Power
(dBm) | Antenna
Gain
(dBi) | Distance
(cm) | Power
Density
(mW/cm²) | Limit
(mW/cm ²) | |-----------------------------------|----------------------------------|------------------------------|----------------------|-----------------------|-------------------------|--------------------------|----------------------|------------------------------|--------------------------------| | | CDD Mode | | | | | | | | | | | | | | | 29.89 | 6.23 | 29 | 0.387 | 1 | | | 802.1 | 802.11b | | 22 | 29.84 | 6.43 | 29 | 0.401 | 1 | | | | | 243 | 37 | 29.84 | 6.13 | 29 | 0.374 | 1 | | | | | 24′ | 12 | 27.35 | 6.23 | 29 | 0.216 | 1 | | | 802.11g | | 242 | 22 | 29.84 | 6.43 | 29 | 0.401 | 1 | | 2.4GHz | | | | 37 | 27.13 | 6.13 | 29 | 0.200 | 1 | | 2.46112 | | | 24 | 12 | 27.35 | 6.23 | 29 | 0.216 | 1 | | | 802.11n(2 | OMHz) | 243 | 37 | 29.84 | 6.43 | 29 | 0.401 | 1 | | | | | 246 | 62 | 27.35 | 6.13 | 29 | 0.211 | 1 | | | | | | 22 | 23.79 | 6.43 | 29 | 0.100 | 1 | | | 802.11n(4 | | | 37 | 26.76 | 6.43 | 29 | 0.197 | 1 | | | ; | | 24 | 52 | 25.51 | 6.23 | 29 | 0.141 | 1 | | | | | 518 | 30 | 29.02 | 6.63 | 29 | 0.348 | 1 | | | 802.1 | 802.11a | | 00 | 29.05 | 6.73 | 29 | 0.358 | 1 | | | | | 524 | 40 | 29.04 | 6.93 | 29 | 0.374 | 1 | | | 802.11n(20MHz) | | 518 | 30 | 29.04 | 6.63 | 29 | 0.349 | 1 | | 5GHz
(U-NII-1) | | | 520 | 00 | 28.99 | 6.73 | 29 | 0.353 | 1 | | (2 : : / | | | 524 | 40 | 28.94 | 6.93 | 29 | 0.366 | 1 | | | 802.11n(40MHz) | | 519 | 90 | 26.13 | 6.73 | 29 | 0.183 | 1 | | | | | 523 | 30 | 29.97 | 6.93 | 29 | 0.463 | 1 | | | 802.11ac(80MHz) 5 | | 52 | 10 | 25.03 | 6.83 | 29 | 0.145 | 1 | | | 802.11a | | 574 | 45 | 29.77 | 7.63 | 29 | 0.520 | 1 | | | | | 578 | 35 | 29.77 | 7.53 | 29 | 0.508 | 1 | | | | | 5825 | | 29.88 | 7.63 | 29 | 0.533 | 1 | | | | 5745 | | 29.89 | 7.63 | 29 | 0.535 | 1 | | | 5GHz
(U-NII-3) | 802.11n(20MHz) | | 578 | 35 | 29.95 | 7.53 | 29 | 0.530 | 1 | | (| | | 582 | 25 | 29.99 | 7.63 | 29 | 0.547 | 1 | | | 902 11 0/4 | 000 44 - (400 M I I -) | | 55 | 29.81 | 7.53 | 29 | 0.513 | 1 | | | 802.11n(40MHz) | | 5795 | | 29.99 | 7.63 | 29 | 0.547 | 1 | | | 802.11ac(8 | BOMHz) | MHz) 57 | | 28.44 | 7.53 | 29 | 0.374 | 1 | | Band | Modulation type | Frequenc
Channel
(MHz) | | Max
Power
(dBm) | Antenr
Gain
(dBi) | (cm) | Power Density (mW/cm | Total Power Density (mW/cm²) | Limit
(mW/cm ²) | | 5GHz
(U-NII-1
&
U-NII-3) | 802.11ac 5210 (80MHz+80MHz) 5775 | | | 23.44 | 3.82
4.52 | 29 | 0.05 | 0.11 | 1 | # Note: 2412MHz: Directional gain = 0.21dBi + 10log(4) = 6.23dBi 2422MHz: Directional gain = 0.41dBi + 10log(4) = 6.43dBi2437MHz: Directional gain = 0.41dBi + 10log(4) = 6.43dBi 2452MHz: Directional gain = 0.21dBi + 10log(4) = 6.23dBi 2462MHz: Directional gain = 0.11dBi + 10log(4) = 6.13dBi 5180MHz: Directional gain = 0.61dBi + 10log(4) = 6.63dBi 5190MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi 5200MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi5210MHz: Directional gain = 0.81dBi + 10log(4) = 6.83dBi 5230MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi5240MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi5745MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5755MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5775MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5785MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5795MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5825MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi | Band | Modulatio | on type | Frequ
