Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Multilater	a Agreement for the				
Client (UL Gyeonggi-do, Repu	blic of Korea	c.	Certificate No.	D750V3-1122_Feb24
CALI	BRATION	CERTIFICAT	E		
Object		D750V3 - SN:11	22		
Calibratior	n procedure(s)	QA CAL-05.v12 Calibration Proce	edure for SAR Validatio	on Sources	between 0.7-3 GHz
Calibration	date:	February 22, 202	24		
Calibration This calibra The measu All calibrati	a date: ation certificate docum urements and the unce ons have been conduc	February 22, 202 ents the traceability to nati rtainties with confidence p	24 onal standards, which realize th robability are given on the follow ry facility: environment tempera	te physical unit wing pages and ture (22 ± 3)°C	s of measurements (SI). are part of the certificate. and humidity < 70%.
Calibration This calibra The measu All calibrati Calibration	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T	February 22, 202 ents the traceability to nati rtainties with confidence p cted in the closed laborator	24 onal standards, which realize th robability are given on the follow ry facility: environment temperation	te physical unit wing pages and ture (22 ± 3)°C	s of measurements (SI). are part of the certificate. and humidity < 70%.
Calibration This calibra The measu All calibrati Calibration Primary Sta	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T andards	February 22, 202 ents the traceability to nati rtainties with confidence p eted in the closed laborator TE critical for calibration)	24 onal standards, which realize the robability are given on the follow ry facility: environment temperation Cal Date (Certificate No.)	te physical unit wing pages and ture (22 ± 3)°C	s of measurements (SI). are part of the certificate. and humidity < 70%.
Calibration This calibra The measu All calibrati Calibration <u>Primary Sta</u> Vower mete	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T andards er NRP2	February 22, 202 ents the traceability to nati rtainties with confidence p cted in the closed laborator TE critical for calibration)	24 onal standards, which realize the robability are given on the follow ry facility: environment temperation for the contract of the temperation of the temperation of the temperation of the temperation of the temperature of temperat	te physical unit wing pages and ture (22 ± 3)°C	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24
Calibration This calibra The measu All calibration Calibration Primary Sta Power meter Power sens	a date: ation certificate docum urements and the unce ions have been conduc Equipment used (M&T andards er NRP2 sor NRP-Z91	February 22, 202 ents the traceability to nati rtainties with confidence p oted in the closed laborator re critical for calibration) ID # SN: 104778 SN: 103244	24 onal standards, which realize the robability are given on the follow ry facility: environment temperation for the control of the control o	te physical unit ving pages and ture (22 ± 3)°C 3805)	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24 Mar-24
Calibration This calibra The measu All calibration Calibration Primary Sta Power meter Power sens	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T andards er NRP2 sor NRP-Z91 sor NRP-Z91	February 22, 202 ents the traceability to nati rtainties with confidence p sted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	24 onal standards, which realize the robability are given on the follow by facility: environment temperation <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/0 30-Mar-23 (No. 217-03805)	e physical unit ving pages and ture (22 ± 3)°C 3805)	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24
Calibration This calibra The measu All calibrati Calibration Primary Sta Power meter Power sens Power sens Reference 2	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T andards er NRP2 sor NRP-Z91 sor NRP-Z91 20 dB Attenuator	February 22, 202 ents the traceability to nati rtainties with confidence p oted in the closed laborator rE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k)	24 onal standards, which realize the robability are given on the follow ry facility: environment temperation <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/0 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809)	te physical unit ving pages and ture (22 ± 3)°C 3805)	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
Calibration This calibra The measu All calibration Calibration Primary Sta Power meter Power sens Power sens Reference 2 Type-N miss	a date: ation certificate docum urements and the unce ons have been conduc Equipment used (M&T andards er NRP2 sor NRP-Z91 sor NRP-Z91 20 dB Attenuator match combination	February 22, 202 ents the traceability to nati rtainties with confidence p oted in the closed laborator TE critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327	24 onal standards, which realize the robability are given on the follow ry facility: environment temperar <u>Cal Date (Certificate No.)</u> 30-Mar-23 (No. 217-03804/0 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810)	te physical unit wing pages and ture (22 ± 3)°C 3805)	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24
Calibration This calibra The measu All calibration Calibration Primary Sta Power meter Power sens Reference 2 Type-N mis Reference F	a date: ation certificate docum urements and the unce ions have been conduc Equipment used (M&T andards er NRP2 sor NRP-Z91 sor NRP-Z91 20 dB Attenuator match combination Probe EX3DV4	February 22, 202 ents the traceability to nati rtainties with confidence p oted in the closed laborator "E critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 103245 SN: 8H9394 (20k) SN: 310982 / 06327 SN: 7349	24 onal standards, which realize the robability are given on the follow ry facility: environment temperation 30-Mar-23 (No. 217-03804/0 30-Mar-23 (No. 217-03804) 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) 30-Mar-23 (No. 217-03810) 03-Nov-23 (No. EX3-7349_N	ne physical unit ving pages and ture (22 ± 3)°C 3805)	s of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Mar-24 Nov-24

Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Max 04
Power sensor NRP-791	SN: 103244	20 Mar 22 (No. 217-03004/03005)	IVIar-24
Power sensor NRP-791	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
Reference 20 dB Attenueter	SIN: 103245	30-Mar-23 (No. 217-03805)	Mar-24
Tune Nucleon Alternator	SN: BH9394 (20k)	30-Mar-23 (No. 217-03809)	Mar-24
Type-N mismatch combination	SN: 310982 / 06327	30-Mar-23 (No. 217-03810)	Mar-24
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24
DAE4	SN: 601	30-Jan-24 (No. DAE4-601_Jan24)	Jan-25
Secondary Standards	ID #	Check Date (in house)	Schoolulad Oberly
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house chock Oct 22)	Scheduled Check
Power sensor HP 8481A	SN: US37292783	07 Oct 15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MV/1002215	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF deperator R&S SMT 06	SN: 100070	07-Oct-15 (In house check Oct-22)	In house check: Oct-24
Network Applyzer Acilent 502504	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Aglient E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	
			Tantin
Approved by:	Sven Kühn	Technical Manager	0.
			22
This calibration certificate shall not b	e reproduced except in f	full without written approval of the laboratory	Issued: February 22, 2024
	enterprint	an interest approval of the laboratory.	

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

- Schweizerischer Kalibrierdienst
- S Service suisse d'étalonnage C
 - Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.6 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	······································
SAR measured	250 mW input power	2.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.58 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.41 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.62 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.4 Ω - 2.5 jΩ
Return Loss	- 29.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.000
Liocalida Delay (one direction)	1.036 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	9DEAC
	SPEAG

DASY5 Validation Report for Head TSL

Date: 22.02.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1122

Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; σ = 0.9 S/m; ϵ_r = 42.6; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 03.11.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2024
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mmReference Value = 63.21 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 3.32 W/kg SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.41 W/kg Smallest distance from peaks to all points 3 dB below = 20 mm Ratio of SAR at M2 to SAR at M1 = 64.8% Maximum value of SAR (measured) = 2.91 W/kg

0 dB = 2.91 W/kg = 4.64 dBW/kg

Impedance Measurement Plot for Head TSL

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements

a) return loss : < - 20 dB, within 20% of previous measurement

b) impedance : within 5 Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ
	Head	2024.02.22	-29.464	14 50	52.366	0 71 2
D750V5-5N . 1122	пеай	2025.02.28	-25.183	14.52	51.653	0.715

c) peak SAR (1g) : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	peak SAR (1g) (W/kg)	Δ%
	Head	2024.02.22	0.864	0.12
D750V3-5N : 1122	неай	2025.02.18	0.865	0.12

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL

Gyeonggi-do, Republic of Korea

CALIBRATION CERTIFICATE Object D835V2 - SN:4d194 Calibration procedure(s) QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: March 11, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID # Cal Date (Certificate No.) Scheduled Calibration Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03809) Mar-24 Type-N mismatch combination SN: 310982 / 06327 30-Mar-23 (No. 217-03810) Mar-24 Reference Probe EX3DV4 SN: 7349 03-Nov-23 (No. EX3-7349_Nov23) Nov-24 DAE4 SN: 601 30-Jan-24 (No. DAE4-601_Jan24) Jan-25 Secondary Standards ID # Check Date (in house) Scheduled Check Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: US37292783 07-Oct-15 (in house check Oct-22) In house check: Oct-24 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Name Function Signature Calibrated by: Leif Klysner Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: March 12, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Swiss Calibration Service

Certificate No. D835V2-4d194_Mar24

Accreditation No.: SCS 0108

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage

С Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna . connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	· · · · · · · · · · · · · · · · · · ·
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.49 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.86 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.63 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.45 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4 Ω - 3.7 jΩ
Return Loss	- 28.7 dB