Chai
(Mł | nnel | Max
Power
(dBm) | Antenna
Gain
(dBi) | Distance (cm) | Power
Density
(mW/cm ²) | Limit (mW/cm ²) | | |------------------|--------------------|------------------------------|-----------------------|-----------------------|-------------------------|--------------------------|----------------------------|---|--------------------------------|--| | | | E | Beamforming_NSS1 Mode | | | | | | | | | | | | | | 27.29 | 6.23 | 29 | 0.213 | 1 | | | | 802.11n(20MHz) | | 24 | 37 | 29.56 | 6.43 | 29 | 0.376 | 1 | | | 2.4GHz | | | | 62 | 28.42 | 6.13 | 29 | 0.270 | 1 | | | 2.4602 | | | 24 | 22 | 23.85 | 6.43 | 29 | 0.101 | 1 | | | | 802.11n(4 | 802.11n(40MHz) | | 37 | 26.72 | 6.43 | 29 | 0.195 | 1 | | | | | | | 52 | 24.36 | 6.23 | 29 | 0.108 | 1 | | | | | 802.11n(20MHz) | | 30 | 29.04 | 6.63 | 29 | 0.349 | 1 | | | | 802.11n(2 | | | 00 | 29.02 | 6.73 | 29 | 0.356 | 1 | | | 5GHz | | | | 40 | 29.01 | 6.93 | 29 | 0.372 | 1 | | | (U-NII-1) | | 000 44 - (400411-) | | 90 | 25.43 | 6.73 | 29 | 0.156 | 1 | | | | 802.11n(40MHz) | | 523 | 30 | 29.06 | 6.93 | 29 | 0.376 | 1 | | | | 802.11ac(80MHz) | | 52 | 10 | 24.62 | 6.83 | 29 | 0.132 | 1 | | | | | | | 45 | 28.35 | 7.63 | 29 | 0.375 | 1 | | | | 802.11n(20MHz) | | 578 | 35 | 28.45 | 7.53 | 29 | 0.375 | 1 | | | 5GHz | | | 582 | 25 | 28.35 | 7.63 | 29 | 0.375 | 1 | | | (U-NII-3) | 802.11n(40MHz) | | 57 | 55 | 27.82 | 7.53 | 29 | 0.324 | 1 | | | | | | 579 | 95 | 28.35 | 7.63 | 29 | 0.375 | 1 | | | | 802.11ac(8 | 802.11ac(80MHz) | | 75 | 27.39 | 7.53 | 29 | 0.294 | 1 | | | Band | Modulation type | Frequenc
Channel
(MHz) | | Max
Power
(dBm) | Antenn
Gain
(dBi) | Distance (cm) | Power
Density
(mW/cm | Total Power Density (mW/cm²) | Limit
(mW/cm ²) | | | 5GHz
(U-NII-1 | 802.11ac | 5210 | | 23.46 | 6.83 | | 0.101 | | | | | &
U-NII-3) | (80MHz+80MHz) 5775 | | | 23.47 | 7.53 | 29 | 0.119 | 0.22 | 1 | | # Note: 2412MHz: Directional gain = 0.21dBi + 10log(4) = 6.23dBi 2422MHz: Directional gain = 0.41dBi + 10log(4) = 6.43dBi2437MHz: Directional gain = 0.41dBi + 10log(4) = 6.43dBi 2452MHz: Directional gain = 0.21dBi + 10log(4) = 6.23dBi 2462MHz: Directional gain = 0.11dBi + 10log(4) = 6.13dBi 5180MHz: Directional gain = 0.61dBi + 10log(4) = 6.63dBi 5190MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi 5200MHz: Directional gain = 0.71dBi + 10log(4) = 6.73dBi5210MHz: Directional gain = 0.81dBi + 10log(4) = 6.83dBi 5230MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi5240MHz: Directional gain = 0.91dBi + 10log(4) = 6.93dBi5745MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5755MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5775MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5785MHz: Directional gain = 1.51dBi + 10log(4) = 7.53dBi 5795MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi 5825MHz: Directional gain = 1.61dBi + 10log(4) = 7.63dBi | Band | Modulation type | Frequency
Channel
(MHz) | Max
Power
(dBm) | Antenna
Gain
(dBi) | Distance
(cm) | Power
Density
(mW/cm²) | Limit
(mW/cm ²) | | |-----------|--------------------------------|-------------------------------|-----------------------|--------------------------|------------------|------------------------------|--------------------------------|--| | | Beamforming_NSS2 Mode | | | | | | | | | | | 2412 | 27.35 | 3.22 | 29 | 0.108 | 1 | | | | 802.11n(20MHz) | 2437 | 29.59 | 3.42 | 29 | 0.189 | 1 | | | 2.4GHz | | 2462 | 28.44 | 3.12 | 29 | 0.136 | 1 | | | 2.40112 | | 2422 | 23.66 | 3.42 | 29 | 0.048 | 1 | | | | 802.11n(40MHz) | 2437 | 26.75 | 3.42 | 29 | 0.098 | 1 | | | | | 2452 | 24.36 | 3.22 | 29 | 0.054 | 1 | | | | 802.11n(20MHz) | 5180 | 28.11 | 3.62 | 29 | 0.141 | 1 | | | | | 5200 | 29.79 | 3.72 | 29 | 0.212 | 1 | | | 5GHz | | 5240 | 29.81 | 3.92 | 29 | 0.223 | 1 | | | (U-NII-1) | 802.11n(40MHz) | 5190 | 25.33 | 3.72 | 29 | 0.076 | 1 | | | | | 5230 | 29.98 | 3.92 | 29 | 0.232 | 1 | | | | 802.11ac(80MHz) | 5210 | 25.06 | 3.82 | 29 | 0.073 | 1 | | | | | 5745 | 29.87 | 4.62 | 29 | 0.266 | 1 | | | | 802.11n(20MHz) 5785
Hz 5825 | 5785 | 29.99 | 4.52 | 29 | 0.267 | 1 | | | 5GHz | | 29.97 | 4.62 | 29 | 0.272 | 1 | | | | (U-NII-3) | 000 44 ~ (40ML I=) | 5755 | 29.60 | 4.52 | 29 | 0.244 | 1 | | | | 802.11n(40MHz) | 5795 | 29.98 | 4.62 | 29 | 0.273 | 1 | | | | 802.11ac(80MHz) | 5775 | 27.93 | 4.52 | 29 | 0.166 | 1 | | Note: 2412MHz: Directional gain = 0.21dBi + 10log(4/2) = 3.22dBi 2422MHz: Directional gain = 0.41dBi + 10log(4/2) = 3.42dBi 2437MHz: Directional gain = 0.41dBi + 10log(4/2) = 3.42dBi 2452MHz: Directional gain = 0.21dBi + 10log(4/2) = 3.22dBi 2462MHz: Directional gain = 0.11dBi + 10log(4/2) = 3.12dBi 5180MHz: Directional gain = 0.61dBi + 10log(4/2) = 3.62dBi 5190MHz: Directional gain = 0.71dBi + 10log(4/2) = 3.72dBi5200MHz: Directional gain = 0.71dBi + 10log(4/2) = 3.72dBi 5210MHz: Directional gain = 0.81dBi + 10log(4/2) = 3.82dBi 5230MHz: Directional gain = 0.91dBi + 10log(4/2) = 3.92dBi5240MHz: Directional gain = 0.91dBi + 10log(4/2) = 3.92dBi 5745MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi 5755MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dBi 5775MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dB 5785MHz: Directional gain = 1.51dBi + 10log(4/2) = 4.52dBi 5795MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dBi 5825MHz: Directional gain = 1.61dBi + 10log(4/2) = 4.62dB #### **CONCULSION:** Both of the WLAN 2.4G & WLAN 5G can transmit simultaneously, the formula of calculated the MPE is: $\label{eq:cpd1} \text{CPD1} \ / \ \text{LPD1} \ + \ \text{CPD2} \ / \ \text{LPD2} \ + \ \dots ... \text{etc.} < 1$ CPD = Calculation power density LPD = Limit of power density WLAN 2.4G + WLAN 5.0G = 0.401 + 0.547 = 0.948 Therefore, the maximum calculation of this situation is 0.948, which is less than the "1" limit. ---END---