General Antenna Parameters and Design

Electrical Delevitor Real A	
I Electrical Delay (one direction)	1000
	1.393 AS

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
	OF LAG

DASY5 Validation Report for Head TSL

Date: 11.03.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d194

Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon_r = 42.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 03.11.2023
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2024
- Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 64.69 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.73 W/kg**SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.63 W/kg** Smallest distance from peaks to all points 3 dB below = 19.8 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 3.33 W/kg

0 dB = 3.33 W/kg = 5.23 dBW/kg

Impedance Measurement Plot for Head TSL

E	ile	View	<u>C</u> hannel	Sweep	Calibration	Trace	<u>S</u> cale	Marker	System	<u>W</u> indow	Help		121.18.1
			Ch 1 Ava =	20							5.000000 MI 51.705 5.000000 MI	Hz pF Hz	50.368 Ω -3.6864 Ω 36.886 mU -82.195 °
	С	h1: Star	t 635.000 M	iHz —	-								Stop 1.03500 GHz
	10.00 5.00 5.00 5.00 10.0 15.0 20.0 25.0 30.0 30.0 35.0 40.0 C	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 S11 h 1 Avg = 2 635.000 M	20 Hz					>	1: 835		Hz	-28.663 dB
9	Statu	us (CH 1: 51	1		C* 1-Port	10/200		Avg=20 D	elay			LCI

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements

a) return loss : < - 20 dB, within 20% of previous measurement

b) impedance : within 5 Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	Δ%	Impedance (Ω)	ΔΩ	
	Hood	2024.03.11	-28.663	11 E O	50.368	1.91	
D055VZ-5IN. 40194	неао	2025.03.14	-25.344	11.56	48.455		

c) peak SAR (1g) : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	peak SAR (1g) (W/kg)	Δ%
	Llood	2024.03.11	0.996	2.41
D835V2-SN : 40194	неай	2025.03.17	1.030	3.41

Calibration Laboratory of Schmid & Partner **Engineering AG**

UL

Client

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage С
- Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No.

D1750V2-1180_Oct24

Gyeonggi-do, Republic of Korea

CALIBRATION CERTIFICATE

Object	D1750V2 - SN: 1180
Calibration procedure(s)	QA CAL-05.v12 Calibration Procedure for SAR Validation Sources between 0.7 - 3 GHz
Calibration date	October 15, 2024
This calibration certificate doe The measurements and the u	cuments the traceability to national standards, which realize the physical units of measurements (SI). Incertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cor	nducted in the closed laboratory facility: environment temperature $(22 + 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Cal
Power Sensor R&S NRP-33T	SN: 100967	28-Mar-24 (No. 217-04038)	Mar-25
Power Sensor R&S NRP18A	SN: 101859	22-Jul-24 (No. 4030A315008547)	Jul-25
Spectrum Analyzer R&S FSV40	SN: 101832	25-Jan-24 (No. 4030-315007551)	Jan-25
Mismatch; Short [S4188] Attenuator [S4423]	SN: 1152	28-Mar-24 (No. 217-04050)	Mar-25
OCP DAK-12	SN: 1016	24-Sep-24 (No. OCP-DAK12-1016_Sep24)	Sep-25
OCP DAK-3.5	SN: 1249	23-Sep-24 (No. OCP-DAK3.5-1249_Sep24)	Sep-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25
DAE4ip	SN: 1836	10-Jan-24 (No. DAE4ip-1836_Jan24)	Jan-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
ACAD Source Box	SN: 1000	28-May-24 (No. 675-ACAD_Source_Box-240528)	May-25
Signal Generator R&S SMB100A	SN: 182081	28-May-24 (No. 675-CAL16-S4588-240528)	May-25
Mismatch; SMA	SN: 1102	22-May-24 (No. 675-Mismatch_SMA-240522)	May-25

	Name	Function	Signature
Calibrated by	Paulo Pina	Laboratory Technician	tentes
Approved by	Sven Kühn	Technical Manager	A. J. Koll
This calibration certifica	te shall not be reproduced except	in full without written approval of the lab	Issued: October 15, 2024 oratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

RecREDITATION S

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taraturaSwiss Calibration Service
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- · KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation

DASY System Handbook

Methods Applied and Interpretation of Parameters

- *Measurement Conditions*: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY8 Module SAR	16.4.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with spacer
Zoom Scan Resolution	dx, dy = 6mm, dz = 1.5mm	Graded Ratio = 1.5 mm (Z direction)
Frequency	1750MHz ±1MHz	

Head TSL parameters at 1750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity	
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m	
Measured Head TSL parameters	(22.0 ±0.2)°C	40.6 ±6%	1.33 mho/m ±6%	
Head TSL temperature change during test	< 0.5 °C			

SAR result with Head TSL at 1750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	9.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.0 W/kg ±17.0% (k = 2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR for nominal Head TSL parameters	24 dBm input power	4.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.7 W/kg ±16.5% (k = 2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 1750 MHz

Impedance	49.4 Ω – 1.5 jΩ
Return Loss	-35.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

System Performance Check Report

Summary									
Dipole	Frequency [MHz]			TSL	Power [dBm]				
D1750V2 - SN1180	1750		HSL	24					
Exposure Condition	IS				_				
Phantom Section, TSL	Test Distance [mm]	Band	Group, UID	Frequency [MH	z], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity	
Flat	10		CW, 0	1750, 0		7.96	1.33	40.6	
Hardware Setup									
Phantom	TSL, Measured D	ate	Pr	obe, Calibration	Date	DAE,	DAE, Calibration Date		
MFP V8.0 Right	HSL, 2024-10-1	5	EX	3DV4 – SN7349,	2024-06-03	DAE4ip Sn1836, 2024-01-10			
Scans Setup					Measureme	ent Results			
				Zoom Scan				Zoom Scan	
Grid Extents [mm]	30 x 30 x 30			Date			2024-10-15		
Grid Steps [mm]			6.	0 x 6.0 x 1.5	psSAR1g [W	<g]< td=""><td>9.29</td></g]<>		9.29	
Sensor Surface [mm]				1.4	psSAR10g [W/Kg]		4.94		
Graded Grid				Yes	Power Drift [dB]		0.00		
Grading Ratio	1.5			1.5	Power Scalin	Power Scaling Disab			
MAIA				N/A	Scaling Facto	or [dB]			
Surface Detection	VMS + 6p		VMS + 6p	TSL Correcti	on		Positive / Negative		
Scan Method	Measured			Measured					
	A second second second by a second second								

 $0 \, dB = 16.3 \, W/Kg$

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Certificate No. D1900V2-5d199 Mar24

S

S Swiss Calibration Service

Accreditation No.: SCS 0108

Client UL

Gyeonggi-do, Republic of Korea

CALIBRATION CERTIFICATE D1900V2 - SN:5d199 Object QA CAL-05.v12 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz March 13, 2024 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID# Cal Date (Certificate No.) Power meter NRP2 SN: 104778 30-Mar-23 (No. 217-03804/03805) Mar-24 Mar-24 Power sensor NRP-Z91 SN: 103244 30-Mar-23 (No. 217-03804) Mar-24 Power sensor NRP-Z91 SN: 103245 30-Mar-23 (No. 217-03805) 30-Mar-23 (No. 217-03809) Mar-24 Reference 20 dB Attenuator SN: BH9394 (20k) 30-Mar-23 (No. 217-03810) Mar-24 Type-N mismatch combination SN: 310982 / 06327 Nov-24 Reference Probe EX3DV4 SN: 7349 03-Nov-23 (No. EX3-7349_Nov23) DAE4 SN: 601 30-Jan-24 (No. DAE4-601_Jan24) Jan-25 ID# Scheduled Check Secondary Standards Check Date (in house) Power meter E4419B SN: GB39512475 30-Oct-14 (in house check Oct-22) In house check: Oct-24 07-Oct-15 (in house check Oct-22) Power sensor HP 8481A SN: US37292783 In house check: Oct-24 Power sensor HP 8481A SN: MY41093315 07-Oct-15 (in house check Oct-22) In house check: Oct-24 RF generator R&S SMT-06 SN: 100972 15-Jun-15 (in house check Oct-22) In house check: Oct-24 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-22) In house check: Oct-24 Function Name Signature Calibrated by: Paulo Pina Laboratory Technician Sven Kühn Technical Manager Approved by: Issued: March 14, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the • center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled • phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	·····
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.5±6%	1.40 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.7 W/kg ± 17.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	· · · · · · ·

SAR measured	250 mW input power	5.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.7 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 4.2 jΩ
Return Loss	- 25.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